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Sparse bounds for oscillatory and random
singular integrals

Michael T. Lacey and Scott Spencer

ABSTRACT. Let Tpf(z) = [ePWK(y)f(x —y) dy, where K(y) is a
smooth Calderén—Zygmund kernel on R", and P be a polynomial. We
show that there is a sparse bound for the bilinear form (Tpf,g). This
in turn easily implies A, inequalities. The method of proof is applied
in a random discrete setting, yielding the first weighted inequalities for
operators defined on sparse sets of integers.
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1. Introduction

Singular integral operators can be pointwise dominated by sparse opera-
tors, which are positive localized operators, something that singular integrals
are not. This paper extends this theme to the settings of:

(a) oscillatory singular integrals, and
(b) discrete random operators.

In both cases, we easily derive weighted inequalities. In the latter case, these
are the first such weighted inequalities known. We state our results before
providing a broader context.

Call a collection of cubes § in R™ a sparse collection if there is a set
Eg C Q for each @ € S so that:

(a) |Eq| > ¢|Q] for each Q € S, and
(b) the collection of sets {Eq : @ € S} are pairwise disjoint.
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Here 0 < ¢ < 1 will be a dimensional constant that we do not track. Define
a sparse bilinear form to be

Ar,s(faQ) = Z<f>Q,r<g>Q,s’Q‘7 I<rs<oo.
QesS
Above, (f)5, = 13Q|~! f3Q|f|7" dz, and if r = s, then A, = A,,. We
frequently suppress the collection of sparse cubes S.
We consider Calderén—Zygmund singular integral operators 7', defined to
be an L?(R™) bounded convolution operator given by

(Tf,9) Z//K(w—y)f(y)g(fﬂ) dz dy.

for compactly supported functions f,g with disjoint supports. Moreover,
the kernel K (y) satisfies

V'K (z,y)| < Cilz —y|™ ",  z#yeR”,

for t € {0,1}. Key examples are K(y) = 1/y in dimension one, and the
Riesz transform kernels y/|y|["*1, in dimension n.

Such operators are of course nonlocal, and involve subtle cancellative
effects. It is thus something of a surprise that such operators are dominated
by sparse operators, which have none of these features. This is a special
case of [6,18,22].

Theorem A. For each Calderéon—Zygmund singular integral operator T and

bounded compactly supported function f, there is a sparse operator A = Ap ¢
so that |Tf| S Avrf.

An immediate corollary are weighted inequalities that are sharp in the A,
characteristic. See [6,18,20].
We consider polynomials of a fixed degree d, given by

P(l’,y) = Z )‘a,ﬁxayﬂa
a,B:|al+|B|<d

where we use the usual multi-index notation. The polynomial modulated
Calderén—Zygmund operators are

Tpf(x) = / PED I () f(x — y) dy.

The LP result below is a special case of the results of Ricci and Stein [26,27],

and the weak-type result is due to Chanillo and Christ [5].

Theorem B. For 1 < p < oo, the operator Tp is bounded on LP, that is
ITp : LP — LP|| <1,

where the implied constant depends on the degree of P, and in particular is
independent of \. Moreover, Tp maps L' to weak L', with the same bound.



OSCILLATORY DOMINATED BY SPARSE 121

The dependence on the polynomial being felt only through the degree of
P is important to the application of these bounds to the setting of nilpotent
groups, like the Heisenberg group, see [27]. This dependence continues to
hold in the theorems below.

Theorem 1.1. For each 1 <1 < 2 Calderén—Zygmund operator T, polyno-
mial P = P(y) of degree d and bounded supported functions f,g there is a
bilinear form A, so that

‘<Tbjzg>‘§;A¢(fag)

The implied constant depends only on T, the degree d, and dimension n and
choice of r > 1.

The bound above continues to hold for polynomials P of two variables, but
we suppress the details, as the estimate above can most likely be improved.
And, as written is quite easy to prove, yet yields a nontrivial corollary.

Corollary 1.2. For 1 < p < oo, the operator Tp, where P = P(y) is of
degree d, is bounded on LP(w), where w is a Muckenhoupt weight w € A,,.

Weak-type and weighted estimates for oscillatory singular integrals have
been studied in this and more general contexts by various authors, see for
instance [9-12,29]. Y. Ding and H. Liu [9] were interested in LP(w) inequal-
ities for more general operators T'. The approach of these authors entails
many complications.

