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Configuration spaces, FSop-modules, and
Kazhdan–Lusztig polynomials of braid

matroids

Nicholas Proudfoot and Ben Young

Abstract. The equivariant Kazhdan–Lusztig polynomial of a braid
matroid may be interpreted as the intersection cohomology of a certain
partial compactification of the configuration space of n distinct labeled
points in C, regarded as a graded representation of the symmetric group
Sn. We show that, in fixed cohomological degree, this sequence of rep-
resentations of symmetric groups naturally admits the structure of an
FS-module, and that the dual FSop-module is finitely generated. Us-
ing the work of Sam and Snowden, we give an asymptotic formula for
the dimensions of these representations and obtain restrictions on which
irreducible representations can appear in their decomposition.
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1. Introduction

Given a matroid M , the Kazhdan–Lusztig polynomial PM (t) was defined
in [EPW16]. More generally, if M is equipped with an action of a finite
group W , one can define the W -equivariant Kazhdan–Lusztig polynomial
PWM (t) [GPY17]. By definition, PWM (t) is a graded virtual representation of
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W , and taking dimension recovers the nonequivariant polynomial. These
representations have been computed when M is a uniform matroid [GPY17,
Theorem 3.1] and conjecturally for certain graphical matroids [Ged, Conjec-
ture 4.1]. However, in the case of the braid matroid (the matroid associated
with the complete graph on n vertices), very little is known. The nonequiv-
ariant version of this problem was taken up in [EPW16, Section 2.5] and the
Sn-equivariant version in [GPY17, Section 4], but with few concrete results
or even conjectures.

In this paper we use an interpretation of the equivariant Kazhdan–Lusztig
polynomial of the braid matroid Mn as the intersection cohomology of a
certain partially compactified configuration space to show that, in fixed co-
homological degree, it admits the structure of an FS-module, as studied in
[Pir00, CEF15, SS17]. Applying the results of Sam and Snowden [SS17],
we use the FS-module structure (or, more precisely, the dual FSop-module
structure) to improve our understanding of this sequence of representations.
In particular, we obtain the following results (Corollary 6.2):

• For fixed i, we prove that the generating function for the ith nonequi-
variant Kazhdan–Lusztig coefficient of Mn (with n varying) is a ra-
tional function with poles lying in a prescribed set.
• For fixed i, we derive an asymptotic formula for the ith nonequivari-

ant Kazhdan–Lusztig coefficient of Mn in terms of another Kazhdan–
Lusztig coefficient that depends only on i.
• We show that, if λ is a partition of n and the associated Specht

module Vλ appears as a summand of the ith equivariant Kazhdan–
Lusztig coefficient of Mn, then λ has at most 2i rows.

We also produce relative versions of these results in which we start with an
arbitrary graph Γ and consider the sequence of graphs whose nth element is
obtained from Γ by adding n new vertices and connecting them to everything
(including each other). The original problem is the special case where Γ is
the empty graph.

Acknowledgments. The authors are grateful to Steven Sam and John
Wiltshire-Gordon for extremely helpful discussions without which this paper
would not have been written, and to Tom Braden for greatly clarifying the
material in Section 3.

2. Kazhdan–Lusztig polynomials and configuration spaces

Let M be a matroid on the ground set I, equipped with an action of a
finite group W . This means that W acts on I by permutations and that the
action of W takes bases to bases. An equivariant realization of W y M is
W -subrepresentation V ⊂ CI such that B ⊂ I is a basis for M if and only
if V projects isomorphically onto CB.

Note that we have CI ⊂
(
CP 1

)I
, sitting inside as the locus of points

with no coordinate equal to ∞. More generally, for any subset S ⊂ I, let
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pS ∈
(
CP 1

)I
be the point with (pS)i = 0 for all i ∈ S and (pS)j =∞ for all

j ∈ Sc, and let

CIS :=
{
p ∈

(
CP 1

)I ∣∣∣ pi 6=∞ for all i ∈ S and pi 6= 0 for all i ∈ Sc
}

be the standard affine neiborhood of pS . Thus pI = 0 ∈ V ⊂ CI = CII .
Given a W -subrepresentation V ⊂ CI , we define the following three spaces
with W -actions:

• U(V ) := V ∩ (C×)I , the complement of the coordinate hyperplane
arrangement in V .

• Y (V ) := V ⊂
(
CP 1

)I
, the Schubert variety of V (see [AB16] or

[PXY, Section 7]).
• X(V ) := Y (V ) ∩ CI∅ , the reciprocal plane of V .

Note that Y (V ) is a compactification of U(V ), while V and X(V ) are each
partial compactifications of U(V ).

Let CWM,i denote the coefficient of ti in the equivariant Kazhdan–Lusztig

polynomial PWM (t) of W y M . The following theorem appears in [GPY17,
Corollary 2.12] as an application of the work in [PWY16, Section 3].

Theorem 2.1. If V ⊂ CI is an equivariant realization of W y M , then
CWM,i is isomorphic as a representation of W to the intersection cohomology

group IH2i
(
X(V );C

)
. In particular, CWM,i is an honest (not just virtual)

representation.

Let In :=
{

(i, j) | i 6= j ∈ [n]
}

, and let Mn be the matroid on the
ground set In whose bases consist of oriented spanning trees for the complete
graph on n vertices. We will refer to Mn as the braid matroid, which comes
equipped with a natural action of the symmetric group Sn.

Remark 2.2. It is more standard to define the braid matroid on the ground
set of unordered pairs of elements of [n]. Our matroid Mn is not simple (for
any i 6= j, the set {(i, j), (j, i)} is dependent), and its simplification is Sn-
equivariantly isomorphic to the usual braid matroid. In particular, they
have the same lattice of flats (see Section 3 for the definition of a flat), and
therefore the same equivariant Kazhdan–Lusztig polynomial. We prefer the
ordered version because it is equivariantly realizable (as we explain below),
thus we may apply Theorem 2.1.

