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Invariance under finite Blaschke factors
on BMOA

Ajay Kumar, Niteesh Sahni and Dinesh Singh

Abstract. This paper describes completely the invariant subspaces of
the operator of multiplication by a finite Blaschke factor on the Banach
space BMOA of analytic functions with bounded mean oscillation on the
unit circle in the complex plane. As a simple application, we describe
by very elementary means, the invariant subspaces of the co-analytic
Toeplitz operator TB on H1. In the simplest case when B(z) = z,
the invariant subspaces of TB on H1 were described by fairly deep argu-
ments until the appearance of an elementary proof by two of the authors
(Sahni & Singh). In recent times, the common invariant subspaces of
the operators of multiplication by B2 and B3, first in the case of z2 and
z3, and then for an arbitrary finite Blaschke B, have proved to be criti-
cal in the context of Nevanlinna–Pick type interpolation on H2. Thus,
keeping in mind the importance of invariant subspaces, we also offer a
characterization of the common invariant subspaces of these operators
on BMOA. Our proofs are that much more technical. Again, as an
application, we obtain the common invariant subspaces of T

B2 and T
B3

on the Hardy space H1.
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1. Introduction

From the functional analytic viewpoint, the space of analytic functions
of bounded mean oscillation, BMOA, derives its importance due to the
fact that it is the dual of the Hardy space H1. Of course, this duality
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relation famously known as Fefferman’s theorem (see [9]), goes well beyond
the classical Hardy space H1 of the unit disk.

In our context, as manifested in [5], [17] and [20], duality plays an im-
portant role in characterizing the invariant subspaces of the backward shift
on BMOA. This paper extends such results to a far more general situa-
tion. In fact, using elementary and simple techniques we characterize the
invariant subspaces of the operator of multiplication by a finite Blaschke fac-
tor B on BMOA and then using duality arguments we obtain in a simple
way, the invariant subspaces of the co-analytic Toeplitz operator TB on H1

(Note: Multiplication by finite Blaschke factor B is a bounded operator on
BMOA, see [13]). These results should be seen to be in the line of investiga-
tion of invariant subspaces that are — apart from being of interest in their
own right — also interesting because of their applications to areas such as
Nevanlinna–Pick interpolation (see [1], [2], [4], [8], [10], [11] and [12]). For
more information on these areas the reader can refer to [14], [15], [16], and
[20].

We wish to state here a key difference between the proofs of the special
cases of the invariant subspace theorems relating to the operator of mul-
tiplication by z as in [17], and our theorem over here for the operator of
multiplication by a finite Blaschke factor B. This difference relates to over-
coming the absence of a gcd for B-inner functions that we consider in our
proof for the operator of multiplication by B unlike in the case of the oper-
ator of multiplication by z, where we rely on the fact that any collection of
inner functions has a gcd.

We also state and prove a second invariant subspace theorem, again in the
context of BMOA, in which we describe completely the common invariant
subspaces of the operators TB2 and TB3 that is of multiplication by B(z)2

and B(z)3 on BMOA. This theorem is similar in flavor to our first invariant
subspace theorem and is important in its own right because it is a general-
ization of the H2 version, Theorem 1.3 in [6], which in turn has proved to be
very important in the context of constrained Nevanlinna–Pick interpolation.
Furthermore, as an application, we produce the common invariant subspace
characterization of the co-analytic Toeplitz operators T

B2 and T
B3 on the

Hardy space H1.

2. Notation and terminology

Let D stand for the unit disk in the complex plane and T for its boundary,
namely the unit circle. For p ≥ 1, the symbol Hp stands for the classical
Hardy space of analytic functions defined on the disk D, which can also be
viewed as the following closed subspace of the Lebesgue space Lp of the
circle: f ∈ Lp :

∫
T

f(z)zndm = 0, n = 1, 2, . . .

 ,
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where dm is the normalized Lebesgue measure. A function I ∈ Hp is called
inner if |I| = 1 a.e. and a function f ∈ Hp is called outer if closp{znf} = Hp.
Here closp is the closure in the p-norm.

