Date sent: Thu, 01 Jun 2000 08:11:40-0400 (EDT) From: zhu ¡kzhu@csc.albany.edu¿ To: ja984@cnsı
Preliminary Exam in Complex Analysis
June 2000

Notation: \mathbf{C} denotes the complex plane; \mathbf{R}^{-}denotes the negative real axis (including the origin); and \mathbf{D} denotes the unit disk.

1. Suppose $f(z)$ is analytic in $\mathbf{C}-\{0\}$ and satisfies

$$
|f(z)| \leq \frac{1}{\sqrt{|z|}}, \quad z \in \mathbf{C}-\{0\}
$$

Show that f is identically zero.
2. Let $\Omega=\mathbf{C}-\mathbf{R}^{-}$.

1) Define the principal branch of the $\operatorname{logarithm}, \log (z)$, in the region Ω.
2) Show that $\log (z w)=\log (z)+\log (w)$ for all z and w in the (open) right halfplane.
3) Show that the identity in 2) does not hold for all z and w in Ω.
3. For each of the following functions find the radius of convergence for its Taylor series at the specified point.
1) $f(z)=(\cos z) /(3 z+4)$ at $z_{0}=10$.
2) $g(z)=1 /\left(z^{2}+z+1\right)$ at $z_{0}=0$.
4. Suppose $f(z)$ and $\overline{f(z)}$ are both analytic in D. Show that $f(z)$ is constant.
5. Evaluate the following integrals.
1) $\int_{C}\left(\sinh z+\frac{z}{2 z+1}\right) d z$, where C is the unit circle traversed once clockwise.
2) $\int_{\Gamma}(z+3 \bar{z}) d z$, where Γ is the path from -1 to 1 along the upper semi-circle $|z|=1$.
3) $\int_{0}^{\pi} \frac{d \theta}{2+\cos \theta}$.