Consider the linear map f : Cn → CIn given by fij(z1, . . . , zn) = zi − zj .
The kernel of f is equal to the diagonal line C∆ ⊂ Cn, so f descends to an
inclusion of Vn := Cn/C∆ into CIn , which gives an equivariant realization
of Cn. Let Un := U(Vn), Yn := Y (Vn), and Xn := X(Vn). The space Un
may be identified with the configuration space of n distinct labeled points
in C, modulo simultaneous translation. Informally, Vn is obtained from
Un by allowing the distances between points to go to zero, the reciprocal
plane Xn is obtained from Un by allowing the distances between points to
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go to infinity, and the Schubert variety Yn is obtained from Un by allowing
distances between points to go to either zero or infinity.

Remark 2.3. The reciprocal plane Xn may also be described as the spec-

trum of the subring C
[

1
xi−xj | i 6= j

]
of the ring of rational functions on Cn.

More generally, X(V ) is isomorphic to the spectrum of the subring of ratio-
nal functions on V generated by the reciprocals of the coordinate functions.
This ring is called the Orlik–Terao algebra of V ⊂ CI .

The nonequivariant Kazhdan–Lusztig polynomial of Mn for n ≤ 20 ap-
pears in [EPW16, Section A.2]. The first few coefficients of this polynomial
can be expressed in terms of Stirling numbers [EPW16, Corollary 2.24 and
Proposition 2.26]. The same can be said of all of the terms, but the ex-
pressions become increasingly complicated. Indeed, the ith coefficient can
be expressed as an alternating sum of i-fold products of Stirling numbers,
where the number of summands is equal to 2 · 3i−1 [PXY, Corollary 4.5].
We also made a conjecture about the leading term when n is even [EPW16,
Section A]. The degree of the Kazhdan–Lusztig polynomial is by definition
strictly less than half of the rank of the matroid, so the largest possible
degree of PM2i(t) is i− 1.

Conjecture 2.4. For all i > 0, CM2i,i−1 = (2i− 3)!!(2i− 1)i−2, the number
of labeled triangular cacti on (2i− 1) nodes [Slo14, Sequence A034941].

The equivariant Kazhdan–Lusztig polynomial of the braid matroid is even
more difficult to understand. The linear term is computed in [GPY17,
Proposition 4.4], and we also compute the remaining coefficients for n ≤ 9
[GPY17, Section 4.3]. We also give a functional equation that characterizes
the generating function for the Frobenius characteristics of the equivariant
Kazhdan–Lusztig polynomials [GPY17, Equation (7)], but we do not know
how to solve this equation.

3. The spectral sequence

In this section we explain how to construct a spectral sequence to com-
pute the intersection cohomology of the reciprocal plane, which we will later
use to endow the Kazhdan–Lusztig coefficients of braid matroids with an
FS-module structure. This construction appears for a particular example in
[PWY16, Section 3], and we make some remarks there about how to gener-
alize the construction to arbitrary V ⊂ CI . We will give the construction
in full generality here, taking care to emphasize the functoriality, which will
be crucial for our application in Section 6.

A subset F ⊂ I is called a flat of M if there exists a point v ∈ V such
that F = {i | vi = 0}. Given a flat F , let V F := V ∩ CF c ⊂ CF c

and let
VF ⊂ CF be the image of V along the projection CI � CF . The dimension
of VF is called the rank of F , while the dimension of V F is called the corank.
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Given a flat F ⊂ I, let Y (V )F :=
{
p ∈ Y (V ) | pi =∞⇔ i ∈ F c

}
. Then

we have

(1) Y (V ) =
⊔
F

Y (V )F

and Y (V )F ∼= VF for all F [PXY, Lemmas 7.5 and 7.6]. This affine paving
may also be described as the orbits of a group action. The additive group
C acts on CP 1 = C ∪ {∞} by translations; taking products, we obtain an

action of CI on
(
CP 1

)I
. The subgroup V ⊂ CI acts on the subvariety

Y (V ) := V ⊂
(
CP 1

)I
, and the subset Y (V )F is equal to the orbit of the

point pF ∈ Y (V ). The stabilizer of pF is equal to V F ⊂ V , and the orbit is
therefore isomorphic to V/V F ∼= VF .

For any flat F ⊂ I, there is a canonical inclusion

εF : X(V F ) ↪→ Y (V ) ∩ CIF
defined explicitly by the formula

εF (p) :=

{
pi if i ∈ F c

0 if i ∈ F .

In particular, εF (∞) = pF . Consider the map

ϕF : V ×X(V F ) −→ Y (V )

(v, p) 7−→ v · εF (p).

If we choose a section s : VF → V of the projection πF : V → VF , then the
restriction of ϕF to s(vF ) × X(V F ) is an open immersion. In particular,
for every v ∈ V , the map ϕF,v : X(V F ) → Y (V ) taking p to ϕF (v, p) is a
normal slice to the stratum VF ⊂ Y (V ) at the point ϕF,v(∞) = πF (v) ∈ VF .

Intersecting the stratification in Equation (1) with CI∅ , we obtain a strat-
ification

X(V ) =
⊔
F

U(VF )

of the reciprocal plane X(V ), which can be used to construct a spectral
sequence that computes the intersection cohomology of X(V ).

Theorem 3.1. Let W be a finite group acting on I, and let V ⊂ CI be
a W -subrepresentation. There exists a first quadrant cohomological spectral
sequence E(V, i) in the category of W -representations with

E(V, i)p,q1 =
⊕

crkF=p

H2i−p−q(U(VF );C
)
⊗ IH2(i−q)(X(V F );C

)
,

converging to IH2i(X(V );C).