A function f ∈ L1 is said to be of bounded mean oscillation and written
as f ∈ BMO if

‖f‖∗ = sup
I

1

|I|

∫
I

∣∣∣∣f − 1

|I|

∫
I
f dm

∣∣∣∣ dm <∞.

Here the supremum is taken over all subarcs I of the unit circle, and |I| is
the Lebesgue measure of the subarc I. BMO is a Banach space under the
norm

‖f‖ = ‖f‖∗ + |f(0)|.
A function g in BMO is said to be of vanishing mean oscillation or g ∈

VMO if the above integral tends to zero as |I| tends to zero. The space
BMOA = BMO ∩H1 and the space VMOA = VMO ∩H1. We refer [19]
for more details.

Now we record some important facts about the Hardy–Hilbert space H2 of
the circle which shall be used frequently. It is well known that {1, z, z2, . . . }
is an orthonormal basis for H2. Here z = eiθ. Throughout the paper, B(z)
shall stand for a fixed Blaschke factor of order n of the form:

B(z) =
n∏
i=1

z − αi
1− αiz

(αi ∈ D;α1 = 0).

The following orthonormal basis in terms of B(z) for H2 has been described
in [21]:{

ejm =

√
1− |αj+1|2
1− αj+1z

Bj(z)B(z)m : 0 ≤ j ≤ n− 1,m = 0, 1, 2, . . .

}
.

The symbol Bj(z) stands for the product
j∏
i=1

z − αi
1− αiz

. As a consequence, any

f ∈ H2 can be written as f = e0,0f0+· · ·+en−1,0fn−1, where f0, . . . , fn−1 be-
long to H2(B(z))—the closed span of {1, B(z), B(z)2, . . . } in H2. A function
ϕ ∈ H∞ is called B-inner if {ϕB(z)m : m = 0, 1, 2, . . . } is an orthonormal
set in H2.

For a finite Blaschke product B(z), the Toeplitz operator TB is defined by
TBf(z) = B(z)f(z), for each f ∈ BMOA. A closed subspaceM of BMOA
is TB invariant if TBM⊂M. The co-analytic Toeplitz operator with symbol
TB is the adjoint operator of the operator TB. A closed subspace K of H1

is said to be invariant under TB if TBK ⊂ K.
In general, Hp(B(z)) shall denote the closure (weak star closure when

p = ∞) of span{1, B(z), B(z)2, . . . } in Hp. For any subset X of Hp, we
shall denote its closure in Hp as clospX. BMOA(B(z)) is the weak-star
closed span of {1, B(z), B(z)2, . . . } in BMOA. If X is a subset of BMOA
then the weak-star closure of X in BMOA will be denoted by clos∗X.
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3. Preliminary results

A corner stone in the theory of BMOA functions is the Fefferman’s the-
orem which identifies the space BMOA with the dual space of H1. This
theorem turns out a powerful tool in the characterization of invariant sub-
spaces of BMOA. The precise statement runs as follows:

Theorem 3.1 (Fefferman’s Theorem, [9]). BMOA is the dual of H1 and
the action of any BMOA function f treated as a functional on H1 is given
by

lim
r→1

1

2π

∫
T
f(reiθ)p(reiθ)dθ,

where p is any polynomial in H1.

The authors in [5] and [17] make a significant use of a factorization result
(stated as Corollary 3.3 below) in the proofs of their invariant subspace
characterization. The lemma below is a generalization of this fact and will
be crucial for the proof of our results.

Lemma 3.2. Let f be in BMOA and q1, . . . , qr be B-inner functions, r ≤
n, such that qiH

2(B(z)) ⊥ qjH
2(B(z)), i 6= j. If there exist functions

g1, . . . , gr belonging to H2(B(z)) such that f = q1g1 + · · ·+ qrgr, then each
gi ∈ BMOA(B(z)).

Proof. Since f is in BMOA, it acts as a bounded linear functional on H1.
Consequently for any polynomial p in H1(B(z)), we have∣∣∣∣∣∣

∫
T

fq1p dm

∣∣∣∣∣∣ ≤ C‖q1p‖1 ≤ C1‖p‖1.

