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Indefinite Schwarz-Pick inequalities
on the bidisk

Michio Seto

ABSTRACT. Indefinite Schwarz-Pick inequalities for analytic self-maps
of the bidisk are given as an application of the spectral theory on analytic
Hilbert modules.
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1. Introduction

The classical Schwarz-Pick inequality is fundamental in complex anal-
ysis and hyperbolic geometry, and also its functional analysis aspect has
attracted a lot of interest. For example, Banach space theory related to the
geometry derived from Schwarz-Pick inequality can be seen in Dineen [5].
In connection with operator theory, Schwarz-Pick type inequalities for an-
alytic functions of one and several variables were discussed by Anderson-
Rovnyak [3], Anderson-Dritschel-Rovnyak [2], Knese [12] and MacCluer-
Stroethoff-Zhao [13, 14] in the context of Pick interpolation, realization for-
mula, de Branges-Rovnyak space and composition operator. Now, the pur-
pose of this paper is to give some variants of Schwarz lemma and Schwarz-
Pick inequality for the bidisk. Here the author would like to emphasize the
following three points:

(1) we deal with analytic self-maps of the bidisk,
(2) our inequalities are indefinite in a certain sense,
(3) our method is based on the theory of analytic Hilbert modules.
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We shall introduce the language of the theory of Hilbert modules in the
Hardy space over the bidisk. Let D be the open unit disk in the complex
plane C, H? be the Hardy space over the bidisk D?, and H*> be the Banach
algebra consisting of all bounded analytic functions on D?. Then H? is a
Hilbert module over H>, that is, H? is a Hilbert space invariant under
multiplication of functions in H*. A closed subspace M of H? is called a
submodule if M is invariant under the module action. Comparing with the
theory of the Hardy space over the unit disk D, structure of submodules in
H? is very complicated. However, there are some well-behaved classes of
submodules in H2. One of those classes was introduced by Izuchi, Nakazi
and the author in [9], and those members are called submodules of INS type.
In this paper, as an application of spectral theory on submodules of INS type,
the following Schwarz-Pick type inequalities will be given (Theorem 4.2 and
Theorem 4.3): if ¢ = (11,2) is an analytic self-map on D?, then

0 < d(1p(2),v(w)) < V2d(z,w) < V2 (z,weD?),

where we set

d(z,w) = \/

for z = (21, 22) and w = (wy,w2) in D?. Further, if ¥ belongs to a certain
class defined in Section 2, then

0 < d(p(2),v(w)) <d(z,w) <1 (z,weD?).

This paper contains four sections. Section 1 is this introduction. In
Section 2, three classes of tuples of analytic functions on D? are defined,
and we show they are nontrivial. In Sections 3 and 4, as an application of
the theory of analytic Hilbert modules, indefinite variants of Schwarz lemma
and Schwarz-Pick inequality are given, respectively.

2 2
Z1 — wq Z9 — Wo Z1 — W1 %9 — Wa

1—wizy 1 —woze 1—wiz1 1—wo2s

2. Schur-Drury-Agler class
Let ky denote the reproducing kernel of H? at X in D?, that is,

1
B = ) - )

(Z = (2’1,2’2),)\ = ()\1,)\2) S ]D2)
Then we set

D= {Zcﬂg (a finite sum) : \ € D% ¢y € (C} ,
A

the linear space generated by all reproducing kernels of H2. We shall con-
sider unbounded Toeplitz operators with symbols in H2. Let f be a function
in H2. Then Ty denotes the multiplication operator of f, where we fix D
for the domain of T . Then, since

(Exs Trk) = (F(Nkas k) (A, p € D?),
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T}‘ is defined on D and we have

Tiky = F(Vky (A€ D?).
Definition 2.1. Let m and n be non-negative integers. We consider a tuple

“I)m,n = (Sola s Pmy Pl . -v@ern)

of m +n analytic functions in H2. Then S(D;m,n) denotes the set of all
O, n satisfying the following operator inequality on D:

m m+n
0<) T, T5 — > TpT;, <1
7=1 k=m+1

Equivalently, ®,, ., belongs to S(D;m,n) if and only if

o< S 0i(Nei(z) = Sy e (Ve (2) - 1
- (1= Az1)(1 = Aozo) T (1= A2n)(1 = Aoza)

as kernel functions.