Proof. Let ιF : VF → Y (V ) denote the inclusion of the stratum of Y (V )
indexed by F , which restricts to the inclusion ιF : U(VF ) → X(V ) of the
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corresponding stratum of X(V ). The stratification of X(V ) induces a filtra-
tion by supports on the complex of global sections of an injective resolution
of the intersection cohomology sheaf ICX(V ). This filtered complex gives
rise to a spectral sequence E(V ) with

E(V )p,q1 =
⊕

crkF=p

Hp+q
(
ι!F ICX(V )

)
converging to IH∗(X(V );C) [BGS96, Section 3.4].

The sheaf ι!F ICX(V ) is a priori a local system on U(V F ) with fibers equal
to the compactly supported intersection cohomology of the stalks of ICX(V ).

However, since X(V ) is open in Y (V ), the sheaf ι!F ICX(V ) on U(VF ) coin-

cides with the restriction of the sheaf ι!F ICY (V ) on VF . Since VF is a vector
space, this local system is trivial. Even better, we have a canonical trivializa-
tion. For any vF ∈ VF , we can choose v ∈ V with πF (v) = vF , and the slice
ϕF,v : X(V F ) → Y (V ) induces an isomorphism from the fiber of ι!F ICY (V )

to the compactly supported intersection cohomology group IH∗c
(
X(V F );C

)
.

Since the kernel V F of πF is connected, this isomorphism does not depend
on the choice of v. Thus we have a canonical isomorphism

E(V )p,q1 =
⊕

crkF=p

⊕
j+k=p+q

Hj
(
U(VF );C

)
⊗ IHk

c

(
X(V F );C

)
.

We now consider the weight filtration on E(V ), and pass to the maximal
subquotient E(V, i) of weight 2i. The group Hj

(
U(VF );C

)
is pure of weight

2j [Sha93]; the groups IHk
c

(
X(V F );C

)
and IHk

(
X(V );C

)
are both pure of

weight k, and they vanish when k is odd [EPW16, Proposition 3.9]. This
implies that

E(V, i)p,q1 =
⊕

crkF=p

H2j−p−q(U(VF );C
)
⊗ IH2(p+q−i)

c

(
X(V F );C

)
,

and that E(V, i) converges to IH2i
(
X(V );C

)
. Finally, we observe that

dimX(V F ) = crkF = p, so Poincaré duality gives us an isomorphism

IH
2(p+q−i)
c

(
X(V F );C

) ∼= IH2(i−q)(X(V F );C
)
. �

Remark 3.2. The proof of Theorem 3.1 for a particular class of examples
appears in [PWY16, Proposition 3.3]. The argument here is essentially the
same. Indeed, we implicitly used Theorem 3.1 in the proof of Theorem 2.1,
which originally appeared in [GPY17, Corollary 2.12]. The only new in-
gredient here is an emphasis of the fact that the local system ι!F ICX(V ) is
canonically trivialized, which we need in order to make sense of Theorem 3.3.
We are grateful to Tom Braden for explaining to us how this works.

Next, we will show that for every flat F ⊂ I, we obtain a canonical map
from E(V, i) to E(V F , i), which we will describe explicitly. The cohomology
of U(V ) is generated by degree 1 classes {ωi | i ∈ I}. Explicitly, we have
ωi = [d log zi], where zi is the coordinate function on U(V ) ⊂ CII .
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Theorem 3.3. Suppose that F ⊂ I is a flat.

(1) There is a canonical map of graded vector spaces

IH∗
(
X(V );C

)
→ IH∗

(
X(V F );C

)
,

equivariant for the stabilizer WF ⊂W of F .
(2) There is a canonical map of spectral sequences

E(V, i)→ E(V F , i),

equivariant for the stabilizer WF ⊂ W of F , converging to the map
in part (1).

(3) If G ⊃ F , then the compositions

IH∗
(
X(V );C

)
→ IH∗

(
X(V F );C

)
→ IH∗

(
X(V G);C

)
and

E(V, i)→ E(V F , i)→ E(V G, i)

coincide with

IH∗
(
X(V );C

)
→ IH∗

(
X(V G);C

)
and E(V, i)→ E(V G, i).

(4) The map from

E(V, i)p,q1 =
⊕

crkG=p

H2i−p−q(U(VG);C
)
⊗ IH2(i−q)(X(V G);C

)
to

E(V F, i)p,q1 =
⊕
G⊃F

crkG=p

H2i−p−q(U(V F
G );C

)
⊗ IH2(i−q)(X(V G);C

)
kills summands with G 6⊃ F . If G ⊃ F and i ∈ G, then the map on G
summands is induced by the map H1

(
U(VG);C

)
→ H1

(
U(V F

G );C
)

obtained by setting ωi equal to zero for all i ∈ F .

Proof. For any point vF ∈ U(VF ) ⊂ VF , we have a map

IH∗
(
X(V );C

)
→ H∗

(
ICX(V ),vF

) ∼= H∗
(
ICY (V ),vF

)
∼= H∗

(
ICX(V F ),∞

)
∼= IH∗

(
X(V F );C

)
,

where the second isomorphism is induced by the slice

ϕF,v : X(V F )→ Y (V )

for any v ∈ V such that πF (v) = vF and the third isomorphism is induced
by the contracting action of C× on X(V F ) [Spr84, Corollary 1]. As before,
the fact that this map is independent of the choice of v follows from the fact
that the kernel V F of πF is connected. Since the codimension p strata of
X(V F ) coincide with the preimages of the codimension p strata of Y (V ),
the filtrations of ICY (V ),vF

∼= ICX(V F ),∞ induced by the two stratifications
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coincide, thus this map induces a map of spectral sequences associated with
the stratifications. This proves parts (1) and (2) of the theorem.

