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ABSTRACT. For a connected pasting scheme G, under reasonable as-
sumptions on the underlying category, the category of €-colored G-props
admits a cofibrantly generated model category structure. In this paper,
we show that, if G is closed under shrinking internal edges, then this
model structure on G-props satisfies a (weaker version) of left proper-
ness. Connected pasting schemes satisfying this property include those
for all connected wheeled graphs (for wheeled properads), wheeled trees
(for wheeled operads), simply connected graphs (for dioperads), uni-
tal trees (for symmetric operads), and unitial linear graphs (for small
categories). The pasting scheme for connected wheel-free graphs (for
properads) does not satisfy this condition.

We furthermore prove, assuming G is shrinkable and our base cate-
gories are nice enough, that a weak symmetric monoidal Quillen equiva-
lence between two base categories induces a Quillen equivalence between
their categories of G-props. The final section gives illuminating examples
that justify the conditions on base model categories.
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1. Introduction

There has been significant recent work in determining when certain cate-
gories of operad-like objects admit Quillen model category structures [JY09,
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Murll, Frel0, DK80, BB14], or more generally determining when algebras
over operad-like objects [BM07, JY09] admit model category structures. All
of these results require that the ground category M is well behaved; that
is, when M is a cofibrantly generated monoidal model category, every ob-
ject of M is cofibrant, and M admits functorial path data. Examples of
such M include simplicial sets, symmetric spectra, and chain complexes in
characteristic zero. In particular, the category of wheeled properads in a
well-behaved model category carries a model category structure.

In this paper we are not much concerned with the ezistence of such model
structures (we actually abstract it away in Definition 2.16), but rather in
the properties of the model structures when they exist.

The main property we investigate is that of (relative) left properness —
that is to say we wish to know if equivalences between generalized props
are closed under cobase change along cofibrations. Knowing if the model
category structure on categories of generalized props satisfies a (relative)
left properness result has many immediate applications. As an example,
Bousfield localization is the process by which one adds weak equivalences
to a model category while keeping the cofibrations fixed; in recent years it
has become recognized as a fundamental tool in homotopy theory and in the
related theory of oo-categories. While it is not true that all model categories
can be localized, an essential ingredient is that the initial model category be
left proper.

In the case of operads, there has been quite a bit of recent work on the
question of relative left properness. If we are discussing nonsymmetric op-
erads, then this model structure is (relatively) left proper [Murl4, Theorem
1.11], meaning that weak equivalences are preserved by pushouts along cofi-
brations between X-cofibrant objects. A result of Rezk [Rez02], shows that
that the category of symmetric operads is Quillen-equivalent to a left proper
model category. In [HRY16], however, we provided an example of Dwyer
which shows that left-properness does not hold for the category of symmet-
ric operads itself. However, the category of symmetric operads does satisfy
a weaker notion called relative left properness [HRY16] and [Fre09, 12.1.11].
The goal of this paper is to generalize this to other types of operad-like
objects.

The main such operad-like structure that we address in this paper is
that of wheeled properads [MMS09] (although our theorems also apply to
dioperads [Gan04] and wheeled operads, in addition to the previously known
cases of operads and categories). Wheeled properads control (bi)-algebraic
structures with traces, such as Frobenius algebras and unimodular Lie 1-
bialgebras. These ideas have proven fruitful in geometric situations related
to mathematical physics, for instance to formal quasi-classical split quantum
BV manifolds [Mer10].

The following is a special case of our first main theorem 4.15.
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Theorem. Suppose that M is a “nice enough” monoidal model category
(Definition 4.9). Then the model category structure on the category of
wheeled properads in M is relatively left proper, in the sense that whenever
we have a pushout diagram of wheeled properads

Ar— X

4

B»——Y

with A and B both 3-cofibrant and A — X a cofibration, the map X —'Y
s also a weak equivalence.

A similar theorem holds for dioperads, wheeled operads, and so on. In
order to justify the restrictions we place on our monoidal model categories we
include in Section 6 several nontrivial examples to illuminate when (relative)
left properness fails.

As soon as we are examining wheeled properads over general base cate-
gories, we can ask what happens when we modify the underlying category.
Schwede and Shipley showed that, in favorable situations, a Quillen equiva-
lence of the base categories induces a Quillen equivalence on the categories
of monoids [SS03]. Muro extended this in [Murl4, Theorem 1.1] to show
that such a Quillen equivalence also induces a Quillen equivalence on the
category of nonsymmetric operads. The following is a special case of our
second main theorem 5.8.

Theorem. Suppose that M and N are “nice enough” monoidal model cat-
egories (Definition 4.9). Then a weak symmetric monoidal Quillen equiv-
alence M 2 N induces a Quillen equivalence between the associated cate-
gories of wheeled properads.

The right adjoint of the induced Quillen equivalence is defined levelwise,
while the left adjoint is more subtle; this will be carefully constructed in
Section 5.

Throughout this paper, we use the language of generalized props from
[YJ15] which allows us to treat many cases simultaneously. This material is
briefly covered in Section 2.6. Two cases of interest which are not addressed
by the present paper are properads and props, as these cases do not sat-
isfy a technical condition on pasting schemes, called “shrinkability.” Having
our pasting schemes satisfy the shrinkability condition simplifies many con-
structions and arguments. It would be interesting to see if the corresponding
results held for properads and props.

Related work: In a recent paper [BB14], Batanin and Berger develop sim-
ilar results about the existence of a model category structure and its relative
left properness using the framework of tame polynomial monads. A poly-
nomial monad is a monad that encodes behavior similar to what we call
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pasting schemes. A polynomial monad is called tame if the ambient com-
pactly generated model category is (strongly) h-monoidal. The main results
of their paper imply that if a polynomial monad is tame, then the operad-like
categories it encodes will have a (relative) left properness property.

The techniques of this paper do not overlap significantly, and, in fact,
should be considered in parallel. In particular, the paper of Batanin and
Berger show in [BB14, Proposition 10.8, 10.9] that the monad for wheeled
properads is not tame. The model categories we consider in this paper
are all h-monoidal [BB14, Lemma 1.12], and we achieve a (relative) left
properness result for wheeled properads. However, as we show in the final
section, there also exist h-monoidal model categories, namely the category
of simplicial sets with the usual Kan model structure, in which we don’t have
a (relative) left properness result. The conclusion is that, while tameness of
a polynomial monad (or associated pasting scheme) is a good indicator of
whether or not a category of operad-like objects is (relatively) left proper,
it is not capturing the picture in its entirety.

2. Preliminaries

2.1. (Model) Categorical assumptions. In this section we fix notation
and definitions our underlying categories satisfy.

Definition 2.2 ([Hir03] (11.1.2)). A model category M is said to be cofi-
brantly generated if there exist:

(1) a set | of generating cofibrations which permits the small object
argument [Hir03] (10.5.15) such that a map is an acyclic fibration
if and only if it has the right lifting property with respect to every
element of I;

(2) a set J of generating acyclic cofibrations which permits the small
object argument such that a map is a fibration if and only if it has
the right lifting property with respect to every element of J.

Notation 2.3. In general, when discussing closed symmetric monoidal cat-
egories [Mac98, VII], we will write ® for the monoidal product, 1 for the
tensor unit, and Hom(X,Y) for the internal hom object.

The following definition is [SS03] (3.1).

Definition 2.4. Suppose that M is a model category. If M is also a closed
symmetric monoidal category, we say that M is a monoidal model category
if it satisfies the following two axioms.
Pushout product: For each pair of cofibrations f: A — B, g: K —
L, the map

fOg: AL BeK—+B®L
ARK

is also a cofibration. If, in addition, one of f or g is a weak equiva-
lence, then so is f O g.
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Unit: If ¢ : 1° 5 1 is a cofibrant replacement of the unit object, then
for every cofibrant object A,

gRId:1° A—- 10 A=A
is a weak equivalence.

Convention 2.5. For the rest of the paper, all model categories M will be
monoidal model categories which are cofibrantly generated by some chosen
sets of generating (acyclic) cofibrations | (resp. J).