Since the author has been influenced by Drury [6], in our paper, we would
like to call S(D?;m,n) a Schur-Drury-Agler calss of D?. Here two remarks
are given. First, unbounded functions are not excluded from S(D?;m,n)
(cf. Definition 1 in Jury [11] for the Drury-Arveson space). Throughout
this paper, a triplet (¢1, 2, ¢3) consisting of functions in H* will be said
to be bounded. Second, S(ID?;m,n) is more restricted than the class, which
might be called a Schur-Agler class in some literatures, consisting of tuples
of functions in H? satisfying the operator inequality

m m+n
=TT Y T 20
7j=1 k=m-+1

In this paper, we will focus on the case where m = 2 and n = 1, that is,

S(D?%2,1) = {(p1, 2, ¢3) € (H?)?:0 < Ty, Ty, + Ty, T, — Ty, T, < I}

This class is closely related to submodules of rank 3 (see Wu-S-Yang [15]
and Yang [16, 17]). Further, we define other two classes as follows:

P(D%2,1) = {(¢1, 02, 93) € (H?)? : T, T +T,,TF —T,,T: >0},

P11 P2+ p2 3+ 3
QD% 2,1) = {(¢1, 2, 3) € (H*)> : I = T, T — Ty, Tis, + Ty, T35, > O}

Trivially, P(D?;2,1)NQ(D?;2,1) = S(D?;2,1). First, we shall give examples
of elements of S(D?;2,1).

Example 2.2. Let 1 = pi1(z1) and g2 = ¢a(22) be analytic functions of
single variable. If ||¢1]|co < 1 and [|p2|lcc < 1, then (v1, 2, p192) belongs to
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S(D?%2,1). Indeed, since T, and T, are doubly commuting contractions,

I —Tp, T2 — Ty Thy + Tipy0 T

P22 P1P2~ P12
= (I = Tp, T3)(I — Ty, T,)
= (I =Ty, T3) 21 — T, T3, (I — Ty, T3)'?
>0,
and
T T3 + Tips Ty — T Ty = T Ty + T (I — T T )T, > 0.

In particular, (z1, 22, 2122) belongs to S(D?;2,1) and

TZl T,:l + TZQTZ*Q - TZIZQT;:lzg
is the orthogonal projection of H? onto the submodule generated by z; and
z.

Example 2.3. Let ¥(z) = (¢1(2),%2(2)) be an analytic self-map of D?.
Then, trivially, ran T, NG is a subspace of ran Ty, . Hence, by the Douglas
range inclusion theorem and [|Ty, || < 1, we have

* 1 * % *
0 < Ty 2T vz < 5T Ty < T T, + Ty, T, < 21

Therefore, we have

1 . . "
0= §(Tw1Tw1 + T¢2T¢2 - T¢1¢2/\/§T¢1¢2/\/§)
= Twl/ﬁlel/ﬂ + Ti/)z/\/iTlL/\/ﬁ o Twlwz/Qlelem
< Twl/\/iTqm/ﬂ + T¢2/\/§T¢2/\/§
<.

Thus (¢1/v/2,12/v/2,9112/2) belongs to S(D?;2,1) for any analytic self-
map (wl, 'lﬂQ) of D2.

Example 2.4. Further non-trivial examples of elements in S(D?;2,1) re-
lated to the theory of Hilbert modules in H? can be obtained from Theorem
4.3 in Wu-S-Yang [15].

P(D?;2,1) and Q(D?;2,1) are closed under composition of elements in
Q(D?%2,1) in the following sense (cf. Theorem 2 in Jury [11]).

Theorem 2.5. Let (o1, 2, p3) be a triplet in P(D?;2,1) (resp. Q(D?;2,1)),

and ¢ = (11,v2) be an analytic self-map of D?. If (11,2, 192) belongs
to Q(D?;2,1), then (1 0 1,2 0, p3 o ) belongs to P(D?;2,1) (resp.
Q(D?2,1)).