The method of proof of Theorem 1.1 is very simple. And, so we suspect
that stronger results are possible. For instance, the following conjecture
would imply nearly sharp A, bounds, for all 1 <p < 2.

Conjecture 1.3. For 1 < r < oo, the operator Tp, where P = P(y) is of
degree d, for each bounded compactly supported function f, there is a sparse
operator Ay, so that

(Tpf,a)l S A1x(f59)

It seems likely that the weak type argument of Chanillo and Christ [5]
would establish the conjecture for r = 2. Also see [16].

We turn to weighted inequalities for discrete random Hilbert transforms
acting on functions on £2(Z). Define a sequence of Bernoulli rvs {X,, : n # 0}
with P(X,, = 1) = |n|™%, where 0 < a < 1. Then, the set {n : X,, = 1} is
a.s. infinite, by the Borel-Cantelli Lemma. Then, we consider the random
Hilbert transform, and maximal function below.

(14)  Hafle)= Y 35 f )
n#0

N N
1
A{af(x)::sup EE;’}E:)(nf(x'_’n) ’ EEV:ZZZE:}(n'
n=1 n=1

n>0
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Our sparse bound here is more restrictive, with the value of the sparse
index r depending upon random parameter c.

Theorem 1.5. For any 0 < a < 1, 1 + a < r < 2, almost surely, the
following holds: For all functions f,g finitely supported on Z, there is a
bilinear sparse operator A, so that

[(Haofs 9)| S Ar(f, 9)-

The same inequality holds for M. (The sparse operator can be taken non-
random, but the implied constant is random.)

Weighted inequalities are a corollary. They are the first we know of hold-
ing for operators defined on sets of the integers with zero asymptotic density.

Corollary 1.6. For any 0 < o < 1, almost surely, the following holds: For
all+a<p< “fTO‘, and weights w so that

1+«
(1.7) w " € Atya)p-1)+1> w e A1+7(1+a)1<p_1>,
we have ||Hy : P(w) — P(w)|| < co. The implied constant only depends
upon [w!*9] and [w]A1+ . . The same inequality holds for

a(p’-1)
M,,.

A(1ta)(p—1)+17

The study of these questions was initiated by Bourgain [3], as an ele-
mentary example of a sequence of integers for which one could derive ¢
inequalities, with the sequence of integers also having asymptotic density
zero. Various aspects of these questions have been studied, both in /P, in
the weak (1,1) endpoints [4,17,24,28,31]. We are not aware of any result
in the literature that proves a weighted estimate in this sort of discrete set-
ting. (If the set of integers has full density, it is easy to transfer weighted
estimates.)

There is a subtle difference between the Hilbert transform and the maxi-
mal function in this random setting. In particular, more should be true for
the maximal function. Prompted by the work of LaVictoire [17], we pose:

Conjecture 1.8. For 0 < a < 1/2, almost surely, for all 1 < r < 2, and
finitely supported functions f, g, there is a sparse operator A1, so that

<Mozfvg> S Al,r(fag)'

We turn to the context for our paper. The concept of sparse operators
arose from Lerner’s remarkable median inequality [19]. It’s application to
weighted inequalities was advanced by several authors, with a high point of
this development being Lerner’s argument [20] showing that the weighted
norm of Calderén—Zygmund operators is comparable to that of the norms
of sparse operators. This lead to the question of pointwise control, namely
Theorem A. First established by Conde-Alonso and Rey [6], also see Lerner
and Nazarov [22], the author [18] established Theorem A with a stopping
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time argument. The latter argument was extended by Bernicot, Frey and Pe-
termichl [2] to a setting where the operators are generated by semigroups,
including examples outside the scope of classical Calderén—Zygmund the-
ory. For closely related developments see [14,21]. The sparse bounds for
commutators [8,23] are remarkably powerful. Edging beyond the Calderén—
Zygmund context, Benau, Bernicot and Frey [1] have supplied sparse bounds
for certain Bochner—Riesz multipliers.