2.6. Graphs and pasting schemes. We will briefly give the necessary
definitions and notations regarding colored objects in M. A more complete
discussion of the following definitions can be found in [YJ15].

Definition 2.7 (Colored Objects). Fix a nonempty set of colors, €.
(1) A €-profile is a finite sequence of elements in €,

c=(cly-Cm) = Cm

with each ¢; € €. If € is clear from the context, then we simply
say profile. The empty €-profile is denoted @, which is not to be
confused with the initial object in M. Write |¢| = m for the length
of a profile c.

(2) An object in the product category [, M = M is called a €-colored
object in M; similarly a map of €-colored objects is a map in [ [, M.
A typical €-colored object X is also written as {X,} with X, € M
for each color a € €.

(3) Fix ¢ € €. An X € MY is said to be concentrated in the color c if
Xg=o forallc#deC.

(4) For f: X — Y € M we say that f is said to be concentrated in the
color c if both X and Y are concentrated in the color c.

Definition 2.8. A graph G consists of:

e adirected, connected, nonempty graph G with half-edges (also called

‘flags');
e listings on the inputs and outputs of the graph
g« (inGyoutG) > (1,...,[inGJ: 1, ..., loutG)):;
e listings on the inputs and outputs of each vertex v € Vt(G)
2, : (inv; outw) 5 (1,...,|inv};1,..., |outy]).

If, in addition, we have a coloring function £ : Edge(G) — € to some set €,
then we say that G is a €-colored graph.

e A weak isomorphism G — G’ between two €-colored graphs is an
isomorphism which preserves the graph structure and the coloring,
but not necessarily the listings.

e The collection of €-colored graphs with weak isomorphisms forms a
groupoid which we denote by Gr{(C).



88 PHILIP HACKNEY, MARCY ROBERTSON AND DONALD YAU
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FIGURE 1. An exceptional edge, an exceptional loop, and a
corolla (graphics from [YJ15]).

Example 2.9. See Figure 1.
e If ¢ € €, then there is a €-colored graph 1. which has profiles (c;c),
no vertices, and a single edge.
e If ¢ € €, then there is a €-colored graph O, which has profiles (&; @),
no vertices, and a single c-colored edge.
o If (¢;d) = (c1,m); d[1,n)) is @ pair of €-profiles, then there is standard
corolla Cc.q) with:
— one vertex v;
— m-n flags, with inputs {1%,2¢, ..., m’} and outputs{1°,...,n°};
— Lg(KY) = £,(K*) = k and £g(k°) = £,(k°) = k;
— ¢(k") = ¢ and £(k) = dy.

An ordinary internal edge is an edge that is neither an exceptional edge
1 nor an exceptional loop O.

Definition 2.10 (Graph operations). Suppose that G is a €-colored graph
with profiles (¢; d).
e If, for each v € Vt(G), H, is a graph with profiles (",lr’,t((;))), then the
graph substitution
G{H, }vevi(@)
is the graph obtained from G by
— replacing each vertex v € Vt(G) with the graph H,, and
— identifying the legs of H, with the incoming/outgoing flags of
v.
See Figure 2.
e The input extension G;, is the graph with profiles (¢;d) where we
graft a corolla C(c,..,) onto the input leg Kal(z'). See Figure 3.
e The output extension Gy is the graph with profiles (¢; d) where we
graft a corolla C4,.q,) onto the output leg Kal(i).

Definition 2.11 (Groupoid of profiles). Let € be a nonempty set. Given a
C-profile a and an element o € X, then define
oa = (CLU—l(l), N ,a(,q(m)),
ao = (ao(1)7 R acr(m))'
The groupoid of €-profiles, denoted ¢, has objects €-profiles and mor-

phisms left permutations a — oa. The opposite groupoid of &-profiles, de-
noted ¥, has objects €-profiles and morphisms right permutations a — ao.
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FIGURE 2. Graph substitution (from [HR])

G{K,}

A subcategory C’ of a category C is called replete if, for each object
¢ € C' and each isomorphism ¢ — ¢ in C, the object ¢ is also in C’.

Definition 2.12 (Pasting Scheme). A €-colored (connected, unital) pasting
scheme is a pair
G =(S,6)

in which:

(1) S is a replete and full subgroupoid of X3 x Xg,

(2) G is a replete and full subgroupoid of Gr{ (&),
such that:
1) if Gisin G and (c¢; d) is the input-output profile of G, then (¢;d) € S,
2) G is closed under graph substitution,
3) G contains all the (¢; d)-corollas for all pairs of profiles (¢; d) € S,
4) if (¢;d) € S and C' = C(,q is the (¢; d)-corolla, then the input exten-

sion Cj;, and the output extension Cy,; are both in G (see Figure 3),
(5) if c € €, then (¢;¢) € S and 1, € G.

(
(
(
(

Definition 2.13 (Colored Symmetric Sequences). Fix a nonempty set &
and G = (S5,G) is a €-colored pasting scheme [YJ15] (Def. 8.2).
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FIGURE 3. The input extension G, and output extension G

(1) The orbit of a profile a is denoted by [a]. The maximal connected
sub-groupoid of ¢ containing a is written as . Its objects are the
left permutations of a. There is an orbit decomposition of X¢

(2.13.1) Se ] Su
[Q]EEQ‘

where there is one coproduct summand for each orbit [a] of a €-
profile.

(2) Consider the diagram category M*, whose objects are called Xg-
objects in M. The decomposition (2.13.1) implies that there is a
decomposition

(2.13.2) M5 H M * T
([dsld)es

(3) For X € M5, we write

(2.13.3) X (i) € M
for its ([c]; [d])-component. For (¢) € S (both ¢ and d are €-profiles),
we write

(2.13.4) X eM

for the value of X at (¢;d).

Unless otherwise specified, we will assume that € is a fixed, nonempty set
of colors, and G = (5, G) is a €-colored pasting scheme.

2.14. G-Props as colored operadic algebras. For a €-colored operad
O in M (see [YJ15] 11.14 or [Yaul6] 11.2.1), denote by Alg(O) the category
of O-algebras ([YJ15] 13.37 or [Yaul6] 13.3.2). Limits of Alg(O) are taken
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in the underlying category of @-colored objects M via the free-forgetful
adjoint pair

Oo—
ME —— Alg(0).

Here o is the €-colored version of the circle product for operads, which in
single-colored form first appeared in [Rez96]. Detailed description of the
general colored version of o can be found in [WY15] (3.2).

The category of €-colored objects, M®, admits a cofibrantly generated
model category structure where weak equivalences, fibrations, and cofibra-
tions are defined entrywise, as described in [Hir03] (11.1.10). In this model
category a generating cofibration in M® = [[, M (i.e., a map in I) is a
generating cofibration of M, concentrated in one entry. Similarly, the set of
generating acyclic cofibrations is J x €. In addition, the properties of being
simplicial, or proper, are inherited from M.

Recall, from Section 14.1 of [YJ15], the |S|-colored operad OpY (there
called Ug) controlling G-props, where | S| is the set of objects of the groupoid
S. The elements of OpY are graphs with ordered sets of vertices, and op-

eradic composition is given by graph substitution. The following is Lemma
14.4 in [YJ15].

Lemma 2.15. Suppose M is a bicomplete symmetric monoidal closed cat-
egory, and G = (S,G) is a pasting scheme [YJ15, Def. 8.2] . Then there is
an |S|-colored operad Opg in M such that there is a canonical isomorphism
of categories

Prop¥ = AIg(Opg).

Here PropY is the category of G-props in M [YJ15, Def. 10.39] and AIg(Opg)
is the category of algebras over the colored operad OpY in M.