Proof. We set
(z,A) = p1(N)1(2) + p2(N)pa(2) — p3(N)ws(2).
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If (¢1, 02, @3) belongs to P(D?;2, 1), then, for any A1, ..., \, in D?, we have

n n
(Tpr00 T 0 + Torov Ty — TogouTingop) D Ciking, D cikn,)
i=1 j=1

Z cici®((Ng), P(Ni)) (ks kay)

2,7=1

= z": ciciP(P(A7), Y (X)) (Ryn) k‘qp(xj)>M
P (Fpn)s Fpng))

S (T T + T, — T T Mooy Fio) i)
5 J P11 w2+ p2 Y3+ 3 i J <k¢(>\i)’k¢(>\j)>

Hence, by the definition of Q(D?;2,1) and Schur’s theorem, we have

T%OIZ}T;lw + TmowT&fzow o T%O#}Tzsow > 0.

Therefore, (101, P20, p301)) belongs to P(D?;2,1). Similarly, considering
1 — ®, we have the statement on Q(D?;2,1). O

Corollary 2.6. Suppose that 1 = (11,2) is an analytic self-map of D? and

(11,2, 91102) belongs to S(D?*;2,1). Then (p1 01,201, p301) belongs to
S(D?%2,1) for any triplet (o1, 2, p3) in S(D?2,1).

3. Indefinite Schwarz lemmas

In this section, we shall give inequalities which can be seen as variants of
Schwarz lemma. We need several lemmas.

Lemma 3.1. Let T be a non-negative bounded linear operator, and P be
an orthogonal projection on a Hilbert space H. If there exists some constant
¢ > 0 such that 0 < T < cP, then we may take ¢ = ||T||.

Proof. By elementary theory of self-adjoint operators, we have the conclu-
sion. ([

Lemma 3.2. Let (©1, pa,¢3) be a bounded triplet in P(D?;2,1). Then g3
belongs to @1 H? + oo H?.

Proof. Applying the Douglas range inclusion theorem to the operator in-
equality

T, < T T2, + To T,

we have

ranT,, C ran \/T%T:;1 + T, T3, = ranTy, +ranTy,

(see Theorem 2.2 attributed to Crimmins in Fillmore-Williams [7] or Theo-
rem 3.6 in Ando [4]). This concludes the proof. O
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Lemma 3.3. Let (1,02, 03) be a bounded triplet in P(D?;2,1). If

©1(0,0) = ¢2(0,0) = 0,
then
0 < |1(2)]? + lp2(2)* = s (2) [ < NIT (121 ] + [22f” — |2122f%)
for any z = (21, 22) in D?, where we set

T = Tp, T}, + T, T, — Ty T,

Proof. Suppose that @1, p2 and ¢3 are bounded and ¢;(0,0) = ¢2(0,0) =
0. Then, it follows from Lemma 3.2 that ¢3(0,0) = 0. Hence ¢1, 2 and @3
belong to the submodule Mg = 2 H? + 2o H?. Then we have

ran (T, Tg, + Ty, Ty, — TpTy,) C Mo.

Further, by elementary spectral theory, we have

ran(Ty, T35, + T, T, — Tpy T,)/? C Tan(Ty, T, + Tip, T, — Ty T0,)

C My = M.

Hence, it follows from the Douglas range inclusion theorem that there exists
a constant ¢ > 0 such that

0<TpT5 +Tp,1T5, —Tp, Ty, < cPumy,

where Py, denotes the orthogonal projection of H? onto My. By Lemma
3.1, we may take ¢ = ||T'||. Hence we have

0 < Ty, T +Tp, T —Tp, T < ||T||Paty = | TI(Toy T2+ Ty T — T2, T2 )

P11 P2+ p2 $3~" 3 Z1" 21 22" 29 2122+ 2129
by Example 2.2. In particular,

(lpr (W) + l2(N)[* = [e3(M)[*)ka(N)
= ((Tp, T2, + T, T — Ty, T )k, iy

P11 P2+ 2 P33
< <HTH(TZIT;1 + TZZTZ*Q - TZ122T;122)I<3)\7]€>\>

= [ITUM + [A2l* = Aol Ea(A)
for any A = (A1, A2) in D?. This concludes the proof. O

Lemma 3.4. If (¢1,12) is an analytic self-map on D?, then (11,2, ¥11b2)
belongs to P(D?;2,1).

