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Minimal growth harmonic functions on
lamplighter groups

Itai Benjamini, Hugo Duminil-Copin,
Gady Kozma and Ariel Yadin

Abstract. We study the minimal possible growth of harmonic func-
tions on lamplighters. We find that (Z/2) oZ has no sublinear harmonic
functions, (Z/2) o Z2 has no sublogarithmic harmonic functions, and
neither has the repeated wreath product (· · · (Z/2 o Z2) o Z2) o · · · o Z2.
These results have implications on attempts to quantify the Derriennic–
Kaimanovich–Vershik theorem.

Contents

1. Introduction 834

1.1. Notation 836

1.2. Harmonic growth definitions 837

1.3. Lamplighters 838

2. Proof of Theorem 2 839

2.1. Preliminaries 840

2.2. The main step 844

2.3. Harmonic growth with Z2 base 850

3. Iterated wreath products 851

4. Open questions 852

Appendix A. Entropy Bound 853

A.1. Entropy 853

References 857

Received December 31, 2016.
2010 Mathematics Subject Classification. 60J45, 30F15, 05C63.
Key words and phrases. Harmonic functions, random walk, lamplighter, wreath prod-

uct, entropy, Kaimanovich–Vershik.
HDC was funded by the IDEX chair of Paris-Saclay as well as the Swiss NSF and the

NCCR SwissMap. GK is partially supported by the Israel Science Foundation (grant no.
1369/15) and by the Jesselson Foundation. AY is partially supported by the Israel Science
Foundation (grant no. 1346/15).

ISSN 1076-9803/2017

833

http://nyjm.albany.edu/nyjm.html
http://nyjm.albany.edu/j/2017/Vol23.htm


834 I. BENJAMINI, H. DUMINIL-COPIN, G. KOZMA AND A. YADIN

1. Introduction

The celebrated Derriennic–Kaimanovich–Vershik theorem states that for
any finitely generated group G and any set of generators S, the Cayley graph
of G with respect to S has bounded nonconstant harmonic functions if and
only if the entropy of the position of a random walk on the same Cayley
graph at time n grows linearly with n [7, 12]. This result was a landmark
in the understanding of the Poisson boundary of a group, i.e., the space of
bounded harmonic functions.

The “if” and the “only if” directions of the theorem are quite different in
nature. The first direction states that once the entropy is sublinear the graph
is Liouville, i.e., does not admit a nonconstant bounded harmonic function
(this direction was proved earlier [2]). This direction may be quantified,
e.g., one may show that there are no harmonic functions growing slower
than

√
n/H(Xn) where H(Xn) is the entropy of the random walk. This is

a known fact [8, 3] but for completeness we give the proof in the appendix.
In this paper we wish to study the question “how tight is the bound√
n/H(Xn)?” As a simple example let us take the lamplighter group

(Z/2) o Z

(precise definitions will be given later, §1.3). Our first result is the following:

Theorem 1. The lamplighter group (Z/2) o Z with the standard generators
does not support any nonconstant harmonic function h with h(x) = o(|x|)
where | · | is the word metric.

It is well-known and easy to see that the entropy is
√
n and hence the

bound
√
n/H(Xn) gives only that harmonic functions growing slower than

n1/4 are constant. Thus on the lamplighter group the bound
√
n/H(Xn) is

not tight. As Theorem 1 is quite simple but still instructive, let us sketch
its proof.

Proof sketch. Let us use the generators “move or switch,” i.e., if we write
any element of (Z/2) oZ as a couple (ω, n) with ω : Z→ Z/2 and n ∈ Z then

the generators are {(10, 0), (~0, 1), (~0,−1)}. Examine two elements g1, g2 ∈
(Z/2) oZ which differ only in the configuration at 0, i.e., if gi = (ωi, ni), then
n1 = n2 and ω1(k) = ω2(k) for all k 6= 0.

Let Xi
n be two lazy random walks (with laziness probability 1

4) starting
from gi, and couple them as follows:

• Changes to the Z component are done identically so that the Z
components of X1

n and X2
n are always identical.

• Changes to the configuration are also done identically except when
the walkers “are at 0” (i.e., their Z component is 0) and their config-
urations are still different. In this case, if one walker switches (i.e.,
goes in the (10, 0) direction) then the other walker stays lazily at its
place, and vice versa.
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• In all other cases, the moves are done together.

It is now clear that each time both walkers are at 0 they have a probability
1
2 to “glue,” i.e., to have X1

n = X2
n, and when this happens this is preserved

forever. For any r ∈ N, define Tr to be the first time the walkers are at
±r. The fact that h is harmonic means that h(Xi

n) are martingales, and
because h is bounded for all time up to Tr we may use the Optional Stopping
Theorem to claim that

h(gi) = E(h(Xi
Tr)).

Let E be the gluing time. Then we can write

h(g1)− h(g2) = E(h(X1
Tr)− h(X2

Tr))

= E
(
(h(X1

Tr)− h(X2
Tr))1{E < Tr}

)
+ E

(
(h(X1

Tr)− h(X2
Tr))1{E ≥ Tr}

)
.

The first term is simply 0, as if the walkers glued before Tr then X1
Tr

= X2
Tr

.
The second term is bounded by

P(E ≥ T ) · 2 max{h(g) : g can be the value of XTr}.
The probability is ≤ C/r from known properties of random walk on Z. On
the other hand, for r > max{|suppωi|, |ni|} the only g that can be values of
XTr have distance ≤ 5r from the identity of (Z/2) oZ and by the sublinearity
of h we get h(g) = o(r). We get that

h(g1)− h(g2) = 0 +
C

r
o(r)

r→∞−−−→ 0

and we get that h((ω, n)) does not depend on the value of ω(0). Translating
we get that it does not depend on the value of any lamp, i.e., on any ω(i).
This means that it is a function of n only, which is harmonic, implying that
it is a harmonic function on Z. But a harmonic function on Z (with the
generators ±1) is linear, which can be proved by a simple induction. Thus,
h is constant. �

The result is sharp since for the lamplighter there is an obvious linear
growth harmonic function: the Z component. We remark also that, in
general, every finitely-generated group supports a nonconstant linear growth
harmonic function. See, e.g., [13, 20]. It is also instructive at this point to
compare the lamplighter to nilpotent groups. Similarly to the lamplighter,
nilpotent groups do not support any nonconstant sublinear growth harmonic
functions (see, e.g., Remark 22, below). However nilpotent groups have
much lower entropy: log n vs.

√
n for the lamplighter.

Our main result concerns wreath products with Z2, or more generally any
recurrent group.

Theorem 2. Let L be a finitely generated group and µ a symmetric measure
over a finite set of generators such that L supports no µ-harmonic subloga-
rithmic nonconstant function. Let G be a recurrent group with respect to a
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measure ν. Let ν o µ be the “move or switch” (each with probability 1
2) mea-

sure on L oG. Then L oG does not support any ν oµ-harmonic sublogarithmic
nonconstant function.

In particular, this means that repeated wreath products with Z2, i.e.