Very recently, Culiuc, di Plinio and Ou [7] have established a sparse dom-
ination result in a setting far removed from the extensions above: The tri-
linear form associated to the bilinear Hilbert transform is dominated by a
sparse form. This is a surprising result, as the bilinear Hilbert transform has
all the difficult features of the Hilbert transform, with additional oscillatory
and arithmetic-like aspects. This paper is an initial effort on our part to
understand how general a technique ‘domination by sparse’ could be. There
are plenty of additional directions that one could think about.

For instance, the interest in the oscillatory singular integrals is driven in
part by their application to singular integrals defined on nilpotent groups.
Implications of the sparse bound in this setting are unexplored.

There are two approaches to sparse bounds, the bilinear form method
[7], and the use of the maximal truncation inequality [18]. We use neither
approach. After applying the known sparse bounds for singular integrals,
for the remaining parts of the operator, there is a very simple interpolation
argument which you can use in the bilinear setting. The notable point about
the proofs is that they are quite easy, and yet deliver striking applications.

2. Proof of Theorem 1.1

Our conclusion is invariant under dilations of the operator. Hence, we
can proceed under the assumption that ||[P|| = > |Aa| = 1. We can also
assume that the polynomial P has no linear term, as it can be absorbed into
the function f. Under these assumptions we prove:

Theorem 2.1. Let P be a polynomial without linear terms, and || P| = 1.
Then, for bounded compactly supported functions f,g and 1 < r < oo, there
is a sparse form A1 and an > 0 so that

(2.2) (Tef.9)l SM(f9)+ D (NarlgeslQl

QeD:|QI>1

It is easy to see that this implies Theorem 1.1, since the second term on
the right is restricted to dyadic cubes of volume at least one, and there is a
gain of |Q|~". Moreover, we will see that this theorem implies the weighted
result.

Let e()\) = e for A\ € R. If the kernel K of T is supported on

2B ={y: |y| <2},
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then we have

le(P(y) K (y) — K(y)| S Lap(y)lyl "+,
so that |Tpf —Tf| S Mf. Both T and M admit pointwise domination by
sparse forms, hence also by bilinear forms. (This is the main result of [18].)
Thus, we can proceed under the assumption that the kernel K is not
supported on B. We can then write

K = Zsoj
=1

where ¢; is supported on 2771B \ 2772B, with [|[Vi¢,le < 2775, for
s=0,1.
We use shifted dyadic grids, Dy, for 1 < t < 3. These grids have the
property that
{(3Q:QeDy, LQ=2"1<t<3"}

form a partition of R”. Throughout, £Q = |Q|'/™ is the side length of the
cube Q. We fix a dyadic grid D; throughout the remainder of the argument,
and set Dy = {Q : £Q > 219}, Define

Iof = / Digha—u)dy. Q=2

Note that I f is supported on @, and that we have suppressed the depen-
dence on P, which we will continue below.
The basic estimate is then the following lemma:

Lemma 2.3. For each cube Q with |Q| > 1 and 1 < r < 2, there holds

(2.4) ((Iof, )l S 27™(Far(9)arlQl,
where n = n(d,n,r) > 0.

Theorem 2.1 follows immediately from this lemma. The oscillatory nature
of the problem exhibits itself in the next lemma. Write

1o1ge(x) —11 / Kq(z,y)o(y) dy.

Lemma 2.5. For each cube @ € Dy, and x € gQ, we have

[Kq(z,y)] S 1Q1 1 zo(z —y) + QI “1o(2)10(y),
where Zg C Q has measure at most ({Q)~|Q)|, where € = e(n,d) > 0.

This lemma is well known, see for instance [30, Lemma 4.1]. Here is how
we use the lemma. Using Cauchy—Schwartz, we have

IoflI3 < Q! /Q /Z @@ — )| dydz + QI (£)3.1Q)
Q

<1QI" 1 f1gl3
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We also have the trivial but rarely used ||Iof|ls < Q|71 f1glli- By Riesz
Thorin interpolation, there holds with £Q = 2%,

o fll S 27™QIT | f1gll,  1<r<2, ¢ =5

~ r—1

Above, n = n(e,r) But, this immediately implies (2.4). Namely,
[Tof: 9| S Hafllrllglellr
S 27MQIT I f 1l lgell
=2""(f)q.r(9)ar|Ql.

(Alternatively, one can just use bilinear interpolation.)
We now give the weighted result.

