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Chromatic graph homology for brace
algebras

Vladimir Baranovsky and Maksym Zubkov

To Victor Ginzburg

Abstract. We prove that chromatic graph homology for commutative
dg algebras, due to Helme-Guizon and Rong, can be extended to brace
algebras, at least when the graph is a planar tree. Examples of brace al-
gebras include the cochain algebra of a simplicial set and the Hochschild
cochain complex of an associative algebra.
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Introduction

Let G be a finite graph with the set of vertices V (G) and the set of edges
E(G). We assume that G has no loops (edges connecting a vertex with
itself) or multiple edges (any pair of vertices is connected by at most one
edge). We will also choose and fix a bijection of V (G) with {1, . . . , n}, where
n = |V (G)|, i.e a total order on V (G). For a graded commutative unital
algebra A which is flat over a coefficient ring k (in applications, Q,Z or Fp),
we follow [HGR] and define the chromatic graph homology complex CG(A)
in one of the two eqiuvalent ways:

(1) As a quotient of the tensor product of A⊗n⊗Λ by an ideal of relations
(all unlabeled tensor products are over k). Here Λ is the exterior
algebra over k generated by odd variables eα corresponding to the
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edges α ∈ E(G). The ideal of relations is generated by the elements

(a[i] − a[j])eα, where a[i] := 1⊗(i−1) ⊗ a ⊗ 1⊗(n−i) (similarly for a[j])
and the edge α connects vertices labeled by i and j. The quotient
CG(A) algebra carries a differential d which descends from the wedge
product with

∑
α∈E(G) eα.

(2) The same complex can be defined by considering subsets of edges
S ⊂ E(G). For such a subset S denote by G/S the graph obtained
by contracting all edges in S. The labeling on G induces one on G/S
if we assign to each vertex of G/S the label which is minimal across
all vertices of G that contract to it. Then the vertices of G/S are
labeled by a subset of {1, . . . , n}. If l(S) is the cardinality of V (G/S),

we can think of an elementary tensor product a1⊗ . . .⊗al(S) ∈ Al(S)
as built from the elements ai assigned to the vertices of G/S (due to
the total order on vertices of G/S induced from G by above labeling).

To emphasize this point of view we will write A⊗(G/S) for A⊗l(S).
Fixing also a linear ordering on E(G), we can define the element

eS ∈ Λ as wedge product of all eα for α ∈ S. Now set CG(A) to be
the complex

A⊗n →
⊕

α∈E(G)

A⊗(G/α) · eα →
⊕

S⊂E(G),|S|=2

A⊗(G/S) · eS →
⊕

S⊂E(G),|S|=3

A⊗(G/S) · eS → . . .

The diffferential d is induced by adding an edge α to a subset S and
replacing eS by eα ∧ eS , which is nonzero only if α /∈ S. As for the
factors involving tensor powers of A, we have two cases. In the first
case, l(S ∪α) = l(S) = l, i.e., α projects to a loop in G/S. Then we
use the identity map on A⊗l. In the second case, l(S ∪α) = l(S)− 1
if the projection of α to G/S connects two distinct vertices i and j.

Then we map A⊗(G/S) → A⊗(G/S∪α) by applying the product of A
to the tensor factors corresponding to i and j, and using the Koszul
sign rule when a permutation is used to move these terms to the left,
then multiply, then return to its appropriate position in A⊗(G/S∪α).
The Koszul sign rule and eα ∧ eβ = −eβ ∧ eα ensure that d2 = 0 .

If A =
⊕

j≥0Aj has a nontrivial grading, the complex CG(A) acquires a

bigrading in which a ∈ Aj is given bidegree (j, 0), each eα bidegree (0, 1)
and the differential d bidegree (0, 1). If A is a dg algebra with differential δ,
we can incorporate it into the complex C•G(A) by giving it a total differential
d = d0 + d1 where d0 is the Leibniz rule extension of δ to the tensor powers
of A and d1 is induced by edge contractions and multiplication as above.