(· · · (Z/2 o Z2) o Z2) o · · · o Z2︸ ︷︷ ︸
k times

all do not support any sublogarithmic nonconstant harmonic functions (with
respect to the natural set of generators). As we will see below (Proposi-

tion 16), this group has entropy n/ log(k) n. Heuristically this says that the
Derriennic–Kaimanovich–Vershik theorem cannot be quantified in the loga-
rithmic scale, as these examples have entropy extremely close to linear, but
no corresponding harmonic functions (which should be extremely close to
constant). We remark that constructing nonconstant harmonic functions
growing logarithmically (which shows that Theorem 2 is sharp) is easy, and
we do it in §2.3.

One may consider a similar statement for wreath products with Z. Even
for the second simplest case, Z oZ, getting the sharp order of growth (which

is |x|2/3(log log |x|)1/3) is significantly harder. We plan to tackle it in a
future paper. Our methods can be used for some of the analysis, but these
methods require information regarding the speed of the random walk on the
lamp group, and thus the analysis is more delicate.

It is not known whether the Liouville property depends on the choice of
generators and this is a major open problem. Similarly, we do not know
whether claims such as “G does not support a nonconstant sublinear har-
monic function” are group properties. As this is not the focus of the paper,
we will always work with the most convenient system of generators. The-
orem 1 can be strengthened to hold for any symmetric finitely-supported
generating measure, and Theorem 2 may be strengthened so that the con-
clusion on iterated wreath products would hold for any set of generators,
but we will not do it here.

1.1. Notation. For a graph G, we write x ∼ y to denote two adjacent
vertices in G. The graph metric will be denoted by dist(·, ·). If G is a group,
1G denotes the unit element in G. For two random variables X and Y the
notation X ∼ Y will mean that X and Y have the same distribution — we
hope no confusion will arise from the two different uses of ∼.

All our groups will be finitely generated, and we will not repeat this fact.
Suppose therefore that G = 〈S〉 is generated by a finite set S such that
S = S−1, (i.e., S is symmetric). In this case it is natural to consider the
Cayley graph of G with respect to S, and the graph distance in this graph
as the metric on G (this is also known as the word metric on G with respect
to S). For every g ∈ G we denote |g| = dist(1G, g) (both dist and | · |
depend on the group G and on the generating set S but we will suppress it
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in the notation). Let µ be a symmetric probability measure on S; that is,
µ(s−1) = µ(s) for all s ∈ S. Then µ induces a Markov chain on G, namely
the process which transitions from x to xs with probability µ(s). We call
this process the (right) random walk on G, or, if we want to stress the role
of µ, the µ-random walk. The law of the random walk on G started from
x ∈ G is denoted by Px (again, dependence on G and S is suppressed in the
notation). When we refer to the walk started at 1G, we omit the reference
to the starting point, i.e., P = P1G .

We use C and c to denote positive constants, depending only on the group
and the set of generators in question, and, if there is a specific harmonic
function studied, on it too. The value of C and c may change from formula
to formula or even within the same formula, and we will also often omit
sentences like “there exists a constant C such that” from beginnings of
lemmas. The letter C will be used for constants which are large enough, and
c for constants which are small enough. We will denote f ≈ g if cg ≤ f ≤ Cg.

We denote the indicator function of a set E by either 1E or 1{E}.

1.2. Harmonic growth definitions. For a group G and a finitely-sup-
ported measure µ on G, a function h : G → R is called µ-harmonic if for
every x ∈ G, h(x) = Ex[h(X1)], where (Xn)n≥0 is a µ-random walk on G.
In other words, h(Xn) is a martingale. If µ is clear from the context we will
just call such functions harmonic.

The harmonic growth of a graph G is the smallest rate of growth of a
nonconstant harmonic function on G. (In this paper we only work with
Cayley graphs, so we will consider growth around 1G.) For a monotone
nondecreasing function f : N→ [0,∞), we say that G has harmonic growth
at least f (this is denoted by har(G) � f — note that we do not claim
har(G) is some well-defined function, this is just a shorthand notation), if
every harmonic h : G → R, with |h(g)| = o(f(|g|)) is constant. The graph
G is said to have harmonic growth at most f if there exists a harmonic
function h : G → R such that |h(g)| < Cf(|g|) for some constant C > 0
(this is denoted by har(G) � f). If the harmonic growth of G is at least f
and at most f then we say that G has harmonic growth f , and denote this
har(G) ≈ f . Note that the harmonic growth of a graph is an asymptotic
notion. In particular, it depends only on the behaviour of f at infinity. Let
us mention a few properties of the harmonic growth:

(1) The harmonic growth of a Cayley graph is always at most linear since
every such graph possesses a linearly growing harmonic function [13,
20].

(2) The harmonic growth of the group Zd is linear (the function

h(x1, . . . , xd) = x1

is harmonic, and there are no nonconstant sublinear harmonic func-
tions).
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1.3. Lamplighters. We now define the groups that are of interest to us,
as well as their natural set of generators. These are called wreath products
or generalised lamplighters, with the lamplighter group being the simplest
example, (Z/2) o Z.

Let L,G be groups. The wreath product L oG is the semi-direct product
LG o G, where LG is the group of all functions from G to L which are 1L
for all but finitely many elements of G (such a function is said to have finite
support) and where G acts on LG by translations. We will denote elements
of L oG by (ω, g) with ω ∈ LG and g ∈ G so the product is

(ω, g)(ξ, k) = (ω(·)ξ(g−1·), gk).

For an element (ω, g) ∈ LoG, and k ∈ G, we call g the lamplighter (position),
and ω(k) is the (status of the) lamp at k. The group G is sometimes called
the base group and the group L the group of lamps.

For ` ∈ L, define the delta function δ` ∈ LG by

δ`(g) =

{
` if g = 1G

1L otherwise.

Let also 1 denote the function which is constant 1L. Let S be a generating
set of L and U a generating set of G. Consider the set

Γ = {(δs, 1) : s ∈ S} ∪ {(1, u) : u ∈ U} .

It is not difficult to see that Γ generates L o G. Right multiplication by
(1, u) corresponds to moving the lamplighter in G while right-multiplying
by (δs, 1) corresponds to changing the status of the current lamp by right-
multiplying it by s. Given symmetric probability measures, µ supported on
S and ν supported on U , we can define the move or switch measure, which
is a symmetric probability measure µ o ν supported on Γ, by

(µ o ν)(1, u) :=
1

2
· ν(u) and (µ o ν)(δs, 1) :=

1

2
· µ(s).

That is, under the measure µoν, the walk on LoG has the following behaviour:
with probability 1/2 the lamplighter moves inG according to the distribution
given by ν; with the remaining probability 1/2 the lamplighter does not
move but rather changes the status of the current lamp according to the
distribution given by µ.