Proof of Corollary 1.2. The qualitative result that Tp is bounded on
LP(w) for w € Ap, 1 < p < oo is as follows. Given w € A, recall that
the dual weight is ¢ = w™?'. Then, it is equivalent to show that

\(Tp(fa),gwﬂ S C[’u}]Ap”f”Lp(O')HgHLP/(w)'

Using the sparse domination from (2.2), we see that we need to prove the
corresponding bound for the terms on the right in (2.2). Now, it is well
known [20] that
max{1,—}
Ai(f9) S [w]Ap o HfHLP(w)Hg”LP’(w)'

Indeed, this is a key part of the proof of the As Theorem by sparse operators.

So, it remains to consider the second term on the right in (2.2). For each
k € N, we have by Proposition 4.1, k € Z,

Yo (Derl9erl@Ql S [l [wlrm o) rm, | Fllzow) 9l w)-
QED:|Q|=2nk

As we recall in § 4, there is a 7 = r([w]a,) > 1 so that [w]|gpy, [0]rH, < 4.

And so the proof of the corollary is complete.
Indeed, it is easy enough to make this step quantitative. For 2 < p < oo,
the choice of r can be taken to satisfy » —1 > c[w]zi, which then means
1

that the choice of n = n(r) in (2.2) is at least as big is c[w];lp. Then, our
bound is
< 142
(To(o ), gu0) S [0]a I oo 19l ys 2 <P < .
We have no reason to believe that this estimate is sharp. O

3. Random Hilbert transforms
The discrete Hilbert transform

1) = 3o =)
n#0
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satisfies a sparse bound: For all finitely supported functions f and g, there
is a sparse operator A so that

(3.1) [(Hf,9)] S Aa(f, 9)-

This is a consequence of the main results of Theorem A. Recalling the
definition of H, in (1.4), we see that EH, f = H f, so it remains to consider
the difference

Hof@) - Hf@) =Y Y )

k=1 n:2k—1<|n|<2k

= Zka(a:)
k=1

Above, we have passed directly to the distinct scales of the operator. We
will subsequently write Y,, = X,, — n™%, which are independent mean zero
random variables.

The crux of the matter are these two estimates:

Lemma 3.2. Almost surely, for all 0 < e < 1, and for all integers k, and
f, g supported on an interval I of length 2, we have

2 RS () o lg) ol ]|
2k (f) (g 1l 1)

The implied constant is random, but independent of k € N and the choice of
functions f,g.

Tkt 9)| S{

Proof. The second bound follows trivially from
Yal/n' ™ Lgnt gpppcor S ghlel),
For the first bound, we clearly have
(Tef,9) < T = €2 = - (12(9) 1211,

so it suffices to estimate the operator norm above. The assertion is that
with high probability, the operator norm is small:

P(|Ty : 2 — 2| > CVE27F3%) < 27k,

provided C is sufficiently large. Combine this with the Borel-Cantelli Lemma
to prove the lemma as stated.

By Plancherel’s Theorem, the operator norm is equal to ||Z(6)]|5(as),

where
e?m’@

n:2k <|n|<2k+1
The expression above is a random Fourier series, with frequencies at most
2k+2 " By Bernstein’s Theorem for trigonometric polynomials, the L°°(d#)
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norm can be estimated by testing the norm on at most 283 equally spaced
points in T, that is, we have

P(|Z(0)] > CVE2TF5%) < 25 supP(|2(0)] > CVR27F3%),
0

where we have simply used the union bound.
Now, Z(6) is the sum of independent, mean zero random variables, which

are bounded by one, and have standard deviation bounded by 27 %5% . So
by, for instance, the Bernstein inequality, it follows that

P <|Z(0)| > C\/Ez—’“l%a) < 972k
for appropriate C'. This completes the proof. O

From the previous lemma, we have the corollary below. It with the sparse
bound for the Hilbert transform (3.1) completes the proof of Theorem 1.5,
for the random Hilbert transform. The case for maximal averages is entirely
similar.

Corollary 3.3. Almost surely, for 1 +a < r < 2, there is an > 0 so that
for all integers k, and all functions f, g supported on an interval I of length
2k we have

(3-4) (Tif, )| S 27™(f)rlg) e .