Definition 2.16. Suppose that M is a monoidal model category which is
cofibrantly generated with set of generating cofibrations | and set of gener-
ating acyclic cofibrations J. If G is a pasting scheme, we say G is admissible
in M if Prop?vl = Prop¥ = Alg(Opg) admits a cofibrantly generated model
structure,! in which:

e Fibrations and weak equivalences are created entrywise in M.
e The set of generating (acyclic) cofibrations is OpY ol (resp., OpY o),
where | (resp., J) is the set of generating (acyclic) cofibrations in

MIS!,

Bicompleteness is automatic by [WY15] (4.2.1), with reflexive coequal-
izers and filtered colimits preserved and created by the forgetful functor
Prop — M!S, For certain choices of M, such as compactly generated

lwe say admissible here since, due to the conditions on our base category M, all colored
operads OpY are admissible in the language of [BMO7].
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Hausdorff spaces, simplicial sets, and symmetric spectra (with the projec-
tive model structure) we know that each pasting scheme G is admissible in
M by [BMO7] (2.1).

Example 2.17. If k is a characteristic zero field and M = Ch(k) or Ch>o(k)
with the projective model structure ([Hov99, 2.3.11], [Qui69, 4.12], respec-
tively), then M is admissible for every G. In the unbounded case, Fresse
shows in [Frel0, 5.3] that Ch(k) admits ‘functorial path data’, which com-
bined with Lemma 2.18 shows that M is nice in the sense of [HRY16, 2.6.6].
Thus every G is admissible in Ch(k) by [HRY16, 2.6.8].

For the nonnegatively graded case, consider the truncations from [Wei94,
1.2.7] of a chain complex C:

0 ifi<n
(1>nC)i =1 Z,C ifi=n
C; if 1 > n.

These have the property that the inclusion 7>,C — C'is a chain map which
is an isomorphism on H; for ¢ > n. Since Ch(k) admits functorial path
data, then so does Ch>o(k) by defining the path object of C' € Ch>o(k) to
be 7>0 Path(C). The result again follows from [HRY16, 2.6.8].

We believe the following lemma is well-known, but were unable to find a
proof in the literature.

Lemma 2.18. If R is a semisimple ring, then every object of Ch(R) is
cofibrant.

Proof. For a given n, the map 7>,C — 7>,-1C is an isomorphism outside
of degrees n and n—1. Thus the cokernel is bounded below; every R-module
is projective so the cokernel is cofibrant by [Hov99, 2.3.6]. Moreover, every
injection of R modules splits, so the map is a dimensionwise split injection;
hence, by [Hov99, 2.3.9], 75,C — 7>,-1C is a cofibration.

By [Hov99, 2.3.6], 7>¢C' is cofibrant. Thus we have a sequence of cofibra-
tions

0— TZ()C — 7’2710 — ’7‘2720 —

and so C' = cgﬁr(y 7>, C is cofibrant as well. O

Remark 2.19. We have phrased everything above as a lifting of the model
structure from M5!, This is purely for convenience, to match the existing
literature. One could instead regard OpY as a kind of operad which is colored
by the groupoid S (rather than the set |S|) and most of the theory should
still go through, lifting from the model structure on M?® (11.6.1) [Hir03]. It
seems that the benefits of doing so are minimal, as all maps in Prop/gw are
already in M*° and the fibrations and weak equivalences in M are detected
levelwise, just as in M5l We will thus usually assume we are working in
the subcategory M rather than in M/ when it makes no difference.
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A

FIGURE 4. Shrinking away a loop e

t o

F1GURE 5. Shrinking away the internal edge e

3. Shrinkable pasting schemes

Convention 3.1. The book [YJ15] is our general reference for graphs. From
this point forward, by a graph we mean a strict isomorphism class [YJ15]
(Def. 4.1) of a wheeled graph in the sense of [YJ15] (Def. 1.29). Graph
substitution of strict isomorphism classes of graphs is well-defined, strictly
associative, and unital by [YJ15] (Lemma 5.31 and Theorem 5.32).

Fix a nonempty set € of colors once and for all. As in Definition 2.12 all
pasting schemes in this paper are connected and unital.

If e is an internal edge in a graph G, then shrinking away e results in a
new graph G’. If e is a loop, G’ is obtained by deleting e from G (Figure 4);
otherwise we must first identify the two vertices of e (Figure 5). Note that
shrinking an internal edge is not an operation which comes from graph
substitution (Example 6.9) [YJ15].

If G € G and e is an ordinary internal edge of GG, then shrinking e may
or may not give us a graph which is still in G; for example the chunk on the
left in Figure 5 may be part of a graph in Gr', while the chunk on the right
cannot be.

Definition 3.2. Suppose given a €-colored pasting scheme G = (5, G), i.e.,
G < Gry(€) where Gry(€) is the collection all €-colored connected wheeled
graphs. Then G is called shrinkable if it is closed under the operation of
shrinking an ordinary internal edge.
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The reader is referred to [YJ15] (Sec. 8.1) for notations regarding the
following pasting schemes.

Proposition 3.3. The following €-colored pasting schemes are shrinkable.

(1) GrY(C) = connected wheeled pasting scheme (for wheeled properads),
(2) Tree®(€) = wheeled tree pasting scheme (for wheeled operads),

(3) Grl;(€) = simply-connected pasting scheme (for dioperads),

(4) UTree(€) = wunital level trees pasting scheme (for operads),

(5) ULin(€) = wunital linear pasting scheme (for small categories).

Proof. For the first two pasting schemes, since loops and other directed
cycles are allowed, they are closed under deleting loops and shrinking an
internal edge with distinct end vertices (which usually results in new loops).
The last three pasting schemes are all contained in the simply-connected
pasting scheme Grl};,(€). That Gr)};(€) is shrinkable is [YJ15] (Lemma 6.8).
That the smaller pasting schemes are also shrinkable follows from the same
argument with minor change of terminology. ]

Example 3.4. The €-colored connected wheel-free pasting scheme Gr/, (for
properads) is not shrinkable. For example, in the walnut graph [YJ15] (Ex-
ample 1.41)

if either internal edge is shrunk, then the result has a loop

ey

which does not belong to Gr] anymore.

Definition 3.5. Suppose given a €-colored pasting scheme G = (5, G).
(1) A marked graph in G is a pair (G,ds) with
e G &g and
e O #£ds C Vt(G).
We will also say (G,ds) € G is a marked graph.
(2) Suppose (G,ds) is a marked graph in G.
e An element in ds is called a distinguished vertexz.
e Vertices in the complement

n(G,ds) = n(G) 2L vi(G) \ ds

are called normal vertices.
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(3) A weak isomorphism f : (G,ds) — (G’,ds’) between marked graphs
is defined as a weak isomorphism f : G — G’ € G that induces a
bijection f : ds = ds’ between the sets of distinguished vertices. A
well marked graph is a marked graph (G, ds) in which every flag in
a distinguished vertex is part of an internal edge whose other end
vertex is normal.

(4) A reduced marked graph is a well marked graph in which there are
no internal edges with both end vertices normal.

Remark 3.6. For a nonexceptional loop in a graph, the end vertices are
equal. Thus, a reduced marked graph is precisely a marked graph that
satisfies the following conditions:

(1) Every internal edge has one normal end vertex and one distinguished
end vertex. Notice that this condition implies that there are no loops
at any vertex.

(2) Every input or output leg of the graph is adjacent to a normal vertex.

For simply connected pasting schemes, wellness means that every distin-
guished vertex is bounded on both sides by normal vertices.

The following observation ensures that well marked graphs are closed
under graph substitution.

Proposition 3.7. Suppose:
e G is a pasting scheme, and K € G with Vt(K) # @.
e For each v € V(K), (Gy,ds,) € G is a marked graph such that G,
has the same input/output profiles as v.
Then:

(1) The graph substitution H = K({Gy}) € G is canonically a marked
graph with set of distinguished vertices

dsyg def H ds,.
veK
(2) If each (Gy,ds,) is a well marked graph, then (H,dsg) is also a well
marked graph.