If the base group G is transient, then L oG admits bounded nonconstant
harmonic functions (i.e., is not Liouville). For instance, one may consider
the function h(ω) to be the probability that the status of the lamp at 1G
differs eventually from 1L. As a consequence, (Z/2Z) o Z3 is an example
of an amenable non-Liouville group [12, §6.2]. See also [9] for a proof that
these groups nevertheless do not support nonconstant harmonic functions
of bounded energy.
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2. Proof of Theorem 2

Recall the statement of Theorem 2: if G is recurrent and if L does not
support any nonconstant sublogarithmic functions, then neither does L oG.
Before starting the proof proper let us remark that the difficulty lies in the
case that L is infinite. If L is finite then the theorem may be proved quite
similarly to the proof of Theorem 1 (see page 834). Let us recall quickly the
argument:

Sketch of the finite L case. Let x1, x2 ∈ L o G differ only in the config-
uration at 1G. Examine two lazy random walkers starting from the xi and
coupled to walk together except when they are both at 1G, where they have
positive probability to glue for all time. We define E to be the gluing time
and Tr to be the first time that the walker reaches distance r from 1G. Known
estimate for return probabilities on recurrent groups (which, by Gromov’s
theorem are finite extensions of Z or Z2) show that P(E ≥ Tr) ≤ C/ log r.
The sublogarithmicity of h shows that the contribution of this event decays
as r → ∞ and the coupling shows that h does not depend on the lamp at
1G. Translating we get that h does not depend on the state of the lamps
at all, and hence may be considered as a harmonic function on G. But
any sublinear harmonic functions on a virtually nilpotent group is constant
(Remark 22, below). �

Where things change for L infinite is that one can no longer claim that
the probability that E occurred before the kth return to 1G increases to 1
exponentially fast in k. Even in the simplest case that the lamp group is
Z, this probability decays only like 1/

√
k and had we translated the proof

literally we would only get that ZoZ2 has no sub- 3
√

log nonconstant harmonic
functions.

To solve this problem we replace our x1, x2 with infinitely many x, which
differ only at the lamp at 1G. This gives a function ψ : L → R with
ψ(`) = h(x`), where x` ∈ L o G is x with the status of the lamp at 1G set
to `. Now ψ is sublogarithmic on L but is not necessarily harmonic on it.
However, the harmonicity and sublogarithmic growth of h on L oG allows to
use the strong Markov property and represent ψ(`) as the value of h at the
kth return of a random walker to 1G. This means that ψ may be written as
Qkfk where fk is the value of h had the lamp at 1H never moved (and Q is
the transition kernel of lazy random walk on L). The sublogarithmic growth
of h allows to show that fk(`) ≤ Ck3 log |`| (the polynomial growth in k is
the important fact here), see Proposition 11. We will show (Proposition 5)
that such estimates imply that ψ is constant. The laziness of the walk plays
an important role in this step.

The approach is significantly complicated by the fact that we do not
know a priori that the value of h at the kth return to 1G is integrable. This
complicates the definition of fk and some parts of the argument. The details
are provided in the next sections.
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2.1. Preliminaries. We begin with some preliminary results.

Lemma 3. Fix p ∈ (0, 1) and n ∈ N. Let b(k) =
(
n
k

)
pk(1 − p)n−k and

b(k) = 0 for k ∈ Z \ {0, . . . , n}. Then for the difference operator ∂ defined
by ∂ψ(k) = ψ(k)− ψ(k − 1) we have that, for any k,

(1) |∂mb(k)| ≤
(

m

p(1− p)n

)m/2
.

Proof. From the binomial formula,(
1− p+ peit

)n
=
∑
k

b(k)eitk

which leads to

b(k) =
1

2π

∫ π

−π

(
1− p+ peit

)n · e−itkdt.
Applying ∂ is the same as multiplying by 1−eit in the Fourier domain hence

∂mb(k) =
1

2π

∫ π

−π

(
1− p+ pe−it

)n · (1− eit)m · e−itk dt.
We estimate the integral by the maximum of the absolute value of the in-
tegrand. The expression for the maximum would be shorter if we use the
quantity u = 2p(1− p)(1− cos(t)) ∈ [0, 1]. We get

|∂mb(k)| ≤ sup
u∈[0,1]

(1− u)n/2 · um/2 · p−m/2(1− p)−m/2,

which is maximised at u = m
m+n . Hence,

|∂mb(k)| ≤
(

m

p(1− p)n

)m/2
. �

Lemma 4. Let G be a group and let P be the transition matrix of some
random walk on G. Let ψ : G → R be a function with sub-linear growth.
Then if (I − P )ψ is constant, then this constant must be zero (and then ψ
is harmonic).

Remark. In this lemma the random walk need not be symmetric.

Proof. Let (Xt) be the random walk on G with transitions given by P and
let K be the constant from the statement of the lemma, i.e., (P − I)ψ ≡ K.
Then Mt := ψ(Xt)− tK is a martingale, and hence for all t,

ψ(x) = M0 = Ex[Mt] = Ex[ψ(Xt)]− tK.

But since ψ has sub-linear growth,

K =
1

t
Ex[ψ(Xt)]−

1

t
ψ(x) −→ 0 as t tends to ∞.

So K = 0 and ψ is harmonic with respect to P . �
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Proposition 5. Let G be a group and let P be the transition matrix of some
random walk on G, let α ∈ (0, 1) and let Q = αI+(1−α)P be the transition
matrix of the corresponding lazy random walk. Let ψ : G→ R be a function
with sub-linear growth.

Suppose that for infinitely many k there exists functions fk : G → R
with fk(g) ≤ CkC |g|C such that ψ = Qkfk. Then, there exists m such that
(I − P )mψ ≡ 0.

Moreover, if ψ grows slower than the harmonic growth of G (with respect
to P ), then ψ is constant.

Proof. Observe that

Qk = (αI + (1− α)P )k =
k∑
j=0

(
k

j

)
αk−j(1− α)jP j =

∑
j∈N

b(j)P j ,

for b(j) as in Lemma 3, with plemma 3 = 1 − α and nlemma 3 = k. Thus, we
may write ψ = Qkfk as

(2) ψ =
∑
j∈N

b(j)P jfk.

Thus for every k for which (2) holds we may write

|(I − P )mψ(g)|(3)

(2)
=
∑
j∈N

∂mb(j)P jfk ≤
∑
j∈N
|∂mb(j)| · |P jf(g)|

(∗)
≤ (k + 1) ·

(
m

α(1− α)k

)m/2
· sup {|f(h)| : distG(g, h) ≤ k}

≤ C
(

m
α(1−α)

)m/2
· (|g|+ k)C · k1−m/2.

The inequality marked by (∗) has three parts. First, we use the fact that the
sum has only k + 1 nonzero terms to bound it by k + 1 times the maximal
term. Second, we estimate the term ∂mb(j) using Lemma 3. Third, for
the term P jfk we note that because the generator P is supported on the
generators of the Cayley graph P jf(g) contains only terms with distance
≤ j ≤ k from g, and the coefficients sum to 1, so P jfk can be bounded by
the maximum of fk in the given ball.

Provided that m > 2(C+1), the last term in (3) converges to 0 as k →∞.
This implies the first part of the claim.