To prove part (3) of the theorem, choose generic elements v, v′ ∈ V and
v′′ ∈ V F such that v = v′ + v′′. We then have maps

ϕG,v : X(V G)→ Y (V ), ϕF,v′ : X(V F )→ Y (V ),

and

ϕFG,v′′ : X(V G)→ Y (V F ).

If p ∈ X(V G) is sufficiently close to the point∞ (more precisely, if |pi| > |v′′i |
for all i ∈ Gc), then ϕFG,v′′(p) ∈ X(V F ). Thus the composition ϕF,v′ ◦ ϕFG,v′′
is well defined in a neighborhood of∞ ∈ X(V G), and on that neighborhood
we have

ϕG,v = ϕF,v′ ◦ ϕFG,v′′ .
Since the maps in parts (1) and (2) are determined by the behavior of the
slice map in a neighborhood of ∞, this implies that the maps compose as
desired.

To prove part (4) of the theorem, we need to understand explicitly the
map from the G stratum of X(V F ) to the G stratum of Y (V ). Specifically,
if p ∈ U(V F

G ), and i ∈ G, then

ϕF,v(p)i =

{
pi + vi if i ∈ F c

vi if i ∈ F .

As in the previous paragraph, if we restrict to the open set B ⊂ U(V F
G ) on

which each pi has norm larger than |vi|, then our map will take values in
U(VG). Note that B is homotopy equivalent to U(V F

G ), and the map in the
spectral sequence is determined by the pullback map from H∗

(
U(VG);C) to

H∗(B;C) ∼= H∗
(
U(V F

G );C
)
.

Let zi be the ith coordinate function on U(VG), so that ωi = [d log zi]. If
i ∈ F , then zi pulls back to a constant function, so ωi pulls back to zero. If
i ∈ Gr F , then zi pulls back to zi − vi, so ωi pulls back to

[d log(zi − vi)] = [d log(zi · (1− vi/zi))]
= [d log zi] + [d log(1− vi/zi)]
= ωi + [d log(1− vi/zi)].

Since the norm of zi is always greater than the norm of vi on B, the real
part of 1 − vi/zi is always positive, which implies that d log(1 − vi/zi) is
exact. Thus ωi pulls back to ωi, as desired. �

We now unpack Theorem 3.1 in the special case where I = In and V = Vn.
In this case, flats are in bijection with set-theoretic partitions of [n]. More
precisely, given a partition of [n], the set of all ordered pairs (i, j) such that
i and j lie in the same block of the partition is a flat, and every flat arises in
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this way. A flat of corank p corresponds to a partition into p+1 (unlabeled)
blocks P1, . . . , Pp+1. Given such a flat F , we have

U((Vn)F ) ∼= U|P1| × · · · × U|Pp+1|

and X(V F
n ) ∼= Xp+1. In order to clarify the issue of labeled versus unlabeled

partitions, we make the following definitions:

Ap,qi (n)

:=
⊕

f :[n]�[p+1]

H2i−p−q

(
U|f−1(1)| × · · · × U|f−1(p+1)|;C

)
⊗ IH2(i−q)(Xp+1;C)

and
Bp,q
i (n) := Ap,qi (n)Sp+1 ,

where Sp+1 acts on [p + 1]. Thus we have the following corollary of Theo-
rem 3.1.

Corollary 3.4. There exists a first quadrant cohomological spectral sequence
E(n, i) in the category of Sn-representations with E(n, i)p,q1 = Bp,q

i (n)∗ con-
verging to IH2i(Xn).

Remark 3.5. The reason for using homology rather than cohomology in the
definition of Ap,qi (n) (and then undoing this by dualizing in Corollary 3.4)
will become clear in Section 6. Briefly, the explanation is that intersection
cohomology admits the structure of an FS-module and intersection homology
admits the structure of an FSop-module, and it is the FSop-module structure
that will prove to be more useful.

4. FS-modules and FSop-modules

Let FS be the category whose objects are nonempty finite sets and whose
morphisms are surjective maps. An FS-module is a covariant functor from
FS to the category of complex vector spaces, and an FSop-module is a con-
travariant functor from FS to the category of complex vector spaces. If N
is an FS-module or an FSop-module, we write N(n) := N([n]), which we re-
gard as a representation of the symmetric group Sn = AutFS([n]). Let FA be
the category whose objects are nonempty finite sets and whose morphisms
are all maps.

For any positive integer m, let Pm := C{HomFS(−, [m])} be the FSop-
module that takes a finite set E to the vector space with basis given by
surjections from E to [m]; this is a projective FSop-module called the prin-
cipal projective at m. We say that an FSop-module N is finitely generated if
it is isomorphic to the quotient of a finite sum of principal projectives, and
we say that it is finitely generated in degrees ≤ d if one only needs to use
Pm for m ≤ d. This is equivalent to the statement that, for any finite set
E and any vector v ∈ N(E), we can write v as a finite linear combination
of elements of the form f∗(x), where f : E � [m] and x ∈ N(m) for some
m ≤ d.
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We call an FSop-module d-small if it is a subquotient of a module that is
finitely generated in degrees ≤ d. A d-small FSop-module is always finitely
generated [SS17, Corollary 8.1.3], but not necessarily in degrees ≤ d.

For any partition λ = (λ1, . . . , λ`(λ)) ` n, let Vλ be the corresponding
irreducible representation of Sn. If λ is a partition of k and n ≥ k + λ1, let
λ(n) be the partition of n obtained by adding a part of size n− k. For any
FSop-module N , consider the ordinary generating function

HN (u) :=
∞∑
n=1

undimN(n),

and the exponential generating function

GN (u) :=

∞∑
n=1

un

n!
dimN(n).

For any natural number d, let

rd(N) := lim
n→∞

dimN(n)

dn
,

which may or may not exist. The statements and proofs of the following
results were communicated to us by Steven Sam.

Theorem 4.1. Let N be a d-small FSop-module.

