From: richardg@math.albany.edu To: ja984@math.albany.edu Date sent: Wed, 6 Jun 2001 11:0 -0400 Subject: (Fwd) C-Prelim Tex File Priority: normal
- Forwarded message follows —— From: zhu ¡kzhu@csc.albany.edu¿ Date sent: Mon, 4 Jun 13:18:17-0400 (EDT) To: richardg@csc.albany.edu Subject: C-Prelim Tex File

Prelim in Complex Analysis, June 2001

1. Evaluate the following integrals.

$$
\int_{|z|=2} \tan z d z, \quad \int_{0}^{\pi} \frac{d t}{5-4 \cos t}
$$

2. Find the Laurent series of the function

$$
f(z)=\frac{1}{(z-1)(z-2)}
$$

in the region $1<|z-3|<2$.
3. Suppose $f(z)$ is an entire function with $\operatorname{Re} f(z)>10$ for all z. Show that f is constant.
4. Let F be the family of functions f analytic in $|z|<1$ such that

$$
\int_{|z|<1}|f(z)| d A(z) \leq 1
$$

where $d A$ is area measure on $|z|<1$. Show that F is a normal family.
5. Does there exist an analytic function f in $|z|<1$ such that

$$
0<\left|f\left(\frac{1}{n}\right)\right|<e^{-n}
$$

for $n=2,3,4, \cdots$? Justify your answer.
6.
(a) Show that

$$
\left|\frac{1-2 z}{2-z}\right|<1
$$

for all $|z|<1$.
(b) Suppose f is analytic in $|z|<1, f(0.5)=0$, and $|f(z)| \leq 1$ for all $|z|<1$. Show that

$$
|f(z)| \leq\left|\frac{1-2 z}{2-z}\right|
$$

for all $|z|<1$.