Let us now assume that ψ grows slower than har(G). Then, (I−P )m−1ψ
also grows slower than har(G), as it is a finite combination of translates of ψ.
Since (I −P )m−1ψ is harmonic (via the first part of the claim), this implies
that it is constant. However, because every group has harmonic growth at
most linear, we have that (I−P )m−2ψ is a sub-linear function with constant
Laplacian. By Lemma 4, we get that (I − P )m−2ψ is harmonic. Iterating
this reasoning, we obtain that ψ is harmonic and thus constant. �
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Lemma 6. Let (Xt)t = (ωt, gt)t be a random walk on LoG with step measure
µ o ν and define stopping times

Uk := inf
{
t ≥ 0 :

t∑
j=0

1{gt = 1G} ≥ k
}
,(4)

Tr := inf
{
t ≥ 0 : dist(gt, 1G) > r

}
.

Then, the random variable ωUk
(1G) is independent of {ωUk

(g)}g 6=1G and of
the event {Uk < Tr}. Furthermore, its law is the law of a lazy µ-random
walk on L with laziness probability 1/2, at time k.

The proof of this statement is elementary and will be omitted.
We finish this section with a few standard facts on recurrent groups. Most

readers would want to skip to §2.2.

Lemma 7. Let G be a recurrent group, let g ∈ G and let r > |g|. Let E
be the event that random walk on G starting from g reaches distance r from
1G before reaching 1G itself. Then P(E) ≤ C log |g|/ log r.

Proof. Any recurrent group contains as a subgroup of finite index one of
0, Z or Z2, see, e.g., [22, Theorem 3.24]. The proof uses deep results by
Varopoulos, Gromov, Bass, and Guivarc’h, see [22] for details and references.
The theorem of Gromov has had new proofs recently, see [13, 20, 18]. A
reader unfamiliar with this literature may simply read Theorem 2 replacing
the sentence “Let G be a recurrent group” with “Let G be a finite extension
of 0, Z or Z2” with no loss in understanding.

Let us start with the case that G = Z2. In this case it is known that there
is a function a : Z2 → R harmonic everywhere except at (0, 0) and satisfying
a(x) = c log |x|+O(1) (see, e.g., [14, §4.4]). Let b be the harmonic extension
of the values of a on the boundary of the ball of radius r to its interior (so
b(x) = c log r + O(1)). We see that h = 1 − (b − a)/(b(0, 0) − a(0, 0)) is
harmonic on the ball except at (0, 0), is 0 at (0, 0), 1 on the boundary and
(log |g| + O(1))/ log r at g. By the strong Markov property, h(g) is exactly
the probability sought, and the claim is proved in this case.

The case that the group is a finite extension of Z2 (i.e., that it contains
it as a subgroup of finite index) may be done similarly: the function a on G
can be defined, as in [14], by

a(h) =
∞∑
n=0

(pn(1G)− pn(h)),

where pn is the heat kernel on G. Since G satisfies a Berry-Essen estimate
(see, e.g., [1]), a would still satisfy a(x) = c log(|x|) + O(1). If G is a finite
extension of Z a similar argument holds except this time a(g) = O(|g|) and
we get P(E) ≤ C/r. If G is finite then P(E) = 0 for r sufficiently large. �
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Lemma 8. Let G be a recurrent group and let Tr be the exit time from a
ball of radius r. Then

P(Tr > M) ≤ 2 exp(−cr−2M).

Proof. Random walk on any group satisfies the weak Poincaré inequality,
see [19, Lemma 4.1.1] for the statement of the inequality and the proof.
Since, as in the proof of the previous lemma, it is a finite extension of {0},
Z or Z2, it also satisfies volume doubling, i.e., |B(2r)| ≤ C|B(r)|. This
means, by Delmotte’s theorem [6] that pt(x, y) ≤ C/|B(

√
t)|. Summing this

inequality we see that after time C1r
2 for some C1 sufficiently large the

probability to stay in a ball of radius 2r is ≤ 1
2 . This means that if in time

t you are at some g ∈ B(1G, r) then by time t + C1r
2 you have probability

≥ 1
2 to exit B(g, 2r) ⊃ B(1G, r). In the language of Tr this means that

P(Tr > t+ C1r
2 |Tr > t) ≤ 1

2
.

The lemma follows readily. �

Lemma 9. Recall the definition of Uk and Tr from (4). For every k ≥ 1,
every M ≥ 0 and every starting point x = (ω, g) ∈ L o G, we have that
log(Tr +M) is integrable and

(5) Ex[log(Tr +M)1{Tr≤Uk}] < Ck
log(r +M) log(|g|)

log r
.

Proof. The integrability clause is an immediate corollary of Lemma 8 so
we move to prove (5). Write

(6) E[·] = E[·1{Tr<r3}] +

∞∑
i=0

E[·1{Tr∈[r32i,r32i+1)}].

In the first term, the integrand log(Tr +M)1{Tr<r3} is bounded by

log(M + r3) ≤ 3 log(M + r)

and the probability of the event {Tr ≤ Uk} is at most Ck log(|g|)/ log r by
Lemma 7. For the second term in (6), we drop the condition Tr ≤ Uk and
write

E
[

log(E(r) +M) · 1{Tr≤Uk} · 1{Tr∈[r32i,r32i+1)}

]
≤ log(r32i+1 +M) · P[Tr ≥ r32i] ≤ log(r32i+1 +M) exp(−cr2i)

which may be readily summed over i and the sum is bounded by

C log(r +M)/ log r. �
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2.2. The main step. We now reach the heart of the proof of Theorem 2.
Throughout this section, we fix a group L with har(L) � log, and a recurrent
group G. We fix one x ∈ L oG for the rest of the proof.

For ` ∈ L, let φ` : L oG → L oG be the function that changes the status
of the lamp at 1G to `, leaving all other lamps unchanged. In a formula

φ`(σ, g) = (τ, g) with τ(k) =

{
σ(k) if k 6= 1G

` otherwise.

We note immediately that φ does not change distances by much:

(7) |φ`(g)| ≤ |g|+ |`|,
which holds for our “move or switch” generators.

Definition 10. Let h : L oG→ R be a harmonic function of sub-logarithmic
growth and let x ∈ L oG. For k ≥ 1 and ` ∈ L define

(8) fk(`) = lim
r→∞

Ex[h(φ`(Xmin{Uk,Tr}))].

where Uk and Tr are defined by (4). Note that fk depends also on h and x,
but these will be suppressed in the notation.

Here and below E refers to expectation with respect to the random walk
on the group L oG with the “move or switch” generators.

It is not clear a-priori that fk is a well-defined function as we have not
shown that h(φ`(Xmin{Uk,Tr})) is integrable, nor that the limit exists. We will
show this in Proposition 11, and, more importantly, give a useful estimate
on fk.

Proposition 11. For every k ≥ 1, fk is well-defined and satisfies

|fk(`)| ≤ C log(|x|+ |`|) · k3,

for some constant C > 0 (which may depend on h).

Proof. Denote

M(r) = sup

{
|h(y)|

log(|y|)
: y ∈ L oG such that |y| ≥ r

}
and note that M is decreasing in r and M(r) → 0 as r → ∞. A simple
initial reduction is the following:

Claim 12.
lim
r→∞

Ex[h(φ`(XTr)) · 1{Tr < Uk}] = 0.

