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On certain sequences in Mordell–Weil
type groups

Stefan Barańczuk

Abstract. In this paper we investigate divisibility properties of two
families of sequences in the Mordell–Weil group of elliptic curves over
number fields without complex multiplication. We also consider more
general groups of Mordell–Weil type.

M. Ward ([W], Theorem 1.) proved that a linear integral recurring se-
quence of order two which is not nontrivially degenerate has an infinite num-
ber of distinct prime divisors, where by a divisor of a sequence we mean a
positive integer dividing some term of the sequence. Then L. Somer ([Som])
using a result by A. Schinzel ([Schi2]) determined those recurrences that
have almost all primes as divisors.

The general terms of nondegenerate linear recurring sequences of order
two are of the form

αnA− βnB
and the general terms of trivially degenerate linear recurring sequences of
order two are of the form

αn(A+ nB).

In the present paper we investigate analogues of such sequences in Mor-
dell–Weil group of elliptic curves:

Let F be a number field, E/F an elliptic curve without complex multipli-
cation, P,Q ∈ E(F ) and φ, ψ be isogenies (since we deal with curves without
CM the isogenies are simply endomorphisms defined by the multiplication
by rational integers; see Remark 5). We investigate sequences:

(1) Wn = φnP − ψnQ

and

(2) Wn = φn(P + nQ).

In this setting a divisor of a sequence is a prime ideal v of good reduction
such that for some term Wn in the sequence we have Wn = 0 mod v; see
Remark 4.
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In the paper, “almost all primes” means “all but finitely many primes”;
see Remark 6.

For us a sequence of either type is degenerate when the set of its terms is
finite.

Let us first state our analogue of Ward’s result:

Proposition 1. Let (Wn) be nondegenerate or one of its terms be equal to
0. Then (Wn) has an infinite number of distinct prime divisors.

Proof. If one of the terms equals 0 then there is nothing to prove. So
assume that the set of the terms of the sequence is infinite. The assertion
is an immediate corollary of Siegel’s theorem on S-integer points. Indeed,
if the set S of distinct prime divisors of (Wn) were finite, then (Wn) would
be finite, since for a prime v of good reduction Wn = 0 mod v if and only
if the denominator of the x-coordinate of Wn is divisible by v. �

Now we turn to our analogues of Somer’s results. In their proofs we use
several times the following proposition:

Proposition 2.

(a) For all but finitely many primes v the induced reduction map is in-
jective when restricted to the torsion part of the Mordell–Weil group.

(b) If P ∈ E(F ) is nontorsion then for every prime number l there exist
infinitely many primes v such that the order of P mod v is divisible
by l and infinitely many primes v such that the order of P mod v
is not divisible by l .

Proof. (a) Well known for elliptic curves (see [SilAEC], Proposition 3.1).
For general Mordell–Weil type groups (cf. Remark 3) see Lemma 3.11 of
[BanGK].

(b) For the proof of this statement for Mordell–Weil type groups see
[Bar1], Theorem 5.1. If the reader is focused on elliptic curves, better refer-
ence is [Sil], Proposition 10 (for elliptic curves over Q) and [CH] (for elliptic
curves over arbitrary number fields). For abelian varieties this result is
proved in [Pink], Corollary 4.3. �

Theorem 3. Let P,Q ∈ E(F ) and φ, ψ be rational integers. Define

Wn = φnP − ψnQ.
The following are equivalent:

• For almost every v there exists a natural number nv such that

(3) Wnv = 0 mod v.

• There exists a natural number n such that

Wn = 0

or we have the following particular case: P,Q are nontorsion, φ, ψ
are nonzero, φ 6= ±ψ, the set of prime divisors of φ equals the set
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of prime divisors of ψ and there exists a natural number n such that
Wn is a torsion point killed by some power of gcd(φ, ψ).

Proof. (⇒) First consider simple cases. If both φ, ψ equal 0 the assertion is
obvious. If both P,Q are torsion points, then the assertion follows immedi-
ately from Proposition 2(a). Similarly we deal when φ = 0 and Q is torsion
or ψ = 0 and P is torsion. So suppose that φ 6= 0 and P is nontorsion. If
ψ = 0 or Q is torsion, then fix a prime number l, coprime to φ if ψ = 0 or
coprime to both the order of Q and to φ if Q is torsion. By Proposition 2(b)
there exist infinitely many v’s such that l divides the order of P mod v,
thus the condition (3) is not met. Summarizing, we are reduced to proving
the Theorem when P,Q are nontorsion and φ, ψ 6= 0.

