Prelim in Complex Analysis, August 2003

Let C be the complex plane and $D=\{z \in C:|z|<1\}$ be the open unit disk.

1. Evaluate the following integrals.

$$
\int_{|z|=2} \csc z d z, \quad \int_{|z|=1} \frac{1-\cos z}{z^{2}} d z, \quad \int_{0}^{\pi} \frac{d \theta}{2+\cos \theta} .
$$

2. If $f(z)$ is entire and $|f(z)| \leq|z|^{3 / 2}$ for all z, show that f is identically zero.
3. Show that a function $f: D \rightarrow C$ is constant if and only if both f and \bar{f} are analytic in D.
4. Show that the class X of analytic functions f in D with

$$
\int_{D}|f(z)| d x d y \leq 1
$$

is a normal family.
5. Find the real and imaginary parts of the complex number

$$
z=\log (1+i)+\cos (1+i)
$$

where \log is the branch of the logarithm on $C-\{x: x \leq 0\}$ with $\log (1)=2 \pi i$.
6. If $f: D \rightarrow C$ is a bounded analytic function, show that

$$
\sup _{z \in D}\left(1-|z|^{2}\right)\left|f^{\prime}(z)\right| \leq \sup _{z \in D}|f(z)| .
$$

7. Show that if $f: D \rightarrow C$ is analytic and one-to-one, then $f^{\prime}(z) \neq 0$ for every $z \in D$.
8. If $f: D \rightarrow D$ is analytic and $f(0)=f^{\prime}(0)=0$, show that $|f(z)| \leq|z|^{2}$ for all $z \in D$.
9. Find the Laurent series of $f(z)=1 /[z(1-z)]$ at $z=0$, at $z=1$, at $z=2$, and at $z=\infty$.
10. Let

$$
B(z)=\prod_{k=1}^{n} \frac{a_{k}-z}{1-\bar{a}_{k} z}
$$

where a_{1}, \cdots, a_{n} are distinct points in $D-\{0\}$. Show that

$$
B(z)=\prod_{k=1}^{n} \frac{1}{\bar{a}_{k}}+\sum_{k=1}^{n} \frac{1}{\bar{a}_{k} \overline{B^{\prime}\left(a_{k}\right)}\left(1-\bar{a}_{k} z\right)} .
$$