Proof. The pair (H,dsy) is a marked graph because Vt(K) # @ and each
ds, # @. For the second assertion, to see that it is a well marked graph, first
note that a distinguished vertex w € dsy must be a distinguished vertex in
some unique G,. Since G, is a well marked graph, every flag in w is part of
an internal edge in G, hence an internal edge in H, whose other end vertex
is normal in G, hence also normal in H. In this last sentence, we used the
equalities

n(H,dsg) = Vt(H) \dsg = [ Vt(Gu)\ ] dsv = ] n(Gu,dsy)
veK veK veEK
to identify the normal vertices in H with those in the various G,’s. ([



96 PHILIP HACKNEY, MARCY ROBERTSON AND DONALD YAU

Remark 3.8. One must be careful that, in the context of the previous
proposition, even if each (G,,ds,) is reduced, it does not follow in general
that (H,dsg) is reduced. In forming the graph substitution H = K({G,}),
there are usually some internal edges that are not internal edges in any G,.
These new internal edges come from the legs of the G,’s that are connected
in H by some internal edge in K. So such a new internal edge in H may
connect a normal vertex w,, in some G, with a normal vertex w, in some G,
where G, = G, and even w, = w, are allowed if the corresponding internal
edge in K is a loop at v. In particular, H may not be reduced, although
by the previous proposition it must be well marked. It does have a unique
reduction up to weak isomorphism, as we will see in Corollary 3.10.

A pasting scheme G is shrinkable if and only if, for each internal edge e
in an ordinary graph G € G, the wheeled graph G/e obtained from G by
shrinking away the internal edge e is still in G. In forming G/e, the two
flags that make up e are removed and the vertices to which they belong are
redefined as a single vertex. When e is a loop at a vertex, G/e means G with
e deleted. The rest of the graph structures in G/e is inherited from G. In
particular, when e is an internal edge that is not a loop, the new combined
vertex inherits the dioperadic listings from the two original end vertices of
e as in [YJ15] (2.4.2).

The operations of shrinking two internal edges in a given graph — de-
pending on the order in which they are shrunk — is well-defined only up
to weak isomorphism. One can see this from, for example, [YJ15] (Lemma
6.106). In trying to shrink two internal edges from two distinct vertices go-
ing into a third vertex, the outgoing listing of the combined vertex may need
to be corrected with a block permutation, depending on the order in which
the internal edges are shrunk. This is why marked graphs are considered
with weak tsomorphisms preserving the distinguished vertices.

In general, if F C Edge(G) is a nonempty subset of ordinary internal
edges, then G/E — that is, G with all e € E shrunk — is uniquely defined
up to vertex listings, but its graph listing must be that of G. In other words,
G/E is the result of removing all the flags corresponding to all e € FE,
combining all the affected vertices connected to each other into a single
vertex, and taking as much graph structure from G as possible. The only
structure that is not uniquely defined in such a G/FE is the set of vertex
listings for the newly formed vertices. Given any such choice of G/E, there
is a unique graph substitution decomposition

(3.8.1) G = (G/E)({H})

in which the internal edges in the H’s form precisely the set E. Choosing
a different representative of G/E (by changing some listings of the newly
formed vertices) can only change the graph listings, but not vertex listings,
of the H’s. So given E' C Edge(G), the H’s are uniquely defined up to graph
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listings. This is essentially explained in [YJ15] (Lemma 6.8), although that
was stated for simply-connected graphs.
In the setting of the decomposition (3.8.1), for A € M?®, each object

A(H) == @) AC)
veEH

is well defined because each H is unique up to graph listings and A(H) only
uses the vertex listings in H.

The following observation ensures that one can go from a well marked
graph to a reduced marked graph uniquely.

Proposition 3.9. Suppose:

e G is a shrinkable pasting scheme (Def. 3.2).

o (G,ds) € G is a well marked graph.

e E C Edge(G) is the subset of all the internal edges with both end
vertices normal.

Then there is a unique weak isomorphism class of reduced marked graphs

[(G/E,ds)] in which G/E is obtained from G by shrinking all e € E.

Proof. The existence and uniqueness of [(G/E,ds)] was given in (3.8.1). It
has the same set of distinguished vertices because, in shrinking the internal
edges in F/, no distinguished vertices are affected.

Next observe that (G/E,ds) is a well marked graph. Indeed, a flag f in a
distinguished vertex w in G/E must still be part of an internal edge because
it was so in G and it is not shrunk in forming G/E. Moreover, the other end
vertex of f in GG is a normal vertex, which is either unaffected in passing to
G/E or is combined with some other normal vertices in G to form a normal
vertex in G/E. In any case, the other end vertex of f in G/FE is a normal
vertex.

Finally, to see that (G/E,ds) is reduced, note that normal vertices in
G/E come from those in G as discussed in the previous paragraph. So G/E
cannot have any internal edge with both end vertices normal because E' is
by definition the set of all the internal edges in G with both end vertices
normal. U

Corollary 3.10. Suppose:

e G is a shrinkable pasting scheme, and K € G with Vt(K) # @.

o For each v € VH(K), (Gy,dsy) € G is a well marked graph (e.g., re-
duced marked graph) such that G, has the same input/output profiles
as v.

o (H=K({Gy}),dsy) is the marked graph in Proposition 3.7.

Then there is a unique weak isomorphism class of reduced marked graphs
[(H',dsg)] in which H' is obtained from H by shrinking all the internal
edges with both end vertices normal.
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Proof. By Proposition 3.7 (H,dsy) is a well marked graph. It has a unique
reduction up to weak isomorphism by Proposition 3.9. O

4. Relative left properness

In this section, we show that, if G is a shrinkable pasting scheme admissible
in M (Definition 2.16) and M is nice enough (Definition 4.9), then the model
category structure on PropY in Corollary 2.16 satisfies a property close to
that of left properness, which we will refer to as relative left properness.

Fix a €-colored pasting scheme G = (5,G) for some nonempty set € of
colors and a bicomplete symmetric monoidal closed category (M, ®,1).

4.1. Vertex decoration.

Definition 4.2. Suppose (G,ds) € G is a marked graph, and A € M?®
(2.13.2).

(1) For u € Vt(G), write A(u) for the entry of A corresponding to the
profiles of u. In other words, if u has profile (¢;d) € S, then

Alu) = A() e M.
(2) Define the object
A(n(G)) =A(n(G,ds)) = Q) Au
uen(G,ds)

where n(G, ds) = Vt(G) \ ds is the set of normal vertices.
(3) Write [(G,ds)] for the isomorphism class of (G,ds) in G.

4.3. The pushout filtration. If H — G is a homomorphism of groups,
then the restriction functor ME — M has a left adjoint, called induction,

G.(-) - M ME
Restriction and induction are actually a Quillen pair; see [BMO06] (2.5.1).
The following definition appears in [EMO06] (Sec. 12) and [Har10] (7.10).

Definition 4.4 (Q-Construction). Suppose thereisamapi: X — Y € M,
and 0 < ¢ < t. The object Qt Qt( ) € Mt is defined as follows.

[ Qg = X®t

[ ] Qg = Y®t

e For 0 < ¢ < t there is a pushout in M>*:
1.4.1 S . [X®<t—q> ; } ;
(44.1) L e, © Qi | — Q-

(id,iDq)J(

» . X®(t—a) g y®a s Ot
t IS 38 [ ®© ] @q
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Write i7 for the natural map Q! | — Y®! Ttis an iterated pushout product
of 1.

Recall the definition of a shrinkable pasting scheme from Definition 3.2.
The following filtration is completely categorical and requires no model cat-
egory structure.

Lemma 4.5. Suppose:

e G is a shrinkable pasting scheme, A € Prop¥, and

ei: X =Y € M, regarded as a map in M° concentrated in the
s-entry for some s € S.

o The diagram

(4.5.1) OpdoX 1 A

L)

Op9oY —— Ay

s a pushout in Propg.

o [1]= ([[i]]]) € S is an orbit.

