Date sent: Thu, 01 Jun 2000 08:11:40 -0400 (EDT) From: zhu jkzhu@csc.albany.edu¿ To: ja984@cnsv Preliminary Exam in Complex Analysis

June 2000

Notation: **C** denotes the complex plane; \mathbf{R}^- denotes the negative real axis (including the origin); and **D** denotes the unit disk.

1. Suppose f(z) is analytic in $\mathbf{C} - \{0\}$ and satisfies

$$|f(z)| \le \frac{1}{\sqrt{|z|}}, \qquad z \in \mathbf{C} - \{0\}.$$

Show that f is identically zero.

- 2. Let $\Omega = \mathbf{C} \mathbf{R}^{-}$.
 - 1) Define the principal branch of the logarithm, Log(z), in the region Ω .
 - 2) Show that Log(zw) = Log(z) + Log(w) for all z and w in the (open) right halfplane.
 - 3) Show that the identity in 2) does not hold for all z and w in Ω .
- 3. For each of the following functions find the radius of convergence for its Taylor series at the specified point.
 - 1) $f(z) = (\cos z)/(3z+4)$ at $z_0 = 10$.
 - 2) $g(z) = 1/(z^2 + z + 1)$ at $z_0 = 0$.
- 4. Suppose f(z) and $\overline{f(z)}$ are both analytic in **D**. Show that f(z) is constant.
- 5. Evaluate the following integrals.
 - 1) $\int_C \left(\sinh z + \frac{z}{2z+1}\right) dz$, where C is the unit circle traversed once clockwise.

2) $\int_{\Gamma} (z+3\bar{z}) dz$, where Γ is the path from -1 to 1 along the upper semi-circle |z| = 1. 2) $\int_{\Gamma}^{\pi} d\theta$

3)
$$\int_0 \frac{1}{2 + \cos \theta}$$