Proof. We first note that

r ≤ |φ`(XTr)|
(7)
≤ |XTr |+ |`| ≤ Tr + |x|+ |`|

and hence

|h(φ`(XTr))| ≤M(|φ`(XTr)|) log(|φ`(XTr)|)
≤M(r) log(Tr + |x|+ |`|).
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Lemma 8 gives that log(Tr + |x| + |`|) is integrable and consequently so is
h(φ`(XTr)). Taking expectation (and assuming r > |x|) we get

Ex[h(φ`(XTr)) · 1{Tr < Uk}]
≤M(r)Ex[log(Tr + |x|+ |`|) · 1{Tr < Uk}]
(5)

≤ M(r) · Ck log(r + |x|+ |`|) log(|x|)
log r

→ 0 as r →∞

as needed. �

A similar calculation shows that the variable h(φ`(Xmin{Uk,Tr})) inte-
grated over in the definition of fk (8) is indeed integrable. All similar
quantities (i.e., that involve only the walk in the ball of radius r in G)
are proved to be integrable using the same argument and we will not return
to this point.

At some point during the proof, it will be convenient to assume that the
walk is not degenerate, i.e., does not spend all its time at 1G (in particular
the degenerate case can happen only if the G-component of the starting
point x is 1G). Let us remove this event now. Define therefore

A = {the walk stays at 1G until Uk},(9)

B = {Uk < Tr} \A ,

f(r) = Ex[h(φ`(XUk
)) · 1B].

Claim 13. The proposition will be proved once we show that f(r) converges
as r →∞, and that lim f(r) ≤ Ck3 log(|x|+ |`|).

Proof. Clearly P(A ) ≤ exp(−c(k − 1)). Further, when A happens then
Uk = k − 1 so |XUk

| ≤ |x|+ k. Writing

Ex[h(φ`(Xmin{Uk,Tr}))]

= f(r) + Ex[h(φ`(XUk
)) · 1A ] + Ex[h(φ`(XTr)) · 1{Tr < Uk}]

(clearly Tr can never be equal to Uk) we get that the second term is inde-
pendent of r and bounded by C exp(−c(k − 1)) log(|x| + |`| + k), while the
third term goes to zero as r →∞ by Claim 12. �

Define now gt to be the position of the lighter at time t (or the G-
component of Xt if you want) and define

Λj = max{|gt| : t ∈ [Uj , Uj+1]},

where the Uj are still defined by (4). We call Λj the height of the jth

excursion. We need to single out the excursion with the largest height
(denote it by i — if there are ties take the last longest walk). Define therefore
the following two random elements of L oG:

V = X−1
Ui
XUi+1

W = XUi
X−1
Ui+1

XUk
.
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In words, V is the excursion of largest height and W are all the rest. We
note the following

Claim 14. Under B the variables XUk
and WV have the same distribution.

Proof. Since the G component of all XUi is 1G then we need only consider
the lamps. However, whether we take the steps of the random walk in the
original order (XUk

) or with the largest excursion taken out and performed
in the end (WV ), each lamp is visited exactly the same number of times.
So conditioning on the steps in the G direction, each lamp does a simple
random walk on L of equal length (we use here that the event B depends
only on the G component). This shows that XUk

and WV have the same
distribution after conditioning on the walk in the G direction. Integrating
gives the claim. �

In particular,

f(r) = E[h(φ`(WV )) · 1B].

Condition on W and examine V . It is the value of simple random walk on
L oG, conditioned to have larger height that all other excursions, at the time
when it first returns to 1G. Examine the time τ when the walker “knows”
this excursion is the longest (this could be either the time when it reaches
the same height as the highest excursion in W , or when it surpasses it,
depending on how one resolves ties, but in all cases it is a stopping time).
We also modify τ in the degenerate case that all excursions in W stay in 1G
and require from τ to be at least Ui + 1 even if the walker knows it was the
largest already at time Ui, so that the walker also knows it did not spend
all time in 1G. After τ , the walk is a simple random walk, unconditioned.
Write V = V1V2 with

V1 = X−1
Ui
Xτ V2 = X−1

τ XUi+1

and condition also on V1. Write

f(r) = Ex[E[h(φ`(WV1V2)) · 1B | i,W, V1]].

We notice two facts. First, the condition ¬A (recall that A is our degenerate
event, see (9)) affects only W and V1, and can be taken from the inner
expectation to the outer. Second, we can write φ`(WV1V2) = φ`(W )V1V2

because the value of the lamp at 1G is changed only in excursions of height
0 (here is where we use ¬A , to say that V is not of length 0). Denote
y = φ`(W )V1. We get

(10) f(r) = Ex
[
E
[
h(yV2) · 1{Tr > Uk} | i,W, V1

]
1¬A

]
.

We now apply the strong Markov property at the stopping time τ . The
event Tr > Uk for the “external” random walk becomes Tr > U1 for the
random walk after τ , and V2 becomes XU1 . Hence

E[h(yV2) · 1{Tr > Uk}] = Ey[h(XU1) · 1{Tr > U1}].
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It is time to use the fact that h is harmonic on L oG. We write

Ey[h(XU1)1{Tr > U1}] = Ey[h(Xmin{Tr,U1})]− Ey[h(XTr)1{U1 > Tr}]
Since h is harmonic, we have by the optional stopping theorem that

Ey[h(Xmin{t,U1,Tr})] = h(y) ∀t.
We now take t → ∞ using the dominated convergence theorem, which we
may because

sup
t
|h(Xmin{t,U1,Tr})| ≤ max

t≤Tr
|h(Xt)|

≤ max
t≤Tr

C log(|Xt|) ≤ C log(|y|+ Tr)

which is integrable, by Lemma 9. We get

Ey[h(Xmin{U1,Tr})] = h(y).

Inserting this into (10) gives

f(r) = Ex
[(
h(y)− Ey[h(XTr)1{U1 > Tr}]

)
1¬A

]
.

It will be convenient to add the condition that the height of the second-
highest excursion is ≤ r. We may do so because otherwise |y| > r, in the
inner expectation the walker is stopped immediately (Tr = 0) and the inner
expectation itself is exactly h(y) and the term contributes zero. Denote
C = {the second-highest excursion is ≤ r} \A . We write

f(r) = I + II I = Ex[h(y) · 1C ] II = the rest

and bound these terms individually.

Claim 15. As r →∞, II → 0.

Proof. We reverse the use of the Markov property and get

Ey[h(XTr)1{U1 > Tr}] = E[h(yV3)1{Tr < Uk} | i,W, V1],

where V3 is the part of V2 until the first time it exits the ball of radius r in G.
Recall that y = φ`(W )V1 and that V1 is a random walk on L oG conditioned
to be longer than all excursions in W and stopped when it knows it is. Hence
V1V3 is simply a random walk conditioned to be longer than all excursions
in W . Returning the integration over W and V1, we get

(11) II = −Ex[h(φ`(W )V1V3)1D ]

where D is the event that all excursions except for the longest did not exit
the ball of radius r (this part was C ), while the longest did exit it (this is
Tr < Uk). Now write

|φ`(W )V1V3|
(7)
≤ |`|+ |W |+ |V1V3|.