In [BS] we have studied this complex and related it to the topology of
the graph configuration space MG of a compact k-oriented manifold M .
This space is the open complement in Mn of the diagonals corresponding
to those pairs of vertices which are connected by an edge in G. For the
complete graph G on n vertices this gives the usual configuration space of
M .
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If A is the cohomology algebra of M , the complex CG(A) is a page of the
Bendersky–Gitler spectral sequence that computes the homology of MG, cf.
[BG]. In [BS] higher differentials of this spectral sequence were found by
taking A to be a commutative dg algebra that computes the cohomology
of M . In characteristic zero one can take A to be the de Rham algebra
or Sullivan’s cochains. However, for k = Z,Fp such a choice may not be
possible for a general M . This motivates our attempt to define chromatic
graph homology for noncommutative algebras, such as the singular cochain
complex of M .

However, if A is just associative with no further structure, then d21 = 0
fails already for the connected graph with two edges: one needs at least the
identity abc = acb. Such algebras do present some interest as the corre-
sponding quadratic operad Perm is the Koszul dual of the operad PreLie,
cf. [LV]. But in the case of k-valued cochains we have an associative dg
algebra A which satisfies “commutativity up to homotopy”.

In more concrete terms, such A is an algebra over the surjection operad
X , cf. [MS]. We use only a part of this rich structure, the operations coming
from the second or the third piece of a filtration FjX on X , cf. loc. cit. The
suboperad F2X , isomorphic to the operad of (associative, rather than A∞)
braces Br, also acts on a Hochschild cochain complex of an associative dg-
algebra. Our main result extends the construction of graph homology to
the case when G is a planar planted tree (we recall the definitions in the
next section) and shows that a different choice of the root edge leads to
an isomorphic complex, although the isomorphism only preserves the total
grading, not the above bigrading.

Theorem 0.1. Let A be a flat k-algebra over the brace operad Br and G a
planar planted tree. There exists a sequence of operators di, i ≥ 0 on the
bigraded vector space CG(A), such that:

(1) d0 is the differential induced by the differential δ on A and d1 = d
is the map induced by contraction of edges and the multiplication of
A, according to the standard orientations on edges of a rooted tree.

(2) Each di has bidegree (1 − i, i) and for i > 0 it is represented by a
sum of operations which contract subtrees in G with i edges.

(3) The total operator d = d0 + d1 + d2 + . . . has square zero.
(4) Two complexes obtained from different choices of a root edge in the

same planar graph, are isomorphic via an isomorphism

Φ = 1 + Φ1 + Φ2 + · · ·
where each Φi has bidegree (−i, i), thus preserving the total grading
but not the bigrading.

We expect that CG(A) can be defined for a general graph G with a fixed
cyclic order of edges at every vertex. One possible strategy is to use maximal
(spanning) subtrees of G as in [CK], but at the moment we cannot resolve
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the issues related to the choice of a root edge on a planar tree. The resulting
complex would compute an appropriate truncated version of factorization
homology, [AFT], of the fat graph (or ribbon graph) associated to G.

One expected application is to the case when G comes from a knot dia-
gram on a surface, although we may have to assume that A is an E3 algebra
to ensure good behaviour under Reidemeister moves. Another case of inter-
est is, of course, A = C∗(M,k) when it should provide a complex computing
the homology H∗(M

G, k) of the graph configuration space MG (this is where
the truncated version is needed rather than full factorization homology). An
appropriate extension to the case of a“homotopy Frobenius” algebra would
provide homology groups similar to Khovanov homology.

Acknowledgements. We are grateful to Radmila Sazdanovic for useful
discussions, and the referee for helpful remarks.

1. Preliminaries on trees and braces

Let G be a planar tree, i.e., a finite connected contractible graph with
a cyclic order on edges incident to any vertex. We also assume that one
of the vertices is chosen as a root. This induces an orientation on edges,
pointing towards the root. Therefore every nonroot vertex has a number
of incoming edges (possibly zero) and one outgoing edge, and we obtain a
linear ordering on the incoming edges. For the root vertex we would also
like to choose a linear order on incoming edges which is compatible with the
cyclic order induced by the planar embedding. Graphically this is denoted
by adding a “half edge” or a “root edge” at the root vertex which does
not connect it with any of the vertices in V (G). Therefore, G acquires a
structure of a planar planted tree. We are going to define a complex using
this structure but it will turn out later that the complex is independent, up
to isomorphism, on the choice of a root vertex and a root edge.

In the example below we choose the vertex marked by 1 as a root, and
this gives a linear order on the edges coming into 3 (the edge from 4 is to
the left of the edge from 5). However, for the vertex 1 itself similar order
appears only from a choice of the root edge, as shown.

Figure 1.