Moreover, ∣∣∣∣∣∣
∫
T

fq1p dm

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∫
T

(q1g1 + · · ·+ qrgr)q1p dm

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∫
T

q1g1q1p dm+ · · ·+
∫
T

qrgrq1p dm

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∫
T

q1g1q1p dm

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∫
T

g1p dm

∣∣∣∣∣∣ .
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Except the first integral, all other integrals vanish because for each i, j =
1, 2, · · · , r, qiH2(B(z)) ⊥ qjH2(B(z)), when i 6= j. The last step is a conse-
quence of the fact that q1 is B-inner. Therefore,∣∣∣∣∣∣

∫
T

g1p dm

∣∣∣∣∣∣ ≤ C1‖p‖1.

So the bounded linear functional Fg(p) =
∫
T
gp dm can be extended to H1.

This means ∣∣∣∣∣∣
∫
T

g1h dm

∣∣∣∣∣∣ ≤ C1‖h‖1

for all analytic polynomials h in H1, and hence g1 ∈ BMOA. The function
g1 has only powers of B(z) because it lies inside H2(B(z)), so it belongs to
BMOA(B(z)). Similarly, g2, . . . , gr ∈ BMOA(B(z)). �

Corollary 3.3 ([5, Proposition 2.1.3]). Let I be an inner function, and
g ∈ H2 such that Ig ∈ BMOA. Then g ∈ BMOA.

Proof. Take B(z) = z in Lemma 3.2. �

In proving Theorem 4.1, we need to show that qBMOA(B(z))∩BMOA
is weak-star closed in BMOA. We do this by showing that qBMOA(B(z))∩
BMOA is the annihilator of a subspace of H1.

Lemma 3.4. If q is a B-inner function, then qBMOA(B(z)) ∩BMOA is
the annihilator of the subspace, clos1[qH2(B(z))]⊥ of H1.

Proof. Let f be an element of qBMOA(B(z)) ∩ BMOA and g be cho-
sen from [qH2(B(z))]⊥. It is evident that

∫
fg dm = 0. This means

that f annihilates [qH2(B(z))]⊥ and hence it belongs to the annihilator
of clos1[qH2(B(z))]⊥.

On the other hand if f ∈ Ann
(
clos1[qH2(B(z))]⊥

)
, then f will be in the

dual space, i.e., in BMOA. Since BMOA ⊂ H2, this f will also be in H2.
Further, f is orthogonal to [qH2(B(z))]⊥, thus f ∈ qH2(B(z)).

So f = qf1, for some f1 ∈ H2(B(z)). By Lemma 3.2, f1 becomes a
member of BMOA(B(z)) and hence

f ∈ qBMOA(B(z)) ∩BMOA. �

Our next lemma plays an essential role in the proofs of Theorem 4.1 and
Theorem 5.1. In this lemma, we show that qH∞(B(z)) is weak-star dense
in qBMOA(B(z)) ∩BMOA.

Lemma 3.5. If q is a B-inner function, then

clos∗[qH∞(B(z))] = qBMOA(B(z)) ∩BMOA.
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Proof. It is easy to see that

qH∞(B(z)) ⊂ qBMOA(B(z)) ∩BMOA.

Being the annihilator of the subspace clos1

[
[qH2(B(z))]⊥

]
of H1 (see Lem-

ma 3.4), the subspace

qBMOA(B(z)) ∩BMOA

is weak-star closed in BMOA. So it is obvious that

clos∗[qH∞(B(z))] ⊆ qBMOA(B(z)) ∩BMOA.

We prove the reverse inclusion. Chose an f in qBMOA(B(z))∩BMOA.
Then f = qg(B(z)), for some g in BMOA. Since g ∈ H2, there is a sequence
of polynomials {gn} in H2 such that

‖gn − g‖2 → 0 as n→∞.

Without loss of generality assume that gn → g a.e. (Actually a subsequence
converges a.e. but we assume that we have replaced {gn} with that subse-
quence which we have relabelled as {gn} without loss of generality as the
proof will show.)