The expression |W |+ |V1V3| allows us to get rid of the conditioning in V1V3.
We can now claim that |W |+ |V1V3| is bounded by the sum of lengths of k
excursions exactly one of which exits the ball of radius r in G. Denoting by
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Di the event that the ith excursion is the one that exits the ball of radius r,
we may write, under Di,

|W |+ |V1V3| ≤ |x|+ Tr + |Uk| − |Ui+1|

and then

E[log(|φ`(W )V1V3|) · 1{Di}]
≤ E[log(|x|+ |`|+ Tr) · 1{Di}] + E[log(Uk − Ui+1) · 1{Di}]

The first term may be estimated by Lemma 9 to be at most

Ci log(r + |x|+ |`|) log(|x|)/ log r.

For the second term we note that the effect of Di on the random walk after
Ti+1 is just to prohibit exiting the ball of radius r and then

E[log(Uk − Ui+1) · 1{Di}]
≤ E[log(Uk−i−1) · 1{Uk−i−1 < Tr}] · P[Tr < Ui+1] ≤ Ci.

where the last inequality estimates E[·] ≤ C log r using Lemma 8 and

P[·] ≤ Ci/ log r

by Lemma 7.
Combining both parts we may write

|II| (11)
= |Ex[h(φ`(W )V1V3)1{D}]|
≤M(r)Ex[log(|φ`(W )V1V3|)1{D}]

≤M(r)

k∑
i=1

Ex[log(|φ`(W )V1V3|)1{Di}]

(∗)
≤ M(r)

k∑
i=1

(
Ci log(r + |x|+ |`|) log(|x|)

log r
+ Ci

)
≤ C(x, `, k)M(r)

where in (∗) we applied the previous discussion. In particular II → 0 as
r →∞, as claimed. �

We now move to the estimate of I. For this we denote by Es, s > 2 the
event that the height of the second-heighest excursion is in [s, s2), and for
s = 2 replace [2, 4] with [0, 4]. Denote

Is := Ex[h(y) · 1{C ,Es}]

Now, the event Es has probability ≤ Ck2/ log2 s since it requires two of the
k excursions to reach height s. On the other hand,

|y| ≤ |x|+ |`|+ the total time of the process.
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Define S to be the sum of the lengths of the first two excursions to s2, i.e.,
S = S3 − S2 + S1, where

S1 = Ts2 ,

S2 = min{t > S1 : gt = 1G},
S3 = min{t > S2 : |gt| > s2}.

Then, under Es, the total time of the process is bounded by S, and we may
write

Es ⇒ |y| ≤ |x|+ |`|+ S.

By Lemma 8 E(S) ≤ s4 and S has exponential concentration. Any positive
variable with exponential concentration, when conditioned over an event of
probability p, can “gain” no more than | log p| by the conditioning. Hence
we get

Is ≤ Ex[C log(|x|+ |`|+ U) · 1{C ,Es}](12)

≤ Ck2

log2 s
· log(|x|+ |`|+ s4)

∣∣∣∣log

(
Ck2

log2 s

)∣∣∣∣
≤ Ck3 log(|x|+ |`|) log log s

log s
.

This shows that

I =
∞∑
n=0

I22n
(12)
≤

∞∑
n=0

Ck3 log(|x|+ |`|) n
2n

and in particular I is bounded by Ck3 log(|x| + |`|) independently of r.

Furthermore, it is clear that I22n is independent of r as long as r > 22n+1
, as

the event that the second-highest excursion is not larger than 22n+1
implies

that neither y nor C depend on r. So we get that I converges as r → ∞,
and its limit is bounded by Ck3 log(|x|+ |`|). As II → 0 (by Claim 15) we
get that f(r) converges and its limit is bounded by Ck3 log(|x| + |`|). By
Claim 13, the proposition follows. �

We now complete the proof of Theorem 2.

Proof of Theorem 2. Recall that we are given a measure µ on the lamp
group L such that there are no nonconstant sublogarithmic µ-harmonic func-
tions on L. Denote by P the operator P : L1(L) → L1(L) which applies a
single step of the µ-random walk to its input. In a formula,

P (ψ)(`) =
∑
m∈L

ψ(m)µ(m−1l).

Let Q = 1
2(I + P ) be the corresponding operator for lazy random walk on

L.
Fix x = (ω, g) ∈ LoG and define a function ψ : L→ R by ψ(`) = h(φ`(x)).

We wish to relate ψ and fk (from Definition 10 with the same x and h). Let
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therefore k ≥ 1 and r sufficiently large and examine h(XUk
) under the event

Uk < Tr. At every visit to 1G, the lamp there has probability 1
2 to move.

Hence, at Uk the distribution of the lamp is exactly that of lazy random
walk on L after k steps. This means that, conditioning on everything that
the walk does outside 1G,

h(XUk
) ∼ Qk(h(φω(1G)(XUk

)))

(the operand of Q above, i.e., h(φω(1G)(XUk
)), is considered as a function of

ω(1G), i.e., of the status of the lamp at 1G of the starting point). Taking
expectations (still under Uk < Tr) we get

Ex[h(XUk
)1{Uk < Tr}] = Qk(Ex[h(φω(1G)(XUk

))1{Uk < Tr}]).

Because h is sub-logarithmic, we know that E[h(XTr) · 1{Tr < Uk}] goes to
0 as r →∞ (recall the proof of Claim 12). So we get for the left-hand side,

lim
r→∞

Ex[h(XUk
)1{Uk < Tr}] = lim

r→∞
Ex[h(Xmin{Tr,Uk})] = h(x)

where in the last equality we used that h is harmonic on L o G. For the
right-hand side, we get

lim
r→∞

Ex[h(φ`(XUk
))1{Uk<Tr}] = lim

r→∞
Ex[h(φ`(Xmin{Uk,Tr}))] = fk(`).

This gives the sought-after relation,

ψ = Qkfk.

Using Proposition 5 and the facts that ψ grows sub-logarithmically and
har(L) � log(·), we obtain that ψ is constant. Therefore, h(φ`(x)) = h(x)
for all ` and all x; that is, h does not depend on the status of the lamp at
1G.

We may repeat this argument for the lamps at other elements of G by
translating h. We conclude that h is a function depending only on the
position of the lamplighter, and not on the lamp configuration. Thus, h can
be viewed as a sub-linear (in fact sub-logarithmic) harmonic function on G.
Since G is recurrent, it implies that h is constant. �

2.3. Harmonic growth with Z2 base. Complementing Theorem 2, we
show that when the base group is Z2 then the harmonic growth is log-
arithmic. For simplicity of the presentation, we show this for the group
G := (Z/2Z) o Z2, other cases are similar.

Due to Theorem 2, it suffices to construct a logarithmically growing non-
constant harmonic function on (Z/2Z) o Z2.

Let a : Z2 → R be the potential kernel, that is, a is harmonic on Z2 \ {0}
and 1

4

∑
w∼0 a(w) = a(0) + 1 (see, e.g., [14, §4.4] for its construction). The

standard normalisation is a(0) = 0, but we will normalise it instead by
a(0) = 1

2 . Further, a(x) = c log |x| + O(1) as |x| → ∞ for some constant
c > 0 [14, Theorem 4.4.3].
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We may now define our harmonic function. We define h(σ, z) = (−1)σ(0) ·
a(z) for any (σ, z) ∈ G. The logarithmic growth is clear from the growth of
a so we need only show that h is indeed harmonic.

