Complex Analysis Prelim

January, 2005

Throughout let $D = \{z : |z| < 1\}$ and $\mathbf{C} = \text{complex plane}$.

- 1. Let $u(x,y) = \frac{y}{x^2 + y^2}$. Show that u is harmonic in the punctured plane $\mathbb{C} \setminus \{0\}$ in 2 ways:
 - A. From the definition of harmonic.
 - B. By finding a function f, analytic in $\mathbb{C} \setminus \{0\}$ with u = Ref.
- 2. Construct a conformal map of the region $D \setminus \{z : |z + \frac{1}{2}| \le \frac{1}{2}\}$ onto the region $C \setminus \{z : Re \ z \le 0\}.$
- 3. Let α be a real number and consider the integral $\int_{-\infty}^{\infty} \frac{dx}{x^2 2x + \alpha}$. Determine for what α the integral converges and, in those cases, determine its value. Include the details of your contour argument.
- 4. Let $f(z) = \cos(i z^3)$. Determine $Z(f) = \{z : f(z) = 0\}$. Indicate with a picture where the solutions lie in **C**.
- 5. Let $p(z) = 3z^{15} + 4z^8 + 6z^5 + 19z^4 + 3z + 1$. Show that p(z) has 4 zeros for |z| < 1and 11 zeros for 1 < |z| < 2.
- 6. Let $f: D \to D$ be analytic and satisfy $f(\frac{1}{2}) = \frac{1}{2}$ and $f'(\frac{1}{2}) = -1$. Find an explicit formula for f.
- 7. Let f and g be analytic in a nonempty connected open set U and satisfy |f| = |g|there. What else can you deduce about the relationship between f and g. Justify your answer.
- 8. Let f be analytic in D and satisfy $|f(z)| \le \frac{1}{1-|z|}$ there. Show that $|f'(0)| \le 4$.

- 9. Let $\{b_n\}$ be a sequence of complex numbers such that $\limsup |b_n|^{\frac{1}{n}} = 1$. Let \mathcal{F} be the family of function $f(z) = \sum_{n=0}^{\infty} a_n z^n$ which are analytic in D and satisfy $|a_n| \leq |b_n|$, $n = 0, 1, 2, \ldots$ Prove that \mathcal{F} is a compact family in the topology of uniform convergence on compact sets in D.
- 10. A. State carefully the Riemann Mapping Theorem.
 - B. Let f be a conformal map from D onto D satisfying f(0) = 0 and |f'(0)| = 1. Using only the Riemann Mapping Theorem show that $f(e^{i\theta}z) = e^{i\theta}f(z)$ for every real number θ .
 - C. Deduce that there is a real number θ_0 such that $f(z) = e^{i\theta_0} z$.