Now, proceeding exactly as in the proof of Theorem 3.1 of [5], we construct
a sequence of outer functions {On} in H∞. Let {On} be the sequence of
outer functions with

|On| =

{
1
|gn| , |gn| > 1

1, |gn| ≤ 1;

that is log |On| = − log+ |gn|, and On(0) > 0. We note that |Ongn| ≤ 1 and
the sequence {On} converges to 1 in the ‖ · ‖2 norm. Taking composition of
On and gn with B(z), we have

‖On(B(z))− 1‖2 → 0 and ‖gn(B(z))− g(B(z))‖2 → 0,

and ‖On(B(z))gn(B(z))‖∞ ≤ 1. There exist subsequences of {On(B(z))}
and {gn(B(z))} which converge almost everywhere to 1 and g(B(z)). For
the same reason as mentioned above, we relabel these subsequences as
{On(B(z))} and {gn(B(z))}. For the B-inner function q,

qOn(B(z))gn(B(z))→ qg(B(z)) a.e.

and

‖qOn(B(z))gn(B(z))‖bmoa ≤ ‖qOn(B(z))gn(B(z))‖∞
≤ ‖q‖∞‖On(B(z))gn(B(z))‖∞
≤ ‖q‖∞.

This means

qOn(B(z))gn(B(z))→ qg(B(z))
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in the weak-star topology of BMOA. Since qOn(B(z))gn(B(z)) belongs to
qH∞(B(z)), we conclude that qg(B(z)) belongs to the weak-star closure of
qH∞(B(z)). �

Lastly we state two recent results that characterize subspaces of Hp in-
variant under the algebras H∞(B(z)) and H∞1 (B(z)). These shall be central
to the proof of similar characterizations in the context of BMOA.

Theorem 3.6 ([18, Theorem 4]). Let M be a closed subspace of Hp, 0 <
p ≤ ∞, such that M is invariant under H∞ (B). Then there exist B-inner
functions q1, . . . , qr, r ≤ n, such that

M =

r∑
i=1

⊕qiHp (B(z)) .

Theorem 3.7 ([18, Theorem 3]). LetM be a closed subspace of Hp, 0 < p ≤
∞, such that M is invariant under H∞1 (B) but not invariant H∞(B(z)).
Then there exist B-inner functions q1, . . . , qr, r ≤ n, such that

M =

 k∑
j=1

⊕〈ϕj〉

⊕( r∑
i=1

⊕B(z)2qiH
p (B(z))

)
,

where k ≤ 2r − 1, r ≤ n, j = 1, 2, . . . , k and

ϕj = (α1j + α2jB)q1 + (α3j + α4jB)q2 + · · ·+ (α2r−1,j + α2r,jB)qr.

4. TB-invariant subspaces

The first one of the two invariant subspace results proved in this paper is
as follows:

Theorem 4.1. Let B(z) be a finite Blaschke product of order n and M be
a weak-star closed subspace of BMOA which is invariant under TB. Then
there exist B-inner functions q1, . . . , qr with r ≤ n, such that

M =

(
r∑
i=1

⊕qiBMOA(B(z))

)
∩BMOA.

A brief remark on the proof. For a weak-star closed subspace M of
BMOA, Sahni and Singh in [17] first show that M∩H∞ is nontrivial and
then establish that for every f in M, there exists an outer function g such
that gf = φk, for some k in H∞. This function φ turns out to be the
gcd of inner parts of all functions in M and the form of M is gcd φ times
some subspace N of BMOA; i.e., M = φN . In the case of B-invariant
subspaces, the structure of M∩H∞ is not so simple and no such divisor φ
exists. In order to overcome this difficulty, we shall use Lemma 3.2, which is
a generalization of Proposition 2.1.3 in [5] by Brown and Sadek, and Lem-
ma 3.4 as well as Lemma 3.5 to establish that qH∞(B(z)) is weak-star dense
in qBMOA(B(z)) ∩ BMOA. A final argument will then describe the TB
-invariant subspaces of BMOA.
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Proof. We shall first establish thatM contains plenty of bounded analytic
functions. Note that any f(z) ∈M can be written as

f(z) = e00f0(B(z)) + · · ·+ en−1,0fn−1(B(z)),

for some f0(z), . . . , fn−1(z) ∈ H2.
For each k = 0, . . . , n− 1, define

gk(z) = exp(−|fk(z)| − i|fk(z)|∼),

where |fk(z)|∼ stands for the harmonic conjugate, which exists for L2 func-
tions. Observe that |gk(z)| ≤ 1 and consequently gk(z) ∈ H∞.