One can define two partial orders on the set of vertices in a planar planted
tree. The vertical order is induced by the orientation of edges: we write
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j <v i if the oriented path from i to the root passes through j. In particular,
the root vertex is minimal with respect to the vertical order. The horizontal
order is defined on pairs of distinct vertices j, i which are not related by the
vertical order. Then the oriented paths from j and i to the root first meet
at a third vertex k (distinct from either of j, i, by assumption) and we write
j <h i if the path from j enters k to the left of the path from i.

By definition, two distict vertices are either related by the vertical order
or related by the horizontal order.

There is also another, total, ordering on the vertices on G which is a com-
mon refinement of the two partial orders. It can be obtained by embedding
G into R2 (in a way compatible with the planted planar structure) and tak-
ing its ε-neigbourhood with respect to the standard Euclidean metric. Then
we walk around the boundary clockwise, starting at the root and writing
down the vertices as we first encounter them in this clockwise trip. This
total order allows us to given a canonical labeling of vertices in G by the
elements of {1, . . . , n}, where n = |V (G)|. For instance, for the graph on
Figure 1 this gives the labeling as shown.

We also need another kind of planar planted trees, related to the operad
of (associative) braces Br. One way to describe the dg operad Br is to say
that for each n, the complex Br(n) has in homological degree −k the vector
space Br(n)k spanned by certain sequences u = (u(1), . . . , u(n + k)) with
u(i) ∈ {1, . . . , n}. Thus we can view such a sequence as listing the values of
a map u : {1, . . . , n+k} → {1, . . . , n}. The following conditions are imposed
on the sequence:

• The induced map u must be surjective, i.e., all elements of {1, . . . , n}
appear in the sequence of values,
• nondegenerate in the sense that u(i) 6= u(i+ 1) for any i,
• and “have complexity ≤ 2” in the sense that they do not contain a

subsequence of the form ijij for any pair of distinct values i, j.

Such sequences also admit a description in terms of brace trees. These are
planar planted trees with vertices colored either black or white. Further,
one chooses a bijection between the set of white vertices and {1, . . . , n} and
requires that no two black vertices are connected by an edge and that each
black vertex has at least two incoming edges (An alternative description,
which we do not use here, inserts a black vertex in the middle of each
edge in our description. Then black vertices with one incoming edges are
allowed and edges can only connect vertices of different colors, i.e., the graph
becomes bipartite).

Given such a brace tree, we can form a sequence of integers by starting
at the root vertex and going clockwise on boundary of the ε-neighborhood
as before. This time we ignore the black vertices completely and read the
labels off the white vertices any time we approach them, not just the first
time. Thus, i ∈ {1, . . . , n} will appear l+1 times if the corresponding vertex
of the graph has l incoming edges. This induces a bijection between the set
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of nondegenerate sequences of complexity ≤ 2 and brace trees. For instance,
the brace tree below corresponds to the sequence (123242).

Figure 2.

The original brace operations {x1;x2, . . . , xn}, see, e.g., [VG], correspond
either to the corolla on vertex 1 with edges coming from 2, . . . , n in the
natural order or, equivalently, to the sequence (12131 . . . 1n1).

We refer the reader to [MS] for the definition of the differential and the op-
eradic composition of Br(n). We only note here that the differential is given
by erasing values in a sequence, with a certain sign rule, and then omitting
those resulting sequences which are either nonsurjective or degenerate.

2. Brace operations from subtree contractions.

The differential of the original chromatic homology complex (with com-
mutative A) was built from edge contractions and multiplication of A. Sim-
ilarly, the differential of the complex we are about to define will contract
subtrees in G and use linear combinations of brace operations that we are
about to define.

Let S be a planar planted tree with k vertices (and thus k − 1 edges).
Define an element mS ∈ Br(k)k−2 by induction on k.

For k = 2 we have a single edge oriented from 1 to 2, and we send this to
the product operation, corresponding to the sequence (12) ∈ Br(2)0.

Assuming the operations mS for trees with < k vertices are linear com-
binations of brace tree operations with coefficients ±1, consider S with k
vertices. As explained in the previous section, these have a canonical label-
ing by {1, . . . , k} and we can view S as a result of grafting an edge k → l
on the tree S′ tree with vertices {1, . . . , k − 1}. By inductive assumption,

mS′ =
∑
R

(−1)RR
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where the sum is over brace trees R in Br(k − 1)k−3 and (−1)R is the sign
to be discussed below. Set

(1) mS =
∑
R

(−1)R
∑
j>jR

±R(j,k).