Proof. Since [¢j[loc <1 for j = 1,2, we have
T¢1Tzz1 + T¢2T17;2 - T¢1¢2T1/t1w2 = T¢1Tmz1 + Ty, (- TwlTil)T@ > 0.
Hence (11,2, 1112) belongs to P(D?;2,1). O

The following theorem is a bidisk version of the Schwarz lemma.
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Theorem 3.5. If 1) = (1,12) is an analytic self-map on D? and 1(0,0) =
(0,0), then
2 2 2 2 2 2
0 < |h1(2)" + [92(2)I° = [¥1(2)92(2)|” < NTN(22]” + |22]” = |2122[7)
for any z = (21, 22) in D?, where we set
T= Twleﬂ*l + T¢2le2 - T¢1¢2T121¢2‘
Proof. By Lemma 3.3 and Lemma 3.4, we have the conclusion. ([

Proposition 3.6. Let (¢1, 02, p3) be a triplet in S(D?;2,1). If v1(0,0) =
©2(0,0) =0, then

0 < lp1(2)]* + [@2(2)” = lw3(2) [ < |21 + |22]* = [2120]?
for any z = (21, 29) in D2

Proof. If (¢1, p2, ¢3) is bounded, then we have the conclusion immediately
by Lemma 3.3. Suppose that (1, 2, ¢3) is unbounded. Setting 1, (21, 22) =
(rz1,rz2) for 0 < r < 1, (1 0 ¥y, 2 0 Yy, 3 0 ;) belongs to S(D?;2,1) by
Corollary 2.6 and Example 2.2. Moreover, @1 0 %, 2 0 ¢, and (3 o ¢, are
bounded on D?; and ¢; 0 9,-(0,0) = 3 0 1,.(0,0) = 0. Hence we have
0 < [er(r2)]? + |wa(r2)]* — |ws(r2)[?

= |1 0 9 (2)* + 02 0 ¥r(2) > — |03 0 ¢ (2)]?

<z + |22l = |2120)?
by Lemma 3.3. Letting r tend to 1, we have the conclusion for unbounded
triplets. O

Theorem 3.7. Suppse that 1y = (11,2) is an analytic self-map on D? and

(¢1ﬂ/’27¢1¢2) belongs to Q(D27 2, 1) If w(oao) = (070)7 then (¢17¢27¢1¢2)
belongs to S(D?;2,1) and

0 < 1 () + [¥2(2) ] = [h1(2)02(2)* < |21f® + |22 — |z122)

for any z = (21, 22) in D%. Moreover, equality

[Y1(2)]7 + [2(2)]* = [h1(2)v2(2) P = |21 + |22 = [z122]
holds on some open set if and only if 1 = (e 21,2 25) or (e%229, €1 21).

Proof. First, by Lemma 3.4, (11, %2, 1192) belongs to S(D?;2,1). Hence,
we have the inequality by Theorem 3.5. Next, we suppose that

[1(2) 7 + 2 (2)]* — 1 (2)va(2) [ = |21]? + |22]* — [2122]

on an open set V. Then, by the polarization (see p. 28 in Agler-McCarthy [1]
or p. 2762 in Knese [12]), we have

Y1 (N)Y1(2) + P2 (W) 2(2) — h1(N) b2 (A1 (2)v2(2) = A1z1 + Aaza — AL Aez120
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on V x V, and this identity can be extended to D? x D?. Then, for j = 1,2,
we have
2 |0z 2 2

aZj

0z
82j

821 Z9
32]'

1
82]‘

Hence we have

2+ 8¢22_
aZj

0192
aZj

2

O
0z

02

72 00| +| 57

(0, 0) =1. (3.1)

o

Similarly, we have
D% 9%1s
0z 2 0z 2
It follows from (3.1) that
oYy
—(0,0
0.0

77[) 2

Oy
5 0,0 =0. (32

2
(0,0) 0z

2
+ (0,0) —4‘ (0,0) 22

2 2

0
a2+l > -
22

Hence, [|¢h1]| = 1 and [[¢2|| = 1 and
Vi = cinz +cinza (lein? + |ein? = 1).
Further, by (3.2), we have

O Oy
0z; 0z;
that is, ¢1c2; = 0. This concludes the proof. ([l

o
8Z1

)

(0,0)| + .