Let h(z) = g0(B(z)) · · · gn−1(B(z)). Now

|h(z)f(z)| ≤
n−1∑
j=0

|ej0||h(z)fj(B(z))|

≤
n−1∑
j=0

|ej0||gj(B(z))fj(B(z))|

=
n−1∑
j=0

|ej0| |fj(B(z)) exp(−|fj(B(z))|)|

≤
n−1∑
j=0

|ej0|

shows that h(z)f(z) ∈ H∞. We now claim that h(z)f(z) also belongs toM
and this in turn establishes that M∩H∞ 6= [0].

For all t ∈ (0, 1) define ht(z) = h(tz). Following the proof of Lemma 3.3
in [13] (see also Proposition 2.1 in [5]), there exists a sequence of polyno-
mial Ptn(B(z)) such that Ptn(B(z))f(z) converges weak-star to ht(z)f(z).
Further, it is established that ht(z)f(z) converges weak-star to h(z)f(z) as
t → 1. Therefore Ptn(B(z))f(z) converges weak-star to h(z)f(z). Since
M is invariant under TB, we observe that Pn(B(z))f(z) ∈ M and hence
h(z)f(z) ∈M.

Since M∩H∞ is a weak star closed subspace of H∞ which is invariant
under multiplication by B(z), by Theorem 3.6, there exist B-inner functions
q1, . . . , qr with r ≤ n such that

M∩H∞ =
r∑
i=1

⊕qiH∞(B(z)).

Now qiH
∞(B(z)) ⊂M and by Lemma 3.5, qiBMOA(B(z))∩BMOA is

the weak-star closure of qiH
∞(B(z)) in BMOA, for each i = 1, 2, . . . , r. So

we have (
r∑
i=1

⊕qiBMOA(B(z))

)
∩BMOA ⊂M.
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Our characterization will be complete if we show the containment from
the other side.

Let f be an element of M. Once again f can be written as

f(z) = e00f0(B(z)) + · · ·+ en−1,0fn−1(B(z)).

For each j = 0, . . . , n− 1, define

h(j)
m = exp

(
−|fj(z)| − i|fj(z)|∼

m

)
.

Put Om(z) = h
(0)
m (z) · · ·h(n−1)

m (z). Then Om(B(z))f ∈ M ∩H∞. Observe
that Om(B(z))→ 1 a.e. which implies |Om(B(z))f − f | → 0 a.e..

Since |Om(B(z))f − f |2 ≤ 4|f |2, we have by the dominated convergence
theorem that

∫
|Om(B(z))f−f |2 → 0; that is, Om(B(z))f → f in H2. This

means that f ∈ clos2[M∩H∞]; that is, f ∈ q1H
2(B(z))⊕· · ·⊕qrH2(B(z)).

Therefore f = q1g1 + · · · + qrgr for some g1, . . . , gr ∈ H2(B(z)). By Lem-
ma 3.2, the functions g1, . . . , gr all belong to BMOA(B(z)). Therefore, f

belongs to

(
r∑
i=1
⊕qiBMOA(B(z))

)
∩BMOA. �

Corollary 4.2 ([5, Theorem 3.1], [17, Theorem 4.1] and [20, Theorem C]).
Let M be a weak-star closed subspace of BMOA which is invariant under
Tz. Then there exists an inner function q such thatM = qBMOA∩BMOA.

Proof. Taking B(z) = z in Theorem 4.1, we get a z-inner function (which
is nothing but an inner function) q such that M = qBMOA∩BMOA. �

As an application of the above theorem, we now derive the invariant
subspaces of the co-analytic Toeplitz operatorTB on H1.