Proof. This follows from Lemma 3.2 by interpolation. The relevant interpo-
lation parameter 6y at which we have only an epsilon loss in the interpolated
estimate is given by

1—
(1 6o)a = by 20‘,
1 1-—
and then — = % + @.
To 1 2

We see that rp = 1 + . And so we conclude that for rp = 1+ a < r <
2, we have the required gain in the interpolated bound, which proves the
corollary. O

We now turn to the weighted inequalities of Corollary 1.6.

Proof of Corollary 1.6. For the deterministic Hilbert transform, we have
the sharp bound of Petermichl [25], namely
max 1,L
|8 (w) o )] < ol

P

So, it remains to bound the terms in (3.4). By Proposition 4.1, we then need
to see that the hypotheses on w, namely (1.7), imply that for some choice
of r > 1+ «, we have

we Ay, weRH, o=uw""¢cRH,.
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Recall that v € A; N RH; if and only if v € Ayy_1)41. Now, by as-

sumption, w'™® € Ania)p-1)41- S0, there is a t > 1 so that wt+a) ¢
A(14a)(p—1)+1, and the A, classes increase in ¢, so we conclude that w €
ApNRH,, forar>1+a.

The second hypothesis is w € A . This is equivalent to

1
e

(wl=P))lte ¢ A ta)(p'—1)+1-
Now, w!™? = ¢ is the dual weight. So by the argument in the previous
paragraph, ¢ € RH,, for some r > 1 + «. So the proof is complete. O
4. Sparse bounds and weighted inequalities

Let us recall the weighted estimates that we need for our corollaries. A
function w > 0 is a Muckenhoupt A,, weight if

WV@WHM@
] Q)

Above, we are conflating w as a measure and a density, thus

wllp(Q):/Qw(x)llp da.

We have these estimates, which are sharp in the A, characteristic. They are
an element of the sparse proof of the Ay conjecture. (See [20] for a proof.)

wla, = sup| <o
Q

Theorem C. These estimates hold for all 1 < p < co.
max{1, 17}
Ay s LP(w) = LP(w)|| S Tw], 7
For our applications, we have a second class of operators, a simplified form
of those introduced by Benau-Bernicot—Petermichl [1]. For our purposes,
we need a much simplified version of their result. Define an additional
characteristic of a weight, namely the reverse Holder property.

(w)Q.r
(w)q
Proposition 4.1. Fiz an integer k, and 1 < r < 2. We have the bound

below for all w € Ay, where r <p <71’ = 15,

[w]R, = sup
Q

S (Nor@)arlQl S Wl kwlam, (o) re, 1|9 o)
QeD:|Q|=2nF

where o = w7 is the ‘dual’ weight to w.

Let us recall these well known facts.

(1) We always have [w],, [w]rn, > 1.
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(2) For w € A, and 0 = w'™?' | the weight o is locally finite, its ‘dual’
weight is w, and [o]4 , = [w]ip_l.

(3) For every w € A, there is a r = r([w]4,) > 1 so that w € RH,. (In
particular, we can take r so that r — 1 ~ [w]zi, by [13, Thm 2.3].)

(4) For every w € Ay, there is a 7 = r([w]a,) > 1 so that w" € A,.

(5) We have w € A, N RH, if and only if w" € A,—_1)41, by [15].

Proof of Proposition 4.1. This inequality is rephrased in the self-dual
way, namely setting o = wl_p/, it is equivalent to show that for k € Z,

42 Y (odorlgw)o @l < [wlb [olrm [l | £l 9] oy
QED
|Q|=2m*

Fix the integer k. We can assume that for |Q| = 2"%, if f is not zero on
Q, then fl3g o =0, and we assume the same for g. Then, set

=y 1@[0(1@/Qrf!’“daf”

QED:|Q|=2"k

and likewise for ¢'. It is immediate that || f'|| zr(5) < || f|lLr(o), thus in (4.2),

it suffices to assume that f = f’. Then, we can even assume that f and g

are supported on a single cube (), and take the value 1 on that cube.
Then, write

(019)Q.r(wlQ)or|Q| < [olrH, [WRH, (010)01(w1Q)0,1|Q)
< [o]rn, [k, (01Q) g (wlg)gh - o(Q)YPw(Q)Y
< [olrm, [wrn, [w] {"o(Q)/Pw(@Q)MY.

This is the inequality claimed. O
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