By (3) and the Theorem in [Bar2] there exist natural numbers k, l and
nonzero integers a, b such that

(4) φkP = aQ and ψlQ = bP,

and without loss of generality we can assume that l = k. Indeed, suppose
that k > l. Then multiplying ψlQ = bP by ψk−l we get ψkQ = ψk−lbP and
ψk−lb is our new b.

Now (4) immediately implies that abQ = φkψkQ thus

(5) ab = φkψk

since Q is nontorsion.
Let l by any prime number. By Proposition 2(b) there exist infinitely

many v’s such that l divides the order of Q mod v. But multiplying (3) by
φk and using (4) we get

(φnva− ψnvφk)Q = 0 mod v

for some natural nv. It means that l divides φnva − ψnvφk. Since l was
arbitrary we get by [Schi1] that there exists a natural number s such that

(6) φsa− ψsφk = 0

and analogously we have

(7) ψtb− φtψk = 0,

for some natural number t, which together with (5) gives

φt−s = ψt−s.

Hence we have three possibilities: φ = ψ or φ = −ψ and t − s is even or
t − s = 0; the first two imply the assertion of the theorem immediately.
Indeed, if φ = ψ then by (6) we have a = φk, thus φkP − ψkQ = 0 by
(4). If φ = −ψ then again by (6) and (4) we get either φkP − ψkQ = 0 or
φk+1P − ψk+1Q = 0, depending on the parity of the numbers s, k.

So suppose that φ 6= ±ψ and t − s = 0. Since a = ψsφk−s and b =
φsψk−s by (6) and (7), thus by (4) φkP = ψsφk−sQ and ψkQ = φsψk−sP
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so φk(φsP − ψsQ) = 0 and ψk(φsP − ψsQ) = 0 hence by the Euclidean
algorithm gcd(φk, ψk)(φsP − ψsQ) = 0.

The exponent s is unique. Indeed, suppose that there are two numbers
s′′ > s′ such that both φs

′
P − ψs

′
Q , φs

′′
P − ψs

′′
Q are torsion. Then

(ψs
′′ − φs′′−s′ψs′)Q = φs

′′−s′(φs
′
P − ψs′Q) − (φs

′′
P − ψs′′Q) is torsion as

a linear combination of two torsion points. But ψs
′′ − φs

′′−s′ψs
′ 6= 0, a

contradiction.
Let us denote T = φsP −ψsQ, η = gcd(φ, ψ). We have shown above that

ηkT = 0.
Now let us consider the case when the set of prime divisors of φ does not

equal the set of prime divisors of ψ. Without loss of generality we can assume
that a prime number l divides φ and does not divide ψ. By Proposition 2(b)
there are infinitely many primes v such that l divides the order of Q mod v.

Suppose that the assertion of the theorem does not hold, i.e., Wn 6= 0
for every natural n, thus for each Wn there might exist only finitely many
primes v such that Wn = 0 mod v. Hence the numbers nv are greater then
max(s, k) for almost all v’s chosen above.

So we restrict our attention to those nv’s. Denote α = nv−s and compute:

ηs+αψs(φα − ψα)Q = ηs+α(φαT + ψs(φα − ψα)Q)

= ηs+α(φα(φsP − ψsQ) + (φαψs − ψs+α)Q)

= ηs+α(φs+αP − ψs+αQ)

= ηs+α(φnvP − ψnvQ)

= 0.

But that is a contradiction to the choice of the order of Q, since l does not
divide ηs+αψs(φα − ψα).

(⇐) We only have to consider the particular case, i.e., when the numbers
φ, ψ have the same set of prime divisors and

(8) φk(φnP − ψnQ) = 0.

Let us factorise the order of Q mod v as m1m2, where all prime numbers
dividing m1 divide ψ and m2 is coprime to ψ. Let d be a natural number
such that m1 divides both φk+d and ψk+d and such that the order of φ

ψ in

the group (Z/m2Z)× divides k + d. Then

(9) (φk+d − ψk+d)Q = 0 mod v.

Now multiplying (8) by φd and (9) by ψn and summing the results we get

φn+k+dP − ψn+k+dQ = 0 mod v

so we put nv = n+ k + d. �

Proposition 4. Let P,Q ∈ E(F ) and φ be an integer number such that
no power of φ kills P (in particular φ 6= 0 and P is nonzero). Define
Wn = φn(P + nQ). The following are equivalent:
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• For almost every v there exists a natural number nv such that

(10) Wnv = 0 mod v.