Theorem 4.3. Let K be a closed subspace of H1 which is invariant under
the co-analytic Toeplitz operator TB. Then there exist B-inner functions
q1, . . . , qr with r ≤ n such that

K = clos1

(
r⋂
i=1

[
qiH

2(B(z))
]⊥)

.

Proof. The annihilator of the subspace K, denoted by Ann(K), is a weak-
star closed subspace of BMOA and is also invariant under multiplication
by B(z). So by Theorem 4.1, there exist B-inner functions q1, . . . , qr (where
r ≤ n) such that

(4.1) Ann(K) =

(
r∑
i=1

⊕qiBMOA(B(z))

)
∩BMOA.

Since qiBMOA(B(z)) ⊂ qiH
2(B(z)) for each i = 1, 2, . . . , r, we see that

Ann(K) annihilates (
r∑
i=1

⊕qiH2(B(z))

)⊥
,
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and hence

(4.2)

(
r∑
i=1

⊕qiH2(B(z))

)⊥
⊂ K.

As K is a closed subspace of H1, it is clear from (4.2) that

(4.3) clos1

(
r⋂
i=1

[
qiH

2(B(z))
]⊥) ⊂ K.

It remains to establish the inclusion from the other end. Let f ∈ K.

Then from (4.1), every element of

(
r∑
i=1
⊕ qiBMOA(B(z))

)
∩ BMOA will

annihilate f . It follows from Lemma 3.4 that the annihilator of the closed
subspace

clos1

[ r∑
i=1

⊕ qiH
2(B(z))

]⊥
of H1 is

(
r∑
i=1
⊕qiBMOA(B(z))

)
∩BMOA. Therefore

f ∈ clos1

[ r∑
i=1

⊕ qiH
2(B(z))

]⊥ ,

which means that

f ∈ clos1

(
r⋂
i=1

[
qiH

2(B(z))
]⊥)

.

Hence

K ⊂ clos1

(
r⋂
i=1

[
qiH

2(B(z))
]⊥)

. �

The results proved in [17] and [20] on backward shift invariant subspace
of H1 follows as a corollary to the above theorem.

Corollary 4.4 ([17, Theorem 4.2] and [20, Theorem 3.1]). Let K be a closed
subspace of H1 invariant under S∗. Then there exists a unique inner func-

tion I such that K = IH
1
0 ∩H1. Here bar denotes complex conjugate.

Proof. Taking B(z) = z in Theorem 4.3 , there exists an inner function I

such that K = clos1

[
IH2

]⊥
. It is easy to see that the orthogonal comple-

ment of IH2 in L2 is the closed span of {Iz̄, Iz̄2, . . . } in L2. This implies

that
(
IH2

)⊥
= IH2

0 ∩H2. Taking closure in H1 we get K = IH
1
0 ∩H1. �
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5. Common invariant subspaces of TB2 and TB3

As mentioned earlier, a very special case of Theorem 5.1, proved below,
where B(z) = z and the operators are acting on H2 has led to the solution
of a constrained Nevanlinna–Pick interpolation problem which in turn has
proved to be a starting point of a fruitful area of research. We refer to [1],
[2], [4], [8], [10], [11] and [12].

Theorem 5.1. Let B(z) be a finite Blaschke product of order n andM be a
weak-star closed subspace of BMOA which is invariant under TB2 and TB3

but not invariant under TB. Then there exist B-inner functions q1, . . . , qr
with r ≤ n, such that

M =

k∑
j=1

〈ϕj〉 ⊕

(
r∑
i=1

⊕qiB(z)2BMOA(B(z))

)
∩BMOA.

Here ϕ1, . . . , ϕk, 1 ≤ k ≤ 2r − 1, are in H∞ and each ϕj has the form

ϕj = (α1j + α2jB)q1 + (α3j + α4jB)q2 + · · ·+ (α2r−1,j + α2r,jB)qr.

Proof. Take the functions gk(z) = exp(−|fk(z)| − i|fk(z)|∼) described in
the proof of Theorem 4.1, and define

h(z) = g0(B2(z)) · · · gn−1(B2(z)).