Then the [r]-entry of the map h is a countable composition
(4.5.2)
h1 ho hs

Ao([r]) —— Au([r]) —— Aa(r]) colim 1. Ay ([r])

‘

A([r]) Aco([r])

in M>v = MEEXEM, where for k > 1 the maps hy are inductively defined
as the pushout

(4.5.3) 1T

Z[L] .
(Gds)]  Aut(G.ds)

1(1d @z’Dk)*J hi

Lam@) o0} 2 A

r . A Yy ®k &k A
[(G,ds)] : Aut(G,dS){ (n(G)) ®© }—> k([r])

in MZ = MZ2*¥0 Iy this pushout:
(1) The coproducts are indexed by the set of weak isomorphism classes
[(G,ds)] of reduced marked graphs such that:
e the input/output profile of G is in the orbit [r];
e ds consists of k vertices, all with profiles in the orbit [s].

(2) The top horizontal map fF=1 is induced by f and the G-prop structure
maps of A [YJ15, Lemma 10.40].
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(3) E[L] = EE X 2[@].

Proof. Define
B([r]) = colim Ay([r]) € M.

Corollary 3.10 and the G-prop structure maps of A imply that B has a
canonical G-prop structure together with a G-prop map A — B induced by
Ag — B. The map Y — B is induced by:
e & using the input and output extension [YJ15] (6.10 and 6.11) of
the s-corolla whose only vertex is distinguished;
e the maps 1 — A(c;c), where ¢ ranges over all colors of A;
e the natural map A; — B.

That B is the pushout A, follows from its inductive definition. O
Remark 4.6. Suppose C = C(.q) is a corolla with the indicated profiles

[YJ15] (1.31) and with unique vertex w. Then its input and output extension
mentioned in the previous proof is the spider graph:

It is obtained from C by attaching to every leg a l-input, 1-output corolla
with equal flag colors. In the previous proof, w is distinguished with profiles
s = (¢;d), and the newly attached vertices v;’s and x;’s are all normal
vertices to be used with the colored units of A.

Definition 4.7. Suppose M is a cofibrantly generated model category, and
G = (5,G) is a pasting scheme.
(1) An object A € M* is called Yg-cofibrant in M if A is cofibrant in
M5,
(2) A map in M* is called a Xg-cofibration in M if it is a cofibration
in M5,
(3) If C is a small category, a C-cofibration (resp., a C-cofibrant object)
is a cofibration (resp., a cofibrant object) in the diagram category
MCE with the projective model structure [Hir03] (11.6.1).

Remark 4.8. Recall that there is a decomposition (2.13.2)

M= J[ mPm,
([chld)es
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So Yg-cofibrant / cofibration means the [r]-entry in M> is ¥;-cofibrant /
cofibration as [r] runs through all the orbits in S.

Definition 4.9. Let M be a cofibrantly generated monoidal model category
and G be a shrinkable pasting scheme. We say that (M, G) is a compatible
pair if G is admissible in M (Definition 2.16), every object of M is cofi-
brant and, for every well-marked, reduced (G,ds), the object A(n(G)) is
Aut(G, ds)-cofibrant whenever A is ¥g-cofibrant.

Equivalently, we say that the model category M is compatible with G or
the pasting scheme G is compatible with M.

Example 4.10. A sufficient condition for a model category M to be com-
patible with every shrinkable pasting scheme G is that if G is a finite group,
then every object of MY is cofibrant in the projective model structure.
Examples of model categories satisfying this property include:

e The category of unbounded chain complexes Ch(k) over k when
k is a field of characteristic zero with the projective model struc-
ture [Hov99, 2.3.11]. Every object of Ch(k[G]) is cofibrant by Lem-
ma 2.18 since k[G] is semisimple [Lan02, XVIII.1.2]. In the same
way, one sees that the category of nonnegatively graded chain com-
plexes satisfies this property.

e The category of simplicial k-modules, again for k£ of characteristic
zero.

e Quillen’s categories of reduced rational simplicial (or dg) Lie alge-
bras [Qui69, IL.5].

Model category structures which are not compatible with all G include
the category of simplicial sets and simplicial abelian groups (See Section 6).

Remark 4.11. If M is a cofibrantly generated monoidal model category
in which every object is cofibrant, then M is compatible with the pasting
scheme UTree, for operads. In particular, M = sSet is compatible with
UTree as shown in [HRY16, Definition 2.6.6; Theorem 3.1.10].

Remark 4.12. If M is a model category which satisfies the condition in
Example 4.10, then every object in Prop¥ is Yg-cofibrant, but not neces-
sarily cofibrant. In particular, when working in nonnegatively graded chain
complexes over a field of characteristic zero, every operad is ¥g-cofibrant but
there exist many examples which are not cofibrant, such as the associative
operad A and the commutative operad C.

Proposition 4.13. Suppose that (M,G) is a compatible pair and that:

e i: X =Y isa cofibration in M, regarded as a map in M5 concen-
trated at the s-entry for some s € S.
o A e Prop¥ is Xg-cofibrant.
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o The diagram

(4.13.1) OpdoXx 1 1A

]

Op9oY —— Ay

is a pushout in PropY.
Then:
(1) Each map

_ldeitk | A(n(G)) ® Y&

A(n(G)) ® Q]Iz—l
on the left side of the pushout (4.5.3) is an Aut(G,ds)-cofibration
between Aut(G, ds)-cofibrant objects.

(2) Each map

Id i),
CUCIET e

{A(n(G)) ®Y®k}

[r] . .
Aut(G,ds) Aut(G,ds)

on the left side of the pushout (4.5.3) is a Xy -cofibration between
Yw-cofibrant objects.
(3) The map

} (1d @),

{A(n©) 2 Q) ) {A(n@) e ver}

DVER W
[(G,ds)] Aut(G,ds) [(G.ds)] Aut(G,ds

on the left side of the pushout (4.5.3) is a Xy -cofibration between
Yw-cofibrant objects.

(4) The map hy : Ax_1([r]) — Ar([r]) on the right side of the pushout
(4.5.3) is a Xy -cofibration between Xy -cofibrant objects.

(5) The map h : A — A is a Xg-cofibration between Y.g-cofibrant G-

props.

Proof. For (1), A(n(G)) is Aut(G, ds)-cofibrant by the assumption that M
is compatible with G. The pushout product axiom implies that the iter-
ated pushout product 7% : Q£—1 — Y®F is a cofibration between cofibrant
objects in M, since we are assuming that every object in M is cofibrant.
Moreover, i“% has an Aut(G, ds)-action because weak isomorphisms pre-
serve distinguished vertices. So Lemma 2.5.2 in [BMO06] implies that the
map Id ®i* is an Aut(G, ds)-cofibration.

Furthermore, A(n(G)) is Aut(G,ds)-cofibrant, and Y®* is cofibrant in
M and has an Aut(G,ds)-action. So Lemma 2.5.2 in [BMO06] implies that
A(n(G)) ®Y®* is Aut(G, ds)-cofibrant, and similarly A(n(G)) ®QF_, is also
Aut(G, ds)-cofibrant.
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For (2), note that there is a left Quillen functor

W (2
T Aut(G,ds)

(4.13.2) MA(G ds) M

which is the left adjoint of the functor induced by restriction along
Aut(G, dS) — Em.

Applying this left Quillen functor to Id ®i”% — which is an Aut(G,ds)-
cofibration between Aut(G,ds)-cofibrant objects by (1) — yields a X-cofi-
bration between X,;-cofibrant objects.

For (3), note that taking a coproduct of the maps in (2) still gives a
Y, ~cofibration between X, -cofibrant objects by [Hir03] (10.2.7 and 10.3.4).

For (4), the map hy is the pushout of the map in (3), so it is a Xy-
cofibration. An induction then shows that both its domain and codomain
are Y -cofibrant objects.

Assertion (5) follows from (4), that the orbit [r] is arbitrary, and the fact
that cofibrations are closed under transfinite compositions. U

The following observation says that the pushout of a weak equivalence
between Yg-cofibrant G-props along a map that is the pushout of a free
cofibration, is again a weak equivalence between ¥g-cofibrant G-props.