In the summation above, jR is the index marking the last occurence of l,
the vertex that receives the edge coming out of k. In other words, for the
sequence uR of the tree R we have uR(jR) = l and uR(j) 6= l if j > jR.
For such an index j the tree R(j,k) corresponds to a sequence in which the
single value x = uR(j) is replaced by a subsequence xkx. Geometrically
this amounts to grafting a edge from k to j in such a way that l <h k in
the horizonal order of the resulting brace tree. Observe that the result is
again a signed sum of distinct brace trees, thus allowing a further inductive
definition. The sign in the second summation is obtained by the rule similar
to the signs in the brace differential, cf. [MS]: we first perform substitutions
2 7→ 2k2 for all occurences of 2 after the last occurence of l, starting with the
plus sign and alternating as we move from left to right. Then we perform
substitions on 3, 4, and so one. In each case the first occurence of p has the
same sign as the last occurence of (p − 1) and for all other occurences of p
the signs alternate as we move from left to right. The value 1 is excluded
since one can show by induction that for all R it only occurs once, as the
first value in a sequence, and hence never appears after the last occurence
of l.

The simplest interesting case, shown below, is the corrolla with 4 vertices
and 3 edges (on the left). For the tree S′ on vertices 1, 2 and 3, the element
mS′ is a single brace tree corresponding to uR = (1232). We have two
substitutions 2 7→ 242 and one substitution 3 7→ 343, corresponding to the
brace trees on the right.

Figure 3.

The signs are explained by fact that first 4 is grafted on 2 with alternating
signs, then 4 is grafted on 3, and the first sign of grafing on 3 matches the
last sign of grafting on 2. We note that the new edge is never grafted on the
black vertex since that would give a brace tree of wrong degree.

Remark. It is also possible to give a nonrecursive formula for mT . It is a
signed sum over all brace trees S, such that:
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• S has a single black vertex which is its root.
• The left edge coming into the black vertex has the other end labeled

by 1, and the vertex 1 is a leaf (has no further incoming edges).
• The right edge coming into the black vertex can be viewed as a root

edge of a subtree which only has white vertices and label 2 at the
root.
• If x <v y in T then x <h y in S.
• If x <h y in T then it is not true that y <v x in S (which leaves
x <h y or x <v y or y <h x, all of which occur in Figure 3 for x = 3
and y = 4).

Now let S be a planar planted tree with n vertices and T ⊂ S its subtree
with k vertices. Note that T has a canonical choice of a root, the minimal
vertex in the canonical total ordering of S, and that the total ordering of
T is induced by that of S. In particular, T is a planted planar tree as well.
The contraction S/T is a tree with n− k + 1 vertices and a marked vertex
iT which is the image of T . The following is a key computational lemma in
our paper.

Lemma 2.1. The following equality holds in Br(n)n−3:

(2) d(mS) =
∑
T

mS/T ◦iT mT ,

where the sum runs over all subtrees T in S.

Proof. Denote by (mS′ ← k) the right hand side of (1) and proceed by
induction on k. It follows from the definitions that the difference

d(mS′ ← k)− (d(mS′)← k)

is a sum of terms of two types: in the first type a single element x = uR(j)
is replaced by kx and in the second type it is replaced by xk. Looking at
the signs we see that the term of the second type for index j cancels out
with the term of the first type for index (j+ 1) (see [GLT] for a very similar
definition and exactly the same type of cancellation). Therefore the only
two terms that survive are the ones where k is inserted either at the very
end, or right after the last occurence of l = uR(jR).

In the terms of the right hand side in (2), the first of the surviving terms
corresponds to the subtree T on the vertices {1, . . . , k−1} and the second to
the subtree on the two vertices {k, l}. In all other terms on the right hand
side of (2), the vertex k is either grafted on the nontrivial subgraph T , or on
the contracted graph S/T . The sum of these terms is exactly (d(mS′)← k),
by inductive assumption. �

3. Chromatic homology complex for a brace algebra A.

Fix an algebra A over the brace operad Br. In particular, A is still an
associative dg algebra. The total space of the chromatic homology complex
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is still defined as

CG(A) =
⊕

S⊂E(G)

A⊗(G/S) · eS .