It is easy to show that h(z)f(z) ∈ H∞. Proceeding as in the proof of
Theorem 4.1 and using the invariance of M under T 2

B we see that h(z)f(z)
belongs to M. This shows that M∩H∞ is non trivial. Also M∩H∞ is a
weak-star closed subspace of H∞ which is invariant under T 2

B and T 3
B.

The spaceM∩H∞ can not be invariant under TB. For ifM∩H∞ is TB
invariant, then by Theorem 3.6, there exist B-inner functions q1, q2, . . . , qr
such that

(5.1) M∩H∞ = q1H
∞(B(z))⊕ q2H

∞(B(z))⊕ · · · ⊕ qrH∞(B(z)).

Using lemma 3.5 and denseness of M∩H∞ in M we have

M =

(
r∑
i=1

⊕qiBMOA(B(z))

)
∩BMOA.

This is clearly not possible as M is not invariant under TB.
Therefore, by Theorem 3.7, there exist B-inner functions q1, . . . , qr such

that

(5.2) M∩H∞ =

k∑
j=1

〈ϕj〉 ⊕
r∑
i=1

⊕B(z)2qiH
∞(B(z)),

where the functions ϕ1, . . . , ϕk, k ≤ 2r − 1, are in H∞, and for each j,

ϕj = (α1j + α2jB)q1 + (α3j + α4jB)q2 + · · ·+ (α2r−1,j + α2r,jB)qr.

We finish off the argument by showing that M∩H∞ is weak-star dense in
M and that its weak-star closure in BMOA has the form described in (5.2).
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Since the finite dimensional space
k∑
j=1
〈ϕj〉 is weak-star closed and the

weak-star closure of qiH
∞(B(z)) in BMOA is qiBMOA(B(z)) ∩ BMOA,

we conclude that

clos∗[M∩H∞] =
k∑
j=1

〈ϕj〉 ⊕

(
r∑
i=1

⊕B2qiBMOA(B(z))

)
∩BMOA.

It is trivial to see thatM∩H∞ ⊂M. Our proof will be complete once we
establish the reverse containment. For that we again proceed in a manner
similar to the proof of Theorem 4.1 by selecting an arbitrary f ∈ M, and
writing it as

f = e00f0(B(z)2) + · · ·+ e2n−1,0f2n−1(B(z)2)

where f0(z), . . . , f2n−1(z) ∈ H2(B(z)2). Next, for each j = 0, . . . , 2n − 1,
define a sequence of H∞ functions

h(j)
m (z) = exp

(
−|fj(z)| − i|fj(z)|∼

m

)
.

Put Om(z) = h
(0)
m (z) · · ·h(n−1)

m (z), so that Om(B(z)2)f(z) ∈ M ∩ H∞,
and Om(B(z)2) → 1 a.e. as m → ∞. An application of the dominated
convergence theorem then yields Om(B(z)2)f → f in H2 . This means that

f belongs to clos2[M∩ H∞]. Thus f = g + h, for some g ∈
k∑
j=1
〈ϕj〉 and

h ∈
r∑
i=1
⊕B(z)2qiH

2(B(z)). Further, h can be written as

h = B(z)2(q1h1 + q2h2 + · · ·+ qrhr),

where h1, h2, . . . , hr ∈ H2(B(z)). By Corollary 3.3,

q1h1 + q2h2 + · · ·+ qrhr ∈ BMOA.

Now apply Lemma 3.2 to conclude that h1, h2, . . . , hr ∈ BMOA(B(z)) and
this completes the argument. �

In the context of Hp spaces, the common invariant subspaces of S2 and
S3 were studied earlier in [6] and [14] and then generalized to a great deal
in [15], [16], and [18]. The theorem which we proved above generalizes the
main theorem in [17].

Corollary 5.2 ([17, Theorem 3.1]). Let M be a weak-star closed subspace
of BMOA which is invariant under S2 and S3 but not invariant under S.
Then there exists an inner function I, and constants α, β such that

M = I ·BMOAαβ ∩BMOA.
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Proof. Take B(z) = z in Theorem 5.1, we have ϕ = 〈α+ βz〉I and

M = 〈α+ βz〉I ⊕ z2I ·BMOA ∩BMOA = I ·BMOAαβ ∩BMOA.