• Either P,Q are torsion and there is a natural number n such that
Wn = 0 or P,Q are nontorsion and there exist a nonzero integer a
and a natural number n such that φnP = aQ.

Proof. (⇒) If both P,Q are torsion then we use Proposition 2(a). If P is
torsion andQ nontorsion then fix a prime number l coprime to φ and dividing
the order of P . By Proposition 2(b) there are infinitely many primes v such
that l does not divide the order of Q mod v, thus the condition (10) is not
met by Proposition 2(a). Hence we can assume that P is nontorsion. By
[Bar2] there exist an integer a and a natural number n such that φnP = aQ;
in particular it implies that Q is nontorsion and a 6= 0.

(⇐) We only have to consider the case when P,Q are nontorsion. Suppose
that φnP = aQ for a nonzero integer a and a natural number n. Factorise the
order of Q mod v as m1m2, where all prime numbers dividing m1 divide φ
and m2 is coprime to φ. Since φn is coprime to m2 it is invertible in the group
(Z/m2Z)×. Choose a natural number nv > n such that nv ≡ −a(φn)−1

mod m2 and such that m1 divides φnv−n. Now we have

φnv(P + nvQ) = φnv−n(a+ φnnv)Q = 0 mod v. �

Remark 1. The assumption in Proposition 4 that no power of φ kills P
cannot be dropped. Let P be a nonzero torsion point, φkP = 0 for some
φ 6= 0 and Q be a nontorsion point. Then for every v the condition (10) is
met for nv equal to the product of k and the order of Q mod v, but the
assertion of the Theorem does not hold.

Remark 2. Proposition 4 with φ = ±1 is an example of results known as
detecting linear dependence in Mordell–Weil groups of elliptic curves over
number fields addressed recently in numerous papers; we do not intend to
discuss them here and refer to [Bar2] instead.

Remark 3. The following groups:

(1) R×F,S , S-units groups, where F is a number field and S is a finite set
of ideals in the ring of integers RF ,

(2) A(F ), Mordell–Weil groups of abelian varieties over number fields F
with EndF̄ (A) = Z,

(3) K2n+1(F ), n > 0, odd algebraic K-theory groups,

mimic the properties of Mordell–Weil groups of elliptic curves without CM
we used in the proof of Theorem 3 (see, e.g., [Bar2] for details), so we can
obtain similar results for them. In particular, we get identical results for
S-units groups (changing the additive notation to multiplicative) and for
abelian varieties. For the K-theory groups case we can repeat part of the
proof and obtain the following slightly weaker:
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Let F be a number field and B(F ) be an odd algebraic K-theory group
K2n+1(F ), n > 0. Let P,Q ∈ B(F ) and φ, ψ be rational integers. Sup-
pose that for almost every prime v there exists a natural number nv such
that

φnvP − ψnvQ = 0 mod v.

Then there exists a natural number n and a torsion point T ∈ B(F ) of order
dividing some power of gcd(φ, ψ) such that φnP − ψnQ = T . In particular
if gcd(φ, ψ) = 1 or more generally if gcd(φ, ψ) is coprime to the order of
B(F )tors then

φnP − ψnQ = 0.

As for the proof of Proposition 4, it can be repeated in its entirety for the
groups we consider thus we obtain the same result for them.

Remark 4. Consider an elliptic curve E over Q and denote the positive
square root of the denominator of x-coordinate of a point P ∈ E(Q) by DP .
For a prime number l of good reduction the condition “P = 0 mod l” equals
the condition “l divides DP ”. Sequences DnP are known under the name of
elliptic divisibility sequences. K. Stange ([Sta]) initiated a study of elliptic
nets, i.e., their two-parameter generalizations DnP+mQ. The sequences we
investigate are particular one-parameter subsequences of Stange’s nets.

Remark 5. The methods we use in our proofs do not seem to work for
curves with complex multiplication, even if we restrict φ and ψ to be ra-
tional integers. Indeed, our proofs depend on the fact that if the ring of
endomorphisms equals Z then knowing the order of a point P we know the
order of αP for any endomorphism α.

Remark 6. In the paper, “almost all primes” means “all but finitely many
primes” while it could read “all but a set of density 0”. However in our
proofs we rely on Theorem 5.1 of [Bar1]. This theorem states “there are
infinitely many primes” but its proof shows that there is a positive density
set of such primes.
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