(1) If λ ` n and HomSn(Vλ, N(n)) 6= 0, then `(λ) ≤ d.
(2) For any partition λ with n ≥ |λ| + λ1, dimHomSn

(
Vλ(n), N(n)

)
is

bounded by a polynomial in n of degree at most d− 1.
(3) The ordinary generating function HN (u) is a rational function whose

poles are contained in the set {1/j | 1 ≤ j ≤ d}.
(4) There exists polynomials p0(u), . . . , pd(u) such that the exponential

generating function GN (u) is equal to

d∑
j=0

pj(u)eju.

(5) The function HN (u) has at worst a simple pole at 1/d. Equivalently,
the limit rd(N) exists, and the polynomial pd(u) in statement (4) is
the constant function with value rd(N).

Proof. To prove statements (1) and (2), it is sufficient to prove them for the
principal projective Pm for all m ≤ d. Let Qm(−) := C{HomFA(−, [m])},
so that Pm is a submodule of Qm. Then Qm(n) ∼= (Cm)⊗n, and Schur–
Weyl duality tells us that the multiplicity of Vλ in this representation is
equal to the dimension of the representation of GL(m;C) indexed by λ. In
particular, it is zero unless λ has at most m parts, and the dimension of the
representation indexed by λ(n) is bounded by a polynomial in n of degree
at most m− 1. Statements (1) and (2) follow for Qm, and therefore for Pm.
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If N ′ is finitely generated in degrees ≤ d, then statement (3) holds for N ′

by [SS17, Corollary 8.1.4]. If N is a subquotient of N ′, then it is still finitely
generated in degrees ≤ r for some r, so statement (3) holds for N with d
replaced by r. But, since N is a subquotient of N ′, we have

dimN(n) ≤ dimN ′(n)

for all n, which implies that ej = 0 for all j ≤ r.
Statement (4) follows from statement (3) by finding a partial fractions

decomposition of the ordinary generating function, as observed in [SS17,
Remark 8.1.5].

To prove statement (5), it is again sufficient to consider Pm for all m ≤ d.
We have

dimPm(n) = |HomFS([n], [m])| ≤ |HomFA([n], [m])| = mn ≤ dn.
Since N is a subquotient of a finite direct sum of modules of this form, the
dimension of N(n) is bounded by a constant times dn. �

We now record a pair of lemmas that say that certain natural construc-
tions preserve smallness.

Lemma 4.2. Fix a natural number k, a k-tuple (d1, . . . , dk) of natural num-
bers, and a collection of FSop-modules N1, . . . , Nk such that Ni is di-small.
Let d = d1 + · · ·+ dk. Then the FSop-module N given by the formula

N(E) :=
⊕

f :E�[k]

N1(f−1(1))⊗ · · · ⊗Nk(f
−1(k))

is d-small.

Proof. Since d-smallness is preserved by taking direct sums and passing to
subquotients, we may assume that Ni = Pmi for some mi ≤ di. Then

N(E) ∼=
⊕

f :E�[k]

Pm1(f−1(1))⊗ · · · ⊗ Pmk
(f−1(k))

∼=
⊕

f :E�[k]

C
{

HomFS

(
f−1(1), [m1]

)}
⊗ · · · ⊗ C

{
HomFS

(
f−1(k), [mk]

)}
∼=

⊕
f :E�[k]

C
{

HomFS

(
f−1(1), [m1]

)
× · · · ×HomFS

(
f−1(k), [mk]

)}
∼= C

{
HomFS

(
E, [m1] t · · · t [mk]

)}
∼= C

{
HomFS

(
E, [m1 + · · ·+mk]

)}
∼= Pm1+···+mk

(E),

so N is d-small. �

Lemma 4.3. Let N be d-small and let S be any set. Let NS be the FS-
module defined by putting NS(E) := N(S tE) for all E, with maps defined
in the obvious way. Then NS is also d-small.
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Proof. As in the proof of Lemma 4.2, we may reduce to the case where
N = Pm for m ≤ d. In this case, it is sufficient to show that every surjection
f : S tE → [m] factors as g ◦ (idS t h), where g is a surjection from S t [j]
to [m] for some j ≤ m and h is a surjection from [m] to [j]. It is clear that
we can do this by taking j to be the cardinality of f(E). �

Remark 4.4. The functor N 7→ NS is called a shift functor, and the anal-
ogous operation for FI-modules has appeared in many contexts; see, for
example, [CEFN14, Section 2].

Finally, the following lemma will be needed in the proof of Theorem 6.1.

Lemma 4.5. Suppose that N → N ′ → N ′′ is a complex of d-small FSop-
modules, and let H denote its homology in the middle. If

rd(N) = 0 = rd(N
′′),

then
rd(H) = rd(N

′).

Proof. This follows from the fact that

dimN ′(n)− dimN(n)− dimN ′′(n) ≤ dimH(n) ≤ dimN(n)

and the definition of rd. �

5. Configurations of points in the plane

For any finite set E, let Conf(E) be the space of injective maps from E
to R2. Arnol’d [Arn69] proved that

H∗(Conf(E);C)

∼= ΛC [xij | i, j ∈ E]
/〈

xii, xij − xji, xijxjk + xjkxki + xkixij

〉
.

Let

H i(E) := H i(Conf(E);C),

Hi(E) := Hi(Conf(E);C) ∼= H i(Conf(E);C)∗.

Given a map f : E → F , we have a map H∗(Conf(E);C)→ H∗(Conf(F );C)
taking xij to xf(i)f(j). This gives H i the structure of an FA-module and Hi

the structure of an FAop-module. Since FS is a subcategory of FA, we may
regard H i as an FS-module and Hi as an FSop-module.

Proposition 5.1. The FSop-module H0 is 1-small. If i ≥ 1, then Hi is
2i-small and r2i(Hi) = 0.

