COMPLEX ANALYSIS PRELIM. (AUGUST 25, 2005)

1. Find an analytic function $f(z)$ whose real part is

$$
\operatorname{Re}(f(z))=x y+3,(z=x+i y)
$$

Does such a function exist? Justify your answer.
2. Let u be a real-valued harmonic function. For what functions f is the function $f(u)$ harmonic?
3. Let f be analytic in a domain Ω and $\operatorname{Re}(f)$ be a constant on Ω. Show that f is a constant.
4. Construct a conformal mapping of $\mathbb{C} \backslash([-1,0] \cup[-i, i])$ onto the init disk.
5. State and prove Morera's Theorem.
6. Compute the integral

$$
\int_{|z|=1 / 2} \frac{d z}{(2 z-\bar{z})^{8}}
$$

7. How many roots of the equation $z^{4}-6 z+3=0$ have their modulus between 1 and2?
8. Let f be an entire function whose modulus is constant on some circle. Prove that $f(z)=C\left(z-z_{0}\right)^{n}$.
9. By Picard's Theorem every meromorphic function has at most 2 exceptional values (that is there are at most two complex numbers which are
not in the range). How many exceptional values does $\tan z$ have? Find them.
10. Prove that there exists a constant C such that for every polynomial P

$$
\left|\int_{-1 / 2}^{1 / 2} P(x) d x\right| \leq C \int_{|z|=1}|P(z)||d z| .
$$