Note that in our situation G is a planar planted tree, hence the set of edges
has a canonical ordering as explained before and the wedge product eS of all
odd generators eα over α ∈ S is well defined (since S has induced ordering).
We give CG(A) the bigrading in which the first component is induced by
the grading of A, and the second component by the grading of the exterior
algebra on eα. Hence, each eα has bidegree (0, 1). We would like to define
the differential

d = d0 + d1 + d2 + . . .

where each di has bidegree (1 − i, i). The operator d0 is just the natural
extension of the differential δ on A to its tensor products. The operator di
for i ≥ 1, is given by the sum

∑
mT · eT where the sum is over (connected)

subtrees T with i edges. Each terms mT · eT acts as follows: eT acts by
the left wedge product and mT sends A⊗(G/S) to A⊗(G/S∪T ) if the edges
of S and T are disjoint, and to zero otherwise. Observe that, since G/S
is also a tree, in the first case T projects isomorphically onto its image in
G/S. Hence we can apply the signed sum of brace operations mT from

the previous section, to map A⊗(G/S) to A⊗(G/S∪T ). This also involves the
Koszul sign rules: first the arguments of mT are brought to the first (i+ 1)
positions by a permutation, then mT is applied, then its output is returned
to the appropriate position, marked by the vertex of G/S ∪ T to which T
was contracted. The properties (1)–(2) of our main Theorem 0.1 hold by
construction and property (3), asserting that d2 = 0, is a reformulation of
Lemma 2.1.

When A is a commutative dg algebra this reduces to the standard chro-
matic homology complex of [HGR].

4. Dependence on the choice of the root edge.

He we prove the last part of the main result that tells what happens when
a root vertex/rood edge of G changes. It suffices to consider the case when
the old root a and the new root b are connected by an edge β of G, and the
root edges are chosen in such a way that β is maximal in the linear order of
edges coming into a, while the same β is minimal in the linear order of edges
coming into b. In other words, we are moving the root edge counterclockwise
by one edge of G:
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In the example above a = 1 and b = 3 (for comparison purposes we use the
labeling induced by the root at a), and the new root edge is marked by a
dotted line.

It is clear that composition of such elementary root edge moves allows to
compare two arbitrary root edge choices.

To simplify notation, let (Ca, da), (Cb, db) be the chromatic homology
complexes induced by the choices of root at a and b, respectively.

Proposition 4.1. There exists an isomorphism of complexes

Φ : (Ca, da)→ (Cb, db)

such that

Φ = 1 + Φ1 + . . .+ Φn−1,

the operator Φi of bidegree (−i, i) is given, similarly to d, by the sum
∑

T hT ·
eT over subtrees T with i edges, and each hT is a linear combination of brace
operations in Br(i+ 1)i (corresponding to trees with white vertices only).

Proof. The definition of hT is very similar to that of mT : we start with a
single edge tree on the edge β connecting a = 1 and b.

For this initial tree we set mβ to be the brace tree with a single edge
and a as a root. This corresponds to the brace operation given by the
sequence (aba). Next, we add the other vertices of the graph T , following
their canonical order, and use the same substitution rules x 7→ xkx (and the
same sign rules) as for mT .

We need to show that Φda = dbΦ on each term A⊗(G/S)eS . Since hT1◦mT2

on A⊗(G/S) is only nonzero when the sets of edges in T1, T2, S are pairwise
disjoint, it suffices to look at the case when S is empty and T1 = G/T2. The
same consideration applies when looking at the terms of the type mT1 ◦hT2 .
Since in each degree k we need to show that∑

i

dbi ◦ Φk−i =
∑
j

Φj ◦ dak−j

and in degree 0 we have da0 = db0 (both are just the Leibniz rule extension
of the differential on A), the required identity boils down to the equation in
the brace operad for any G with k vertices

d(hG) =
∑
T⊂G

(hG/T ◦iT mT −mG/T ◦iT hT )

where the sum is over all subtrees T with positive number of edges. We note
that hT is zero if T does not contain α0 and hG/T is zero if T does contain
α0 (then on G/T there is no change of the root edge and root vertex). Hence
of the two terms in the parenthesis only at most one will be nonzero, and
the identity becomes similar to that of Lemma 2.1. The rest of the proof
repeats the one given in that lemma and we omit it. �
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5. Further questions and remarks

We outline below our motivation for the main result of the paper and also
indicate some related open questions.