Proof. We have H0
∼= P1, which is by definition 1-small. Since H∗(E) is

generated in degree 1, H i(E) is a quotient of H1(E)⊗i. This means that
Hi(E) is a subspace of H1(E)⊗i, thus to prove 2i-smallness it will suffice to
show that H1 is finitely generated in degrees ≤ 2. We begin by showing that
H1 is finitely generated in degrees ≤ 3. Let E be any set; the group H1(E)
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has a basis {eij}, dual to the basis {xij} for H1(E). Let i 6= j be elements of
E, and consider the map E → {1, 2, 3} taking i to 1, j to 2, and everything
else to 3. The induced map H1({1, 2, 3}) → H1(E) takes e12 to eij , so we
obtain a surjective map from the projective module P{1,2,3} to H1(E).

To get down from 3 to 2, consider the parity map {1, 2, 3} → {1, 2}.
The induced map H1({1, 2}) → H1({1, 2, 3}) takes e12 to e12 + e23. By
symmetry, we can vary the map and obtain e13 +e23 and e12 +e13 as images
of induced maps from H1({1, 2}) to H1({1, 2, 3}). Since these three vectors
span H1({1, 2, 3}), H1 is generated in degree 2.

For the last statement, we begin by noting that dimH1(n) =
(
n
2

)
, therefore

r2(H1) = lim
n→∞

2−n
(
n

2

)
= 0.

This implies r2i(H
⊗i
1 ) = r2(H1)i = 0. Since Hi ⊂ H⊗i1 , we have r2i(Hi) = 0,

as well. �

Remark 5.2. The second statement of Proposition 5.1 also follows from the
fact that H i is finitely generated as an FI-module [CEF15, Theorem 6.2.1].
(More generally, they prove this with R2 replaced by any connected, oriented
manifold of dimension greater than 1 with finite dimensional cohomology.)
This implies that the dimension of H i(n) grows as a polynomial in n [CEF15,
Theorem 1.5], thus the same is true for the dimension of the FSop-module
Hi(n) ∼= H i(n)∗.

For any p ≥ 0, let

Compp,i(E) :=
⊕

f :E�[p+1]

(
H•(f

−1(1))⊗ · · · ⊗H•(f−1(p+ 1))
)
i

∼=
⊕

f :E�[p+1]
i1+···+ip+1=i

Hi1(f−1(1))⊗ · · · ⊗Hip+1(f−1(p+ 1)).

It is clear that Compp,i comes endowed with a natural FSop-module struc-
ture.

Proposition 5.3. The FSop-module Compp,0 is (p+ 1)-small, and Compp,i
is (p+ 2i)-small for all i ≥ 1.

Proof. By Lemma 4.2 and Proposition 5.1 the summand of Compp,i corre-
sponding to the tuple (i1, . . . , ip+1) is (d+ 2i)-small, where d is the number
of k such that ik = 0. When i = 0, we have d = p + 1. When i > 0, the
maximum value of d is p. �

6. The main theorem

For any finite set E, let IE := {(i, j) | i 6= j ∈ E}, and define VE ⊂ CIE in
a manner analogous to the definition of Vn ⊂ CIn in Section 6. In particular,
we have I[n] = In and V[n] = Vn. Define the reciprocal plane XE := X(VE),
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and let Di(E) := IH2i
(
XE ;C

)
. By Theorem 2.1, Di(E) is the ith Aut(E)-

equivariant Kazhdan–Lusztig coefficient of the matroid ME associated with
the complete graph on the vertex set E. In particular, if we take E = [n],

we have Di(n) = CSn
Mn,i

.
A surjective map of sets E → F is equivalent to the data of a partition

of E along with a bijection between F and the set of parts of the partition.
A partition of E determines a flat of ME , and the bijection between F and
the set of parts of the partition determines an isomorphism from XF to
X
(
(VE)F

)
. Thus, Theorem 3.3(1) gives us a map from Di(E) to Di(F ), and

the first half of Theorem 3.3(3) tells us that Di is an FS-module.
For any nonnegative integers p, q, define

Ap,qi (E) := Compp,2i−p−q(E)⊗D∗i−q(p+ 1).

Since Compp,2i−p−q is an FSop-module with an action of the symmetric group
Sp+1 (given by permuting the pieces of the composition) and Di−q(p + 1)∗

is a fixed vector space equipped with an action of Sp+1, Ap,qi inherits the
structure of an FSop-module with an action of the symmetric group Sp+1.
Let Bp,q

i := (Ap,qi )Sp+1 be the invariant submodule, and let (Bp,q
i )∗ be the

dual FS-module. By Corollary 3.4, we have a first quadrant cohomological
spectral sequence with E1 page Bp,q

i (E)∗ that converges to Di(E). By the
second half of Theorem 3.3(3), each (Bp,q

i )∗ admits the structure of an FS-
module such that the FS-module maps commute with the differentials in the
spectral sequence. By Theorem 3.3(4), the FS-module structure on (Bp,q

i )∗

coming from Theorem 3.3(3) coincides with the FS-module structure that
we defined explicitly.

Theorem 6.1. For all i ≥ 1, the FSop-module D∗i is 2i-small, and we have

r2i(D
∗
i ) =

dimDi−1(2i)

(2i)!
.

Proof. We first prove thatD∗i is 2i-small. Since smallness is preserved under
taking subquotients, it suffices to prove that Bp,q

i is 2i-small for all p and
q. Since Bp,q

i ⊂ A
p,q
i , it suffices to prove it for Ap,qi . By Proposition 5.3 and

the fact that smallness is preserved by taking a tensor product with a fixed
vector space, Ap,qi is (p+1)-small when p+q = 2i and (p+2(2i−p−q))-small
otherwise.