Proposition 4.14. Suppose that (M,G) is a compatible pair and that:

e i: X =Y isa cofibration in M, regarded as a map in M5 concen-
trated at the s-entry for some s € S.

o f: A — B e Prop? is a weak equivalence between Yg-cofibrant
G-props.

e Both squares in the diagram

(4.14.1) OpYo X A———B
zl hAJ JhB
0pd oY A 1=, B_

in PropY are pushouts.

Then foo is also a weak equivalence between ¥g-cofibrant G-props.

Proof. Weak equivalences in PropY = Alg(OpY) are created entrywise in
M. The outer rectangle in (4.14.1) is also a pushout. So each of the maps
h4 and hP is filtered, in which each [r]-entry, with [r] € S an arbitrary orbit,
of the k-th map is a pushout as in (4.5.3). There is a commutative ladder
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diagram
(4.14.2)
A(Ir]) == Ap([r]) 5 Ay ([r]) —2 -+ —— colim Ag([r]) = Aso([r])
fl fol f1l lfoo
hB hE )
B([r]) == Bo([r]) — By ([r]) —2 -+ — colim By([r]) = Buo([r])

in M>t. All the horizontal maps h,‘? and hf are cofibrations in M> by
Proposition 4.13, and so all the objects in the ladder diagram are cofibrant
in M>k. Using [Hir03] (15.10.12(1)), in order to show that the map f,, is
a weak equivalence between cofibrant objects in M>, it suffices to show
that all the vertical maps f, with 0 < k < oo, are weak equivalences by
induction on k.

The map fy is the [r]-entry of f, which is a weak equivalence by assump-
tion. Suppose k > 1. Consider the following commutative diagram in M,
(4.14.3)

%, o 4Am©) @) A ()
Jr—1
a5, I, o {BO@) © Q| —— Beai)
IR {a(n@) @ ver) Ax(lr))
Tr
11

o {B(n(©)) @ Y} ——— By(lr])

Aut(.G,ds)

Both the back face (with A’s) and the front face (with B’s) are pushout
squares as in (4.5.3), and the maps from the back square to the front square
are all induced by f. The map fr_1 is a weak equivalence by the induction
hypothesis. By Proposition 4.13, all the objects in the diagram are cofi-
brant in M>®, and the left vertical maps in the back and the front faces
are cofibrations in M>#. So to show that the induced map f; is a weak
equivalence, it is enough to show, by the Cube Lemma [Hov99] (5.2.6) /
[Hir03] (15.10.10), that both maps labeled as f, are weak equivalences.

To see that the top f. in the above diagram is a weak equivalence, note
that a coproduct of weak equivalences between cofibrant objects is again a
weak equivalence by Ken Brown’s Lemma [Hov99] (1.1.12). Using the left
Quillen functor (4.13.2) and Ken Brown’s Lemma again, it is enough to show
that, within each coproduct summand, the map

(4.14.4) An(@)) @ Qh_, —L— B(n(@) 2 @,
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is a weak equivalence between Aut(G,ds)-cofibrant objects. By Proposi-
tion 4.13 the source and target of f. are Aut(G, ds)-cofibrant objects. Recall
that weak equivalences in any diagram category in M are defined entrywise.
The map
A(n(G)) —L B(n(@))

is a finite tensor product of entries of f, each of which is a weak equivalence
between cofibrant objects in M. So this f, is a weak equivalence between
cofibrant objects, and tensoring this map with the cofibrant object Q’,jfl
yields a weak equivalence, since in any monoidal model category the tensor
product is a left Quillen bifunctor.

A similar argument with Y®* in place of lefl shows that the bottom
f+« in the commutative diagram is also a weak equivalence. Therefore, as
discussed above, fj is a weak equivalence, finishing the induction. O

The following is the main theorem of this section, and one of two main
theorems of the paper.

Theorem 4.15. Suppose that (M,G) is a compatible pair. Then the cofi-
brantly generated model structure on PropY in Definition 2.16 is left proper
relative to Xg-cofibrant G-props, in the sense that pushouts along cofibrations
preserve weak equivalences between Yg-cofibrant G-props.

Proof. The set of generating cofibrations in Prop?Y is OpY oI, where | is the
set of generating cofibrations in M!5!, each of which is concentrated in one
entry and is a generating cofibration of M there. A general cofibration in
Prop? is a retract of a transfinite composition of pushouts of maps in OpYol.
So a retract and induction argument reduces the proof to the situation in
Proposition 4.14. O

Corollary 4.16. Under the assumptions of Example 4.10, the cofibrantly
generated model structure on Prop? in Definition 2.16 is left proper.

Proof. Every object of Prop¥ is Yg-cofibrant by Remark 4.12. O

The following observation says that cofibrant G-props are also Xg-cofi-
brant. It will be used in Proposition 5.6 below.

Proposition 4.17. Suppose that (M, G) is a compatible pair and that P is
a cofibrant G-prop. Then P is also a Xg-cofibrant G-prop.

Proof. Recall that PropY is cofibrantly generated (Definition 2.16). Since
P € Prop? is cofibrant, it is a retract of the colimit P in a transfinite
composition

J1 J2

(4.17.1) o =P, Py colimj, P, &£ p

in Propg starting at the initial G-prop &, in which each map ji : P._1 — P
is a pushout as in Proposition 4.13 with ¢ : X — Y a generating cofibration
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in M. To show that P is ¥g-cofibrant, it is enough to show that P is
Yg-cofibrant. Moreover, the initial G-prop is Xg-cofibrant because, given
our conditions on M, the unit of M is cofibrant.? Since cofibrations are
closed under transfinite composition, it is enough to show that each map ji
for k > 1 is a Xg-cofibration. This is true by Proposition 4.13(5) and an
induction. O

5. Derived change-of-base

The main result in this section is Theorem 5.8. It says that, under certain
assumptions, a Quillen equivalence between underlying categories induces a
Quillen equivalence between the categories of G-props.

Recall the definition of a pasting scheme being admissible in a monoidal
model category M (Def. 2.16) and the definition of a shrinkable pasting
scheme (Def. 3.2). We will also need the following definition, which appears
in [SS03] (Section 3.2).

Definition 5.1 (Weak Monoidal Quillen Pairs). Suppose that M and N
are monoidal model categories.

e A laxr monoidal structure on a functor R : N — M consists of a
morphism v : 1p — R(1pr), and natural morphisms

RX®RY - R(X®Y)

which are coherently associative and unital.
e A weak monoidal Quillen pair between monoidal model categories
M and N consists of a Quillen adjoint pair

L. M2N:R

with a lax monoidal structure on the right adjoint R so that the
following hold:
— For all cofibrant objects A and B in M, the map L(A® B) —
LA ® LB (adjoint to A® B — RLA® RLB — R(LA® LB))
is a weak equivalence in N.
— For some cofibrant replacement ¢q : (1q)¢ 31 M, the composite
map

LAm) X L1 5 1y
is a weak equivalence in .

Examples of weak monoidal Quillen pairs include the adjunction between
reduced rational dg Lie algebras and reduced rational simplicial Lie algebras
[Qui69], and the Dold-Kan equivalence of chain complexes and simplicial
abelian groups.

Proposition 5.2. Suppose:

2See (5.5.1) and (5.5.2) for an explicit description of the initial G-prop.
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o L: M 2N : R is a weak symmetric monoidal Quillen pair with left
adjoint L.
e G = (S,G) is a pasting scheme which is admissible in M.

Then there is an induced diagram with four Quillen pairs

(5.2.1) MS s NS

7

Prop/gw ? Propjg\/

in which the following statements hold:

(1) The Quillen pair (L, R) in the top row of (5.2.1) is the entrywise
prolongation of the original Quillen pair between M and N'. This
(L, R) is a Quillen equivalence if the original adjoint pair between
M and N is.

(2) Both Prop% and Prop/g\/ have the model structures in Definition 2.16.

(3) Both vertical Quillen pairs are the free-forgetful adjunctions in [YJ15,
12.9], in which the undecorated right adjoints forget all of the G-prop
structure except for the equivariant structure.