(1) It would be desirable to understand the automorphisms Φ induced by
a change of planted root structure, from the point of view of higher
operads of Batanin or in the equivalent language of∞-operads. One
easy observation is in the case of a tree with two vertices, labeled
by 1 and 2. Then Φ = 1 + Φ1 with Φ1 = (121), when we go from
the complex built from 1 as a root, to the complex built from 2 as
a root. However, if we go back, then the same recipe tells us to use
the sequence (212) instead of (121). Thus, the two isomorphisms
are not mutually inverse, although when A is an algebra over the E3

operad F3X , they are related by an operation (1212).
(2) Suppose we want change the planar structure on a graph and A is

an algebra over F3X , the nondegenerate surjections of complexity
≤ 3. This corresponds to sequences which are allowed to contain
subsequences ijij with distinct i, j but not subsequences ijiji. Note
that these no longer correspond to any brace trees. In such a setting,
we have a strong computational evidence (about 40 examples so far)
that one can define similar isomorphisms Ψ = 1+Ψ2+Ψ3+ . . . relat-
ing the complexes of a rooted tree with different planar structures.
It suffices to consider the case when one exchanges the order of two
neighboring incoming edges of a vertex and keeps the planar struc-
ture elsewhere. Furthermore since we can change the root vertex
and the root edge, we can assume that the two edges being swapped
are the two leftmost incoming edges of the root vertex. Similarly to
the case of changing the planted tree structure, swapping the edges
twice does not give an identity isomorphism, but something that is
conjecturally homotopic to identity if A has a structure of an algebra
over the operad F4X . This may be another indication of relevance
of homotopy operads.

(3) A possible way to extend the construction to arbitrary graphs is to
consider a graph with a total ordering on vertices and to orient the
edges so they point from the larger vertex to the smaller one. In
this case it is possible that contraction of an edge (or a subtree) will
reverse orientation on the remaining edges, as one can see in the sim-
ple case of a graph with vertices 1, 2, 3 and the two edges contecting
3 with 1 and 3 with 2. An easy computation shows that contraction
of edges only will lead to a square zero operator precisely when the
graded algebra associative A (without any further structure) satisfies

abc = (−1)deg(b) deg(c)acb.

This condition is certainly observed for commutative A, but it is
slightly weaker than commutativity. It corresponds to algebras over
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a quadratic operad Perm (which in degree n has the standard n-
dimensional permutation module over Σn). This operad is Koszul
dual to the operad PreLie, cf. [LV]. By the above comment, we
have the obvious map Perm → Com to the operad of commutative
algebras, since every commutative algebra is also a Perm algebra.

By the general theory, Perm has a minimal resolution

Ω(sPreLiec)→ Perm

by the cobar construction on the suspension of the cooperad dual to
PreLie. Since the full surjection operad X resolves Com in character-
istic zero, we have a covering morphism Ω(sPreLiec)→ X , which is
uniquely determined by a twisting cochain sPreLiec → X , see [LV].
Once we remember that the elements of PreLiec are represented by
nonplanar rooted trees, this becomes very similar to the correspon-
dence T 7→ mT proved earlier. Note that Lemma 2.1 is more or less
the defining identity of a twisting cochain, but in that setting we
choose a planar planted structure on a nonplanar rooted tree. Such
as choice allows to select a cochain with values in Br ⊂ X .

On the other hand, it is possible that a twisted cochain

sPreLiec → X
only exists over Q (as a result of averaging over different additional
structures on a nonplanar rooted tree) and/or takes values in sur-
jections of complexity ≤ 3 rather than Br.

(4) It appears that the nerve of the poset operad on complete graphs is
also relevant to our construction, but we were not able to make this
connection explicit.

(5) When A is the associative algebra of singular cochains on a topologi-
cal space M , the complex CG(A) and its differential can be obtained
by a standard homological perturbation theory argument from the
Eilenberg–Zilber contraction of the standard simplicial object asso-
ciated with the graph configuration space MG ⊂M×n. See [BS] for
definitions and [BZ] for the precise formulation of the result.

(6) In the commutative case, chromatic graph homology of a general
graph can — in some sense — be reduced to the case of a tree
by considering spanning trees (i.e., maximal tree subgraphs in a
graph). See, for example, the construction of [CK] in the case of an
alternating link. At the moment we don’t know how do generalize
this approach due to the need to select the planted root structure in
our approach.
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