Consider the case where p + q = 2i. By definition of the equivariant
Kazhdan–Lusztig polynomial, Di(E) = 0 unless 2i < |E| − 1 or |E| = 1 and
i = 0. In particular, if p = 2i and q = 0, then Di−q(p + 1) = Di(2i) = 0,
and therefore Ap,qi = 0. Thus we may assume that p < 2i. Since Ap,qi is
(p+ 1)-small it is also 2i-small.

Next, consider the case where p+q < 2i, so Ap,qi is (p+2(2i−p−q))-small.
By the above vanishing property for Di(E), we have Di−q(p+ 1) = 0 unless
2(i− q) < p or p = 0 and q = i. Thus we may conclude that Ap,qi = 0 unless

p+ 2(2i− p− q) + p = 2(i− q)− p+ 2i < 2i or p = 0 and q = i.
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In particular, Ap,qi is 2i-small, and therefore so is D∗i .
This argument in fact proves that Ap,qi is (2i − 1)-small unless (p, q) =

(0, i) or (2i − 1, 1), and the same is therefore true for Bp,q
i . Furthermore,

we have B0,i
i
∼= Hi, and Proposition 5.1 tells us that r2i(Hi) = 0. Thus

r2i(B
p,q
i ) = 0 unless (p, q) = (2i − 1, 1), and Lemma 4.5 therefore tells us

that r2i(D
∗
i ) = r2i(B

2i−1,1
i ).

We have B2i−1,1
i

∼= (Comp2i−1,0)S2i ⊗D∗i−1(2i), where (Comp2i−1,0)S2i is
the FSop-module that takes E to a vector space with basis given by partitions
of E into 2i nonempty pieces. This means that dim(Comp2i−1,0)S2i(n) is
equal to the Stirling number of the second kind S(n, 2i), thus

r2i(D
∗
i ) = r2i(B

2i−1,1
i ) = lim

n→∞

dimB2i−1,1
i (n)

(2i)n

= lim
n→∞

S(n, 2i)dimDi−1(2i)

(2i)n

=
dimDi−1(2i)

(2i)!
,

and the theorem is proved. �

Let Hi(u) := HD∗i
(u) and Gi(u) := GD∗i (u). Note that, since represen-

tations of finite groups are self-dual, Hi(u) and Gi(u) may be regarded as
generating functions (ordinary and exponential) for the degree i Kazhdan–
Lusztig coefficients of braid matroids. The following corollary follows im-
mediately from Theorems 4.1 and 6.1.

Corollary 6.2. Let i be a positive integer.

(1) If λ ` n and HomSn(Vλ, Di(n)) 6= 0, then `(λ) ≤ 2i.
(2) For any partition λ with n ≥ |λ| + λ1, dimHomSn

(
Vλ(n), Di(n)

)
is

bounded by a polynomial in n of degree at most 2i− 1.
(3) The ordinary generating function Hi(u) is a rational function whose

poles are contained in the set {1/j | 1 ≤ j ≤ 2i}. Furthermore,
Hi(u) has at worst a simple pole at 1/2i.

(4) There exists polynomials p0(u), . . . , p2i(u) such that the exponential
generating function Gi(u) is equal to

d∑
j=0

pj(u)eju.

Furthermore, p2i(u) is equal to the constant polynomial with value

r2i(D
∗
i ) = dimDi−1(2i)

(2i)! .

Remark 6.3. Theorem 6.1 and Conjecture 2.4 combine to say that

r2i(D
∗
i ) =

(2i− 3)!!(2i− 1)i−2

(2i)!
=

(2i− 1)i−3

2i i!
.
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In particular, if Conjecture 2.4 is true (or more generally if Di−1(2i) 6= 0),
then Hi(u) does have a pole at 1/2i.

7. Examples

We now example the cases when i = 1 or 2 in greater detail.

Example 7.1. We first consider the case when i = 1. In [GPY17, Propo-
sition 4.4], we showed that HomSn(Vλ, D1(n)) = 0 for all λ with more than
2 rows, and that dimHomSn

(
V[k](n), D1(n)

)
is bounded by n/2 + 1 − k. By

[EPW16, Corollary 2.24], we have dimD1(n) = 2n−1−1−
(
n
2

)
, which implies

that

H1(u) =
u4

(1− u)3(1− 2u)

and

G1(u) =
1

2
+

(
u2

2
− 1

)
eu +

1

2
e2u.

In particular, r2(D∗1) = 1/2 = dimD0(2)/2!.

Example 7.2. We next consider the case when i = 2. By [EPW16, Corol-
lary 2.24], we have

dimD2(n) = s(n, n− 2)− S(n, n− 1)S(n− 1, 2) + S(n, 3) + S(n, 4),

where s(n, k) and S(n, k) are Stirling numbers of the first and second kind,
respectively. We have well-known generating function identities∑

n≥1

S(n, k)un =
uk∏k

j=1(1− ju)
,

as well as [Slo14, A000914]∑
n≥1

s(n, n− 2)un =
2u3 + u4

(1− u)5
.

Since S(n, n− 1)S(n− 1, 2) =
(
n
2

) (
2n−2 − 1

)
, it is not hard to show that∑

n≥1

S(n, n− 1)S(n− 1, 2)un =
u2

(1− 2u)3
− u2

(1− u)3
.

Putting it all together, we get

H2(u) =
2u3 + u4

(1− u)5
−
(

u2

(1− 2u)3
− u2

(1− u)3

)
+

u3

(1− u)(1− 2u)(1− 3u)
+

u4

(1− u)(1− 2u)(1− 3u)(1− 4u)

=
15u6 − 50u7 + 40u8 + 4u9

(1− u)5(1− 2u)3(1− 4u)
.
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After performing a partial fractions decomposition we find that

r4(D∗2) = 1
24 = 1

4!dimD1(4).