=0, 0)

)

—.-(0,0)5-=(0,0) = 0,

Corollary 3.8. Let f be an analytic function on D%. If ||fllee < 1 and
£(0,0) =0, then
0 < |f(2)] < el + |22f* = [2122)

for any z = (21, 22) in D%

Proof. Set ¢ = (¢1,12) = (f,0). Then 9 is an analytic self-map, 1(0,0) =
(0,0) and (31,2, ¢1102) = (f,0,0) belongs to Q(D?;2,1). O

Remark 3.9. Suppose that ¢ = (¢1,%2) is an analytic self-map on D?
and (vY1,12,11¢2) belongs to S(D?;2,1). Then, the proof of Theorem 1
in Jury [10] can be applied and we have that the composition operator Cy,
is contractive on H?. As its corollary, the inequality in Theorem 3.7 is
obtained.

Remark 3.10 (Krein space geometry and D?). We introduce a Krein space
structure into C? as follows:

(2w = 2101 + 20W3 — 23W3 (2 = (21, 22, 23), w = (w1, wa, w3) € C?).
Let K denote the Krein space (C3, (-, )x), and let ® be the map defined as
follows:

®:D* > K, (21,22) = (21,22, 2122).
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Moreover, we set
Q={(z1,22) €C?: 0 < |21 + | 22> — |2122|* < 1}
={2€C?:0< (®(2),®(2))x < 1}.
Then, since
21 4 22 = |2122? = 1= (1 = |21 ) (1 = |22),

D? is the bounded connected component of €, and OD?, the topological
boundary of D?, is equal to the subset

{(21,22) € C*: |21 + |22)® — |z122)* = 1} = {2 € C? : (®(2), (2))c = 1}.

4. Indefinite Schwarz-Pick inequalities

Let ¢1 = q1(21) and g2 = g2(22) be inner functions of single variable. Then
M = qH? + ¢ H?

is a submodule of H2. This submodule was introduced by Izuchi-Nakazi-
S [9], and is called a submodule of INS-type. In this section, we shall give
an application of spectral theory on submodules of INS type. In the general
theory of Hilbert modules in H?, the core (defect) operator of a submodule
M in H? is defined as follows:

AM = Pnm — TZ1PMT;1 - Tz2PMT,:2 + TZ1Z2PMT;1227

where Py denotes the orthogonal projection of H? onto M. For a submod-
ule of INS-type, it is known that

A= qa+¢q0p—(192) @ ((1¢2),

where ® denotes the Schatten form. Core operators were introduced and
studied by Guo-Yang [8] and Yang [16] in detail, and which are devices
connecting reproducing kernels and submodules. In particular, the following
formula is useful:

ka(Anky) = Paky. (4.1)

Further, core operators of finite rank were discussed by Yang [17]. Let M
be a submodule whose core operator A, is of finite rank. Then the rank
of Apq is odd. Moreover, if the rank of A is 2n + 1, then the signature of
Apqis (n+1,n). Hence Apq has the following representation:

n+1 2n+1
A=) nj@n— > nj®mn (4.2)
j=1 j=n+2

By application of those facts, Lemma 3.3 is generalized as follows.
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Lemma 4.1. Let M be a submodule of finite rank. We suppose that the
core operator of M has the representation (4.2). If (p1, 2, p3) is a bounded
triplet in P(D?;2,1), and @1 and @s belong to M, then

n+1 2n+1
0 < lp1(2)]? + [@2(2)” = lw3(2) [ < |IT| ZI% - > )P
j=n+2

for any z in D?, where we set

T= T<P1 T<;1 TSO2 TSZQ TSDS T;5
In particular, if M = q H? + qoH? for inner functions q1 = q1(z1) and
g2 = q2(22) of single variable, then
0 < l1(2) P +lp2(2)* = los(2)* < NN (g1 (z0) P +la2(22) [ = a1 (21)g2(22) *)
for any z = (21, 29) in D%
Proof. By the same argument as the first half of the proof of Lemma 3.3,

we have

0 < Ty Ty, +Tp, Ty, — Tp Ty, < |IT||Pr.