(4) At the bottom row the right adjoint R is the entrywise prolongation
of the original right adjoint as in [YJ15, 12.11(1)].

(5) The square of right adjoints commutes, and the square of left adjoints
also commutes up to natural isomorphisms.

(6) If the original left adjoint L is symmetric monoidal, then LY is nat-
urally isomorphic to the entrywise prolongation of L.

Proof. The top and the vertical adjoint pairs exist as explained in the
statements above. The bottom horizontal left adjoint LY exists by the Ad-
joint Lifting Theorem [Bor94] (4.5.6). Every one of the four adjoint pairs
is a Quillen pair because every right adjoint above preserves fibrations and
acyclic fibrations, since they are defined entrywise in the underlying cate-
gories.

If the original adjoint pair (L, R) is a Quillen equivalence, then so is the
top adjoint pair in (5.2.1) by [Hir03] (11.6.5(2)).

Furthermore, since both horizontal right adjoints are R entrywise and
both vertical right adjoints are forgetful functors, the right adjoints square
commutes. By uniqueness of left adjoints, the left adjoints square also com-
mutes up to natural isomorphisms.

If the original left adjoint L : M — N is symmetric monoidal, then its
entrywise prolongation is a functor Prop%{ — Prop/g\f and is left adjoint to
the entrywise prolongation of R by [YJ15] (12.13). So there is a natural
isomorphism LY = L by uniqueness of left adjoints. O



108 PHILIP HACKNEY, MARCY ROBERTSON AND DONALD YAU

The following definition is a way of measuring how different LY is from
L when the latter is not symmetric monoidal, but only weakly symmetric
monoidal.

Definition 5.3. Suppose:
e L: M= N: Risaweak symmetric monoidal Quillen pair with left
adjoint L.
e G = (S5,G) is a (not necessarily shrinkable) pasting scheme which is
admissible in both M and N.

e Pe Prop%/t.
Denote by
(5.3.1) P 19p e NS

the adjoint of the unit map P — RLYP regarded in M*.

Remark 5.4. For simplicity we omitted all the forgetful functors in the map
xp. Denoting by U the forgetful functors, the map yp is LUP — ULYP.

The following observation says that for the initial G-prop, LY and L are
not all that different. It will serve as the initial case in the induction in the
proof of Proposition 5.7 below.

Proposition 5.5. Suppose:

o L: M =N : R is a weak symmetric monoidal Quillen pair with left
adjoint L.
e Both M and N are compatible with G.
e Py is the initial G-prop in M.
Then the map xp, : LPy — LY9Py is a weak equivalence.

Proof. Since Py is the initial G-prop in M, LY Py is the initial G-prop in N/
because LY is a left adjoint. There are now two cases.
(1) Suppose G is wheel-free, i.e., G is properly contained in Gr.. Then

Ia if (D) = (),
1% otherwise,

(5.5.1) Py(Y) = {

and similarly for LYP,. For a color ¢ € € for which 1. € G, the map
Xp, at the (;)-entry is the counit map L1rs — 1ar, which is a weak
equivalence as part of the definition of a weak symmetric monoidal
Quillen pair because 1,4 is cofibrant. In any other entry, the map
XP, is the unique self map of the initial object in N.

(2) If G has wheels, then

Im if (&) = (),
(5.5.2) Py(®) = %M1ﬁ®=@%

%] otherwise,
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and similarly for LYPy. As in the wheel-free case, the map xp, is
either a weak equivalence or the identity map of the initial object in
entries (¢) # (5). At the (5)-entry, xp, is the map

L(IIlNOéEIILLM—+IllN,

which is a coproduct of the counit map L1y — 1as. The counit
map is a weak equivalence between cofibrant objects in A/, hence so
is the coproduct.

This shows that the map xp, is a weak equivalence. O

Roughly the following observation says that, if the map x4 is a weak
equivalence, then it remains so after we attach a free cell to A, provided A
is cofibrant. It will serve as the induction step in the proof of Proposition 5.7
below.

Proposition 5.6. Suppose:

o L: M 2N : R is a weak symmetric monoidal Quillen pair with left
adjoint L.

e Both M and N are compatible with G.

e i: X =Y isa cofibration in M, regarded as a map in M5 concen-
trated at the s-entry for some s € S.

o The diagram

(5.6.1) OpdoXx 1 1A

L

Op90Y — = A

is a pushout in PropY with A cofibrant.
e The map x4 : LA — LYA is a weak equivalence.

Then the map xa.. : LAs — LYAL is also a weak equivalence.
Proof. Pick an orbit [r] € S, and consider the filtration (4.5.2) in M>u

A([r)) = Ao([r]) —2 Ay ([r]) —=

colim kAk<[r]) = Aoo([r])

of the [r]-entry of the map h: A — A. Applying the left adjoint L in the
[r]-entry, we obtain the filtration in N>

L(AW]) = L(Aol]) 2% L(Ar]) 2% - — colim  L(AR[F]) 2 L(As[r])

of the map (Lh)[r].
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On the other hand, applying the left adjoint LY to the pushout diagram
(5.6.1) in Prop/gw we obtain the pushout diagram

(5.6.2) OpdoLX ——194% B

(Li)*J( JLQ’I

Op9oly — 194, % B

in Propjg\/. To obtain the left side, we used the fact that the left adjoints
square in (5.2.1) commutes up to natural isomorphism. Applying Lemma 4.5
to this pushout diagram, we obtain a corresponding bottom horizontal fil-
tration and a commutative ladder diagram

(5.6.3)

L(A[r]) = L(Ag[r]) —— L(Ai[r]) — -+ - ——— L(Ac[r])

EOJ(:XA élJ{ fooJ(XAoo

(LY A)[r] = B[r] = Bo[r] — B1[r] — -+ — Boo[r] = (LY AL)[r]

in N0,

Since A € Prop%/[ is cofibrant, it is also Xg-cofibrant in M by Proposi-
tion 4.17, and hence LA is Yg-cofibrant in N because L is a left Quillen
functor. Likewise, LYA € Prop%/ is cofibrant because LY is a left Quillen
functor by Proposition 5.2, so it is also Xg-cofibrant in N (Proposition 4.17).
Moreover, all the horizontal maps are X ,-cofibrations by Proposition 4.13.
Using once again [Hir03] (15.10.12(1)), to show that the map x4, is a weak
equivalence, it is enough to show that all the vertical maps & in (5.6.3) for
0 < k < oo are weak equivalences by induction. The map &y is the [r|-entry
of the map x4, so it is a weak equivalence.

For the induction step, suppose &;_1 is a weak equivalence. We must
show that & is a weak equivalence, for which we will use a cube argument
similar to (4.14.3). Consider the commutative diagram in N>
(5.6.4)

e Aut(Gds) L{A(n(G)) © szl(i)} L Ak-1lr])
a6, %, o 1B006) © QL) ) — = Bia(r)
DI t{a(n(c)) @ very L(A[r])
H(Id ®(Li)7F). I35
x

5. {B(n(©)) @ (1Y)} ——— B(r])

Aut(.G,ds)
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The back face is L applied to the pushout square (4.5.3) corresponding
to the given pushout square (5.6.1). The front face is the pushout square
(4.5.3) corresponding to the pushout square (5.6.2). The objects QF (i)
and QF | (Li) refer to the Q-construction (Def. 4.4) for the maps i and
Li, respectively. By Proposition 4.13, the left vertical maps in the back
and the front faces are ¥ -cofibrations in A, and all the objects are X-
cofibrant. Thus, by the Cube Lemma [Hov99] (5.2.6), to show that & is
a weak equivalence, it is enough to show that the maps a and [ are weak
equivalences.
The map « is a coproduct of the following compositions in N>

{La) (@) @ QL]

|

B(n(G)) @ Qf_4(Li) }

al

L{A(n(c)) ® Qﬁ_l(i)} My

[z] . [z] .
Aut(G,ds) Aut(G,ds)

[r] . {
Aut(G,ds)

The map oy is induced by the lax comonoidal structure map of L [SS03]
(3.4), while the map ag is induced by the map x 4. Since all three objects
are X-cofibrant by Proposition 4.13, to show that « is a weak equivalence,
it is enough to show that a; and as are weak equivalences.