The symbol BMOAαβ is the weak-star closure in BMOA of the space gen-
erated by{α+ βz, z2BMOA}. �

Next we present a backward shift version of Theorem 5.1.

Theorem 5.3. Let K be a closed subspace of H1 which is invariant under
the co-analytic Toeplitz operators T

B2 and T
B3 but not invariant under TB.

Then there exist B-inner functions q1, . . . , qr with r ≤ n and k ≤ 2r−1 such
that

K = clos1

 k⋂
j=1

〈ϕj〉⊥
⋂(

r⋂
i=1

(
B2qiH

2(B(z))⊥
)) .

Here the functions ϕj are as in Theorem 5.1.

Proof. Let Ann(K) be the annihilator of K which is a weak-star closed
subspace of BMOA and is also invariant under T 2

B and T 3
B. If possible

assume that Ann(K) is invariant under TB, then this forces K to be invariant
under TB̄ which is a contradiction.

Now in view of Theorem 5.1, there exist B-inner functions q1, . . . , qr (r ≤
n) such that

(5.3) Ann(K) =
k∑
j=1

〈ϕj〉 ⊕

(
r∑
i=1

⊕B2qiBMOA(B(z))

)
∩BMOA.

Since qiBMOA(B(z)) is contained in qiH
2(B(z)), observe that Ann(K)

annihilates every element of the orthogonal complement k∑
j=1

〈ϕj〉 ⊕
r∑
i=1

⊕B2qiH
2(B(z))

⊥ .
Therefore,  k∑

j=1

〈ϕj〉 ⊕
r∑
i=1

⊕B2qiH
2(B(z))

⊥ ⊂ K.
and hence

(5.4) clos1

 k⋂
j=1

〈ϕj〉⊥
⋂(

r⋂
i=1

(
B2qiH

2(B(z))⊥
)) ⊂ K.

To establish the reverse inclusion, let f ∈ K. Then from (5.3), f will be

annihilated by
k∑
j=1
〈ϕj〉 ⊕

(
r∑
i=1
⊕B2qiBMOA(B(z))

)
∩BMOA.
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It follows from Lemma 3.4 that the annihilator of the closed subspace

clos1


 k∑
j=1

〈ϕj〉 ⊕
r∑
i=1

⊕B2qiH
2(B(z))

⊥


of H1 is
k∑
j=1
〈ϕj〉 ⊕

(
r∑
i=1
⊕B2qiBMOA(B(z))

)
∩BMOA. Therefore

f ∈ clos1


 k∑
j=1

〈ϕj〉 ⊕
r∑
i=1

⊕B2qiH
2(B(z))

⊥


and hence

K ⊂ clos1

 k⋂
j=1

〈ϕj〉⊥
⋂(

r⋂
i=1

(
B2qiH

2(B(z))⊥
)) . �

In the spirit of Corollary 4.4, we now work out subspaces of H1 which are
invariant under the backward shift operators S∗2 and S∗3.

Corollary 5.4. Let K be a closed subspace of H1 invariant under S∗2 and
S∗3 but not under S∗. Then there exists a unique inner function I, and

constants α, β such that K = 〈(α+ βz)I〉⊕ IH1
0 ∩H1. Here the symbol 〈 . 〉

denotes the linear span and bar represents the complex conjugate.

Proof. Taking B(z) = z in Theorem 5.3 we see that K is of the form:

(5.5) K = clos1

[
〈(γ + δz)I〉⊥ ∩ (z2IH2)⊥

]
.

Here γ, δ are complex numbers and ⊥ denotes orthogonal complement in H2.

It is easy to see that 〈(γ + δz)I〉⊥ =
(
IH2

0 ⊕ z2IH2 ⊕ 〈(α+ βz)I〉
)
∩ H2,

where α, β satisfy αγ + βδ = 0. Also, (z2IH2)⊥ =
(
IH2

0 ⊕ 〈I, Iz〉
)
∩H2.

Consequently, (5.5) simplifies to

K = 〈(α+ βz)I〉 ⊕ IH1
0 ∩H

1. �
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