Then, for any A = (A1, A2) in D?, we have

o1 + o2 (NP = o3 (M)P)ka(A)

(
< T‘Pl T;l T802 Tt,:2 T<P3 T;;g )kkv k/\>
<A[|T| Prtkx, kx)

= IT[{kA(Artkx), k)

n+1 2n+1
= |7 </€A dmieni— > mien k/\7k>\>

j=1 j=n+2
n+1 2n+1
=TI DIV = > I | ka(y)
i=1 =t
by (4.1). This concludes the proof. O
For z = (21, 22) and w = (wy,ws) in D2, we set
buy () = Tt (1= 12)

Then, we note that
By (20)7 + [buy (22) 7 = [buy (21)buwy (22)
=1 — (1~ |buy (20) ) (L = [bu, (22)[*) > 0.

Hence

d(z,w) = /[buy (21)2 + [buy (22)[7 = by (21)bu, (22)]?
is defined. It should be mentioned here that d is a distance on D? by Lemma
9.9 in Agler-McCarthy [1].
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Theorem 4.2. Let ¢ = (1,12) be an analytic self-map on D?. Then,
0 < d(¥(2), (w)) < V2d(z,w) < V2
for any z and w in D?.

Proof. For z = (21, 22) and w = (wy, ws) in D?, we set
0 - w)

1 —(w)ih(z)
Then, (1, p2) is an analytic self-map on D?, and (¢1, 2, @192) belongs to
P(D?;2,1) by Lemma 3.4. Further, since ¢1(w) = @2(w) = 0, 1 and @9
belong to the submodule by, (21)H? + by, (22) H2. Hence, by Lemma 4.1, we
have

©;(2) = by, (w) ©¥(2)

0 < [pr(2) + lp2(2)* = l1(2)p2(2)
TN (Jbw, (1) + bus (22)1* = [buw, (21)buy (22) )
< 2(Jbw, (21)7 + [bus (22) I = [bu, (21)bu, (22) )
<2

This concludes the proof. O

Theorem 4.3. Suppose that 1) = (Y1,1)9) is an analytic self-map on D? and
(1,09, 11102) belongs to Q(D?;2,1). Then

0 < d(p(2),h(w)) < d(z,w) <1
for any z and w in D?. Moreover, equality
d(yp(2),¥(w)) = d(z,w) (z,weV)
holds on some open set V if and only if 1) belongs to Aut(D?).

Proof. We shall use the same notations as those in the proof of Theorem 4.2.
By the assumption and Corollary 2.6, (¢1, 02, p1¢2) belongs to S(D?;2,1).
Hence we have ||T|| < 1. Thus we have the first half. Next, suppose that

d(¥(2),¥(w)) = d(z,w) (z,weV)
holds on some open set V. We fix a point w in V. Then we have
|01(2) [P+ 1p2(2) 2 = |1 (2)p2(2)* = [buy (20) P 4 [busy (22) 2 = [buoy (21)busy (22)]
for any z in V. Setting 3(2) = (b—uw, (21), b—u,(22)), (p108, 9200, (p12)0f)
belongs to S(D?;2,1) by Corollary 2.6, ¢ o 3(0,0) = (0,0) by the definition
of ¢, and
010 B(2)1* + lp2 0 B(2)[* = |(w1902) 0 B(2)* = [21]” + |2af* — 2122
for any z in 871(V). Hence, by Theorem 3.7, we have
(10 B(2), 020 B(2)) = (P21, %) or (c®22p,6%2y).

This concludes the second half. O
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Corollary 4.4. Let f be an analytic function on D?. If || flloc < 1, then

f(z) = f(w)

A d(z,w
1= fw)f(z)| =)

for any z and w in D?.

Proof. In the proof of Corollary 3.8, we showed that (f,0,0) belongs to
QD% 2,1). O
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