We do not have a general formula for the dimension of HomSn(Vλ, D2(n)),
but we have computed D2(n) for all n ≤ 9 [GPY17, Section 4.4], and it is
indeed the case in these examples that the multiplicity of Vλ in D2(n) is
zero whenever λ has more than 4 rows.

8. The relative case

Let Γ be a finite graph with vertex set V . For any finite set E, let Γ(E)
be the graph with vertex set V tE such that two elements of V are adjacent
if and only if they were adjacent in Γ, and elements of E are adjacent
to everything. We will define an FS-module structure on the ith Aut(E)-
equivariant Kazhdan–Lusztig coefficient DΓ

i (E) of the matroid associated
with the graph Γ(E), and prove that the dual FSop-module is 2i-small. If Γ
is the empty graph, then Γ(E) is just the complete graph on E, so we have
DΓ
i = Di.
We begin by generalizing the material in Section 5. Let Γ = (V,Q) be a

finite graph with vertex set V and edge set Q, and let Conf(Γ) be the set
of maps from V to R2 that send adjacent vertices to distinct points. We
have the following description of the cohomology ring of Conf(Γ) [OT92,
Theorems 3.126 and 5.89]:

H∗(Conf(Γ);C)

∼= ΛC[xq]q∈Q

/〈 k∑
j=1

(−1)jxq1 · · · x̂qj · · ·xqk
∣∣∣ (q1, . . . , qk) a closed path

〉

∼= the subring of all meromorphic differential forms on CV

generated by
dzi − dzj
zi − zj

for all {i, j} ∈ Q.

By definition, a map from Γ = (V,Q) to Γ′ = (V ′, Q′) is a map from V
to V ′ that takes Q to Q′. Given a map f : Γ → Γ′, we obtain a map
H∗(Conf(Γ);C) → H∗(Conf(Γ′);C) taking xq to xf(q). In particular, we

obtain an FA-module H i
Γ(E) := H i(Conf(Γ(E));C) and a dual FAop-module

HΓ
i (E) := Hi(Conf(Γ(E));C). As in the case where Γ is empty, we can

regard H i
Γ as an FS-module and HΓ

i as an FSop-module. The proof of the
following proposition is identical to the proof of Proposition 5.1.

Proposition 8.1. The FSop-module HΓ
0 is 1-small. If i ≥ 1, then HΓ

i is
2i-small and r2i(H

Γ
i ) = 0.

Given a graph Γ with vertex set V and a subset S ⊂ V , let ΓS be the
induced subgraph with vertex set S. Given a surjective map f : V → V ′, let
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Γf be the graph with vertex set V ′ whose edges are the images of edges of Γ
(ignoring loops and multiple edges). Fix a graph ∆ with vertex set [p+ 1],

and define CompΓ,∆
p,i (E) to be⊕

f :V tE�[p+1]

Γ(E)f=∆
Γ(E)f−1(j) connected ∀j

Hi

(
Conf

(
Γ(E)f−1(1)

)
× · · · × Conf

(
Γ(E)f−1(p+1)

)
;C
)
.

Given surjective maps g : E → F and f : V t F → [p + 1] such that
Γ(E)f−1(j) is connected for all j, we can compose f with g to obtain a sur-
jective map g∗f : V t E → [p + 1] with the property that Γ(E)(g∗f)−1(i)

is connected for all j and Γ(E)g
∗f = Γ(F )f . This observation allows us to

define an FSop-module structure on CompΓ,∆
p,i . Taking Γ to be the empty

graph and ∆ the complete graph, we have CompΓ,∆
p,i = Compp,i. The fol-

lowing proposition generalizes Proposition 5.3.

Proposition 8.2. The FSop-module CompΓ,∆
p,0 is (p+1)-small, and CompΓ,∆

p,i

is (p+ 2i)-small for all i ≥ 1.

Proof. Let CompΓ
p,i :=

⊕
∆ CompΓ,∆

p,i . We will prove that CompΓ
p,i is (p+1)-

small when i = 0 and (p + 2i)-small when i ≥ 1, and therefore so is
each of its summands. The above description of the cohomology ring of
Conf(Γ) in terms of meromorphic differential forms makes it clear that
H∗(Conf(Γ);C) is a subring of H∗(Conf(V );C), and therefore that the f -

summand of CompΓ,∆
p,i (E) is a quotient of the f -summand of Compp,i(V tE).

The proposition then follows from Proposition 5.3 and Lemma 4.3. �

We next generalize the material in Section 6. For any finite set E and
any nonnegative integers p, q, define

Ap,qΓ,i(E) :=
⊕

∆

CompΓ,∆
p,2i−p−q(E) ⊗ D∆

i−q
(
∅
)∗
.

As in the case where Γ is the empty graph, Ap,qΓ,i is an FSop-module with an

action of Sp+1, and we define the invariant FSop-module Bp,q
Γ,i := (Ap,qi )Sp+1

along with its dual FS-module (Bp,q
Γ,i)
∗. There is again a first quadrant

cohomological spectral sequence with E1 page Bp,q
Γ,i(E)∗ that converges to

DΓ
i (E), inducing an FS-module structure on DΓ

i .

Theorem 8.3. Let Γ be a graph with vertex set V . For all i ≥ 1, the
FSop-module (DΓ

i )∗ is 2i-small, and we have

r2i

(
(DΓ

i )∗
)

=
(2i)|V |dimDi−1(2i)

(2i)!
= (2i)|V |r2i(D

∗
i ).
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Proof. The same argument that we used in the proof of Theorem 6.1 shows

that (DΓ
i )∗ is 2i-small and r2i

(
(DΓ

i )∗
)

= r2i(B
2i−1,1
Γ,i ). Explicitly, we have

B2i−1,1
Γ,i (E) =

 ⊕
f :V tE�[2i]

D
Γ(E)f

i−1 (∅)∗
S2i

.

When E is large, Γ(E)f−1