Since x4 is a weak equivalence, the same argument as in the paragraph
containing (4.14.4) shows that ao is a weak equivalence. For «aq, first note
that by Proposition 4.13 and the fact that L is a left Quillen functor, the
domain and the codomain of the map

L{A(n(G)) ® Qg_lu)} (LAY (n(@) ® QF_, (Li)

are Aut(G,ds)-cofibrant in N. Using the left Quillen functor (4.13.2) and
Ken Brown’s Lemma [Hov99] (1.1.12), to show that oy is a weak equivalence,
it is enough to show that @; is a weak equivalence. Since (L, R) is a weak
monoidal Quillen pair and all the objects in M and N are cofibrant, a;
is a weak equivalence by [Murl4] (4.3). This finishes the proof that « is
a weak equivalence. The proof that 3 is a weak equivalence is the same
as the one above for a but with Y®* and (LY)®* replacing Qf (i) and
Q,’z_l(Lz’), respectively. This finishes the induction step that & is a weak
equivalence. O

The following key observation is the generalized prop version of [SS03]
(5.1(1), for monoids) and [Murl4] (4.2, for 1-colored nonsymmetric operads).
Note that those two settings are both nonsymmetric, while most shrinkable
pasting schemes (Proposition 3.3) have graphs that encode symmetric group
actions. In particular, the category A (2.13.2), where the map xp lives,
captures the underlying equivariant structure.

Proposition 5.7. Suppose:



112 PHILIP HACKNEY, MARCY ROBERTSON AND DONALD YAU

o L: M 2N : R is a weak symmetric monoidal Quillen pair with left
adjoint L.

e Both M and N are compatible with G.

e P is a cofibrant G-prop in M.

Then the map xp : LP — LYP is a weak equivalence in N°S.

Proof. Exactly asin (4.17.1), P is a retract of the colimit Py, of a transfinite
composition

g=" Py colimy P, = Py

in Prop% starting at the initial G-prop Py = &, where each map P,_1 — Px
is a pushout as in (4.5.1) with ¢ : X — Y a generating cofibration in M. By
the naturality of x(_), it is enough to show that xp_ is a weak equivalence
in V9.

Applying L and LY to the transfinite composition, we obtain a commu-
tative ladder diagram

LP, LP, e colimy LP, = LPs
XP()\L Xpll XPOOJ(
LYP, LYP e colimy, LYP, = LY P,

in A°. The initial G-prop Py is ¥g-cofibrant in M, and LP, is Yg-cofibrant
in N. Since LYPy is the initial G-prop in N, it is likewise Yg-cofibrant.
By Propositions 4.13 and the fact that L and LY are left Quillen functors,
all the horizontal maps in the ladder diagram are Xg-cofibrations. So in
particular all the objects are ¥g-cofibrant. Using [Hir03] (15.10.12(1)) and
the ladder diagram, to show that xp_ is a weak equivalence, it is enough to
show by induction that each xp, for £ > 0 is a weak equivalence.

Since Fy is the initial G-prop, the map xp, is a weak equivalence by
Proposition 5.5. For the induction step, suppose xp, , : LP_1 — LYP,_,
is a weak equivalence. We must show that xp, : LP, — LYP, is a weak
equivalence. Note that all the P;’s are cofibrant in Prop%‘ because Fj is
cofibrant and each map P;_; — P; is a pushout of a generating cofibra-
tion, hence itself a cofibration. Therefore, xp, is a weak equivalence by
Proposition 5.6. ([

The following observation is our main result about derived change-of-
base categories. It is the G-prop version of [SS03] (3.12(3), for monoids) and
[Mur14] (1.1, for 1-colored nonsymmetric operads).

Theorem 5.8. Suppose:

o L: M= N:R is a weak symmetric monoidal Quillen equivalence
with left adjoint L.
e Both M and N are compatible with G.
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Then there is a Quillen equivalence
g L. o g
Prop3{, = Propj},
R

with left adjoint LY.

Proof. This is a Quillen adjunction by Proposition 5.2. To show that it

is a Quillen equivalence, suppose ¢ : LYA — B is a map with A € Propj;v[

cofibrant and B € Prop%/ fibrant. We must show that ¢ is a weak equivalence

if and only if its adjoint map A — RB is a weak equivalence. Recall that

weak equivalences are defined entrywise in the underlying categories.
Consider the composition

XA P

LA LYA B

in NV*¥, where y 4 is the map defined in (5.3.1). Since A is cofibrant, the map
x4 is a weak equivalence by Proposition 5.7. Thus, ¢ is a weak equivalence
if and only if px4 is a weak equivalence in NS,

The G-prop A is cofibrant in M*® by Proposition 4.17, and B is fibrant in
NS because fibrations in N° and Propjgv are both defined entrywise in N.
Since (L, R) is a Quillen equivalence, the entrywise prolongations M* = N5
in (5.2.1) form a Quillen equivalence. So x4 is a weak equivalence if and
only if its adjoint A — RB € N is a weak equivalence, which finishes the
proof. O

6. Obstructions to (relative) left properness

The restrictions we put on our model categories in Definition 4.9 seem
rather mysterious at first glance. This final section is intended to illuminate
as much as the authors understand about these conditions. When attempt-
ing to prove that a category of generalized props is left proper, one is forced
to analyze of pushouts of graphs which are decorated with objects of the base
category. When these graphs are then assembled to give a PropY-structure,
as in Lemma 4.5, we are tensoring objects from the base category together
in such a way that it respects graph structure. If we want to impose that
the assembled prop satisfies some additional property this will be a compli-
cated interplay between the objects of the model category M and the graph
automorphisms in the chosen pasting scheme.

Proposition 6.1. Let sSet be the category of simplicial sets with the Kan
model category structure and let sSet™ be the category of simplicial sets with
Yn action, with the projective model structure. The map

®: sSet*™ —s sSet™n

does not preserve cofibrant objects.
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To see this, let A be any nonempty simplicial set. We know that A is
cofibrant in sSet and that the object (A, A) is cofibrant in sSet*?. We would
like to thank Sean Tilson for showing us a proof of the following lemma.

Lemma 6.2. A x A is not cofibrant as an object of sSet™2.
Proof. Let |J,5(S" = 5% C R be the infinite sphere and let
X = 5.(5%) C Se(R™)

be the singular 5 simplicial set where the Y9 action is given by multiplica-
tion by —1. Note that X has no fixed points and so X*>2 = @. Now, there
exists a unique diagram

g —— X
L]
AX A —— x,

where all maps are Ys-equivariant maps. The map on the right is an acyclic
fibration in sSet. But there cannot be a Yo-equivariant lift ¢ : A x A — X
in this diagram, since if there were there would be a factorization

g =X>

AA=(Ax A 5 AxA—1 5 X

Such a factorization does not exist since AA = A # @. Hence & — A x A
is not a cofibration in sSet™2. O

Notice that if replace sSet with Ch(Q) the map
X): Ch(Q)*™ — Ch(Q)™

preserves cofibrant objects. This is because every module over Q[X,] is
projective, so every object in Ch(Q)>n is cofibrant.

The following example shows obstructions to compatibility for wheeled
properads in sSet.

Example 6.3. Let G = Gr;(¢) be the pasting scheme (Definition 3.2) of
connected wheeled graphs (for wheeled properads), and consider the legless
graph G which has two normal vertices and one distinguished vertex.

(™) ()
oW

In this case, if we decorate G by an object A € M (Definition 4.2), we
will end up with a reduced wheeled graph in which Aut(G, ds) permutes the
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vertices n1 and neo, but, as we showed in Propostion 6.1, the tensor product
A(n1) ® A(ng2) will not necessarily be cofibrant.
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