Recall that the neighbours of (σ, z) in G are (σ, z ± ej) and (σz, z) where
e1 = (1, 0), e2 = (0, 1) and σz is the configuration σ with the state of the
lamp at z flipped. Assume that the random walk goes to σz with probability
1
2 and to each of the neighbours in Z2 with probability 1

8 .
We have that if z 6= 0,

1
2h(σz, z) + 1

8

∑
w∼z

h(σ,w) = 1
2(−1)σ(0) ·

(
a(z) + 1

4

∑
w∼z

a(w)

)
= (−1)σ(0)a(z) = h(σ, z),

and if z = 0,

1
2h(σ0, 0) + 1

8

∑
w∼0

h(σ,w) = 1
2(−1)σ(0) ·

(
−1

2 + 1
4

∑
w∼0

a(w)

)
= 1

2(−1)σ(0) = h(σ, 0).

So h is harmonic on G.

3. Iterated wreath products

Proposition 16. For any k ≥ 1, there exists a group G and a finitely-
supported random walk Xn on it such that H(Xn) ≥ c(k)n/ log(k) n but
every sublogarithmic Xn-harmonic function is constant.

Proof. Define G1 = (Z/2Z) oZ2 and Gk+1 = Gk oZ2. Let µ0 be the measure
on Z/2Z giving equal weight to both elements, and let ν be the measure
on Z2 giving weight 1

4 to the 4 neighbours of the identity, i.e., to (±1, 0)
and (0,±1). Let µk be the measure on Gk given by µk = µk−1 o ν (recall
the definition of the move-or-switch generators in §1.3). On the one hand,
Theorem 2 tells us that any sublogarithmic µk-harmonic function on Gk is
constant.

On the other hand, let L be a group and G = L o Z2. Let HG(n) be the
entropy of the nth step of a random walk on G. Then we claim that for
some constant c > 0 (which depends only on the degree of the Cayley graph
chosen for L),

(13) HG(n) ≥ c n

log n
HL(log n).

To see (13), let (Xn = (σn, zn))n be a random walk on G. For z ∈ Z2, let
Kn(z) be the number of times the lamplighter was at z up to time n. For
each z ∈ Z2, σn(z) is a lazy random walk on L that has taken Kn(z) steps.
Thus, if Y denotes the lazy random walk on L,
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HG(n) = H((σn, zn)) ≥ H(σn) ≥ H(σn|Kn) = E

[∑
z∈Z2

H(YKn(z))

]
≥ E

[
|{z ∈ Z2 : Kn(z) ≥ log n}|

]
·HG(log n).

The walk (zn) is a lazy random walk on Z2. Known estimates [14] give that
E
[
|{z ∈ Z2 : Kn(z) ≥ log n}|

]
> cn/ log n for some universal constant c > 0

small enough. Equation (13) follows readily.
The estimate above enables us to relate Gk to Gk−1. Iterating until G1,

we find that
HGk

(n) > ck
n

log(k) n
,

where as usual log(k) is iteration of log k times. �

We remark that in fact HGk
(n) < Cn/ log(k) n as well, which can be

proved using the same calculation, bounding the error terms.
The contrapositive of the above is that if f is some monotone function

such that for all groups har(G) � f(n/H(Xn)) then f must grow faster than
exp exp · · · expn for any number of iterations of exponentials.

4. Open questions

Let us list some of the many natural open problems that arise in the con-
text of unbounded harmonic functions on Cayley graphs (discrete groups).

(1) A major open question is whether the Liouville property is a group
property or not, or in other words, if it is independent of the choice of
generators. A generalisation of this question is: Does the harmonic
growth of the group depend on the finite generating set? That is,
given a group G with G = 〈S〉 = 〈S′〉 for finite symmetric sets S, S′,
is it true that the harmonic growth is the same for both Cayley
graphs?

(2) This paper only focuses on the smallest growing nonconstant har-
monic functions. One may also consider larger growth harmonic
functions. It is well-known that on Zd the smallest nonconstant har-
monic functions are linear, and the second-smallest are quadratic
(see, e.g., [15]). Do other groups (of nonpolynomial volume growth)
admit such a “forbidden gap” in the growth of nonconstant harmonic
functions? See [1, 11, 17] for precise results in the case of polynomial
growth. We have a proof that the lamplighter group (Z/2) o Z does
not admit such a gap. This proof will be presented elsewhere.

(3) Gromov’s theorem states that a group with polynomial growth is
virtually nilpotent [10]. A key ingredient in Kleiner’s new proof of
Gromov’s Theorem [13, 20] is the fact that on a group of polynomial
volume growth, the space of Lipschitz harmonic functions is finite
dimensional. The following question is therefore natural:
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Let G be a finitely generated group, and consider the space of
Lipschitz harmonic functions on G. Suppose this space is finite di-
mensional. Does it follow that G is virtually nilpotent?

Let us remark that this cannot be deduced directly from Kleiner’s
proof. This is due to the fact that Kleiner’s proof contains an in-
ductive step where one reduces the question to a subgroup. The
property of having polynomial growth can be carried from a group
to a subgroup, but for the property of having a finite-dimensional
space of harmonic functions, we do not know a-priori if this carries
over to a subgroup.

See [16] for a treatment of this question in the solvable case. Also
related is Tointon’s result characterizing virtually Z groups as those
with the space of all harmonic functions (i.e., without any growth
restrictions) being finite dimensional, see [21].

Even if we cannot deduce that G is virtually nilpotent, we might
still be able to deduce some properties of random walk on it. A
weaker conjecture would be:

Suppose G has a finite-dimensional space of Lipschitz harmonic
functions. Does it follow that the random walk on G is diffusive?

(4) Another interesting question is to characterise those groups for which
there do not exist sub-linear nonconstant harmonic functions. As
noted above, all groups with polynomial volume growth are such,
but also (Z/2Z) o Z. See [4] for interesting new examples of groups
with no sub-linear harmonic functions.

Appendix A. Entropy Bound

A.1. Entropy. For background on entropy see, e.g., [5].
Let µ, ν be probability measures supported on a finite set Ω. Define

H(µ) =
∑
ω

µ(ω) logµ(ω),

D(µ||ν) =
∑
ω

µ(ω) log(µ(ω)
ν(ω) ),

where x log x
0 is interpreted as ∞ (so D(µ||ν) is finite only if µ is absolutely

continuous with respect to ν). Let P be a probability measure on Ω × Ω′,
where Ω,Ω′ are finite with marginal probability measures µ and ν on Ω and
Ω′ respectively. Define

I(µ, ν) =
∑

(ω,ω′)∈Ω×Ω′

P (ω, ω′) log
(

P (ω,ω′)
µ(ω)ν(ω′)

)
.

(I depends on P but we omit it in the notation). If X,Y are random vari-
ables in some probability space, taking finitely many values, then we define
H(X), D(X||Y ) and I(X,Y ) using the corresponding induced measures on
the value space.
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For two random variables X and Y , the conditional entropy of X con-
ditioned on Y is defined as H(X|Y ) = H(X,Y ) − H(Y ). If p(x, y) is the
probability that (X,Y ) = (x, y) and p(x|y) = p(x, y)/p(y), then

H(X|Y ) = E[− log p(X|Y )] = −
∑

y : p(y)>0

p(y)
∑

x : p(x|y)>0

p(x|y) log p(x|y).

It may also be easily checked that

I(X,Y ) = H(X)−H(X|Y ) = H(X) +H(Y )−H(X,Y ).

Lemma 17. Let X and Y be two random variables on some probability
space, taking finitely many values. Let f be some real valued function defined
on the range of X and Y . Then,

(E[f(X)]− E[f(Y )])2 ≤ 2D(X||Y ) · (E[f(X)2] + E[f(Y )2]).

Proof. Define the following distance between variables

dBTV(X,Y ) =
∑
z

(P[X = z]− P[Y = z])2

P[X = z] + P[Y = z]
.

If there exists z such that P[X = z] > P[Y = z] = 0, then D(X||Y ) =∞ and
there is nothing to prove. Let us now assume that for all z, P[Y = z] = 0
implies P[X = z] = 0. Hence we can always write

p(z) := P[X = z]/P[Y = z]

and

dBTV(X,Y ) =
∑
z

P[Y = z] · (1− p(z))2

1 + p(z)
.

Consider the function f(ξ) = ξ log ξ (with f(0) = 0). We have that

f ′(ξ) = log ξ + 1, f ′′(ξ) = 1/ξ.

Thus, expanding around 1 we have that for all ξ > 0,

ξ log ξ − ξ + 1 ≥ (ξ − 1)2

2(1 + ξ)
.

This implies

dBTV(X,Y ) ≤ 2
∑
z

P[Y = z](1− p(z)) + 2D(X||Y ) = 2D(X||Y ).

Using Cauchy–Schwarz, one obtains

|E[f(X)]− E[f(Y )]| =
∑
z

|P[X = z]− P[Y = z]| · |f(z)|

≤
√

dBTV(X,Y ) ·
√

E[f(X)2] + E[f(Y )2]

≤
√

2D(X||Y ) ·
√
E[f(X)2] + E[f(Y )2]. �
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Corollary 18. Let X,Y be random variables on some probability space,
taking finitely many values. Let f be some real valued function on the range
of X. Then,

E
[∣∣∣E[f(X)|Y ]− E[f(X)]

∣∣∣] ≤ 2
√
I(X,Y )

√
E[f(X)2].

Proof. Define X|y to be the random variable whose density is

P[X|y = x] = P[X = x|Y = y].

By Lemma 17 applied to X and f(X|y),∣∣E[f(X|y)]− E[f(X)]
∣∣2 ≤ 2D

(
X|y

∣∣∣∣∣∣X) · (E[(f(X|y)2] + E[f(X)2])

≤ 2D
(
X|y

∣∣∣∣∣∣X) · (E[f(X|y)2] + E[f(X)2]).

Summing (after weighting by P[Y = y]) the previous equation for every y,
and observing that

I(X,Y ) =
∑
y

P[Y = y]D(X|y||X)

and
∑

y P[Y = y]E[f(X|y)2] = E[f(X)2], the Cauchy–Schwarz inequality
implies

E
∣∣E[f(X)|Y ]− E[f(X)]

∣∣
=
∑
y

P[Y = y] ·
∣∣E[f(X|y)]− E[f(X)]

∣∣
≤
∑
y

P[Y = y]
√

2D
(
X|y

∣∣∣∣X) · (E[f(X|y)2] + E[f(X)2])

≤
√

2
√
I(X,Y ) ·

√
2E[f(X)2]. �

The next proposition is our main tool, relating harmonic functions and
the incremental entropy of a random walk.

Proposition 19. Let G be a group. Let (Xn)n≥0 be a random walk on G.
Let h : G→ R be a harmonic function. Then,

(Ez |h(X1)− h(z)|)2 ≤ 4Ez[|h(Xn)− h(z)|2] · (H(Xn)−H(Xn−1)).

Proof. Since h is harmonic we have that

|h(X1)− h(z)| = |Ez[h(Xn)|X1]− Ez[h(Xn)]|.
Using Corollary 18 (with X being Xn, Y being X1 and f(x) = h(x)−h(z)),
we find that

Ez |h(X1)− h(z)| ≤ 2 ·
√
I(Xn, X1) ·

√
Ez[(h(Xn)− h(z))2].

Since G is transitive, we have that H(Xn|X1) = H(Xn−1). Thus,

I(Xn, X1) = H(Xn) +H(X1)−H(Xn, X1)

= H(Xn)−H(Xn|X1) = H(Xn)−H(Xn−1),
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which implies the claim readily. �

This inequality provides a quantitative estimate on the growth of har-
monic functions, which quantifies one direction of the Kaimanovich-Vershik
criterion.

Theorem 20. Let G be a group. Let (Xn)n≥0 be a random walk on G.
Then,

har(G) �
√
n/H(Xn).

Proof. Note that by the Markov property, for any k,

H(X1|Xk) = H(X1|Xk, Xk+1, . . .).

Thus,

H(Xk)−H(Xk−1) = H(Xk)−H(Xk|X1) = H(X1)−H(X1|Xk)

is a decreasing sequence in k. Thus,

H(Xn) =

n∑
k=1

H(Xk)−H(Xk−1) ≥ n ·
(
H(Xn)−H(Xn−1)

)
.

Let h : G→ R be a nonconstant harmonic function. Let x ∼ y be vertices
such that h(x) 6= h(y). By Lemma 19

(Ex |h(X1)− h(x)|)2 ≤ 4Ex[h(Xn)2]H(Xn)/n ≤ 4Mh(x, n)2H(Xn)/n.

Since Ex |h(X1)− h(x)| is a positive constant, we have that

Mh(x, n) �
√
n/H(Xn). �

Corollary 21 (Avez, Kaimanovich–Vershik [12]). Let G be a group. Let
(Xn)n≥0 be a random walk on G. If H(Xn)/n tends to 0, then G is Liouville
(meaning that any bounded harmonic function is constant).

Remark 22. One can also use Proposition 19 to show that for groups with
polynomial growth, the harmonic growth is linear. This is done (in a slightly
different context) in [3]. Since it is so short, let us repeat the argument here.

The only required fact is that for a group of polynomial growth the
random walk is diffusive. So if h is a sub-linear harmonic function then
Ex[h(Xn)2] = o(n) as n → ∞. Since the group is of polynomial growth,
H(Xn) = O(log n), and so there are infinitely many n for which

H(Xn)−H(Xn−1) = O(n−1).

Along this infinite sequence of n, we have by Lemma 19

(Ex |h(X1)− h(x)|)2 ≤ o(n) ·O(n−1) = o(1),

so h(X1) = h(x) a.s. Since this holds for all x, it must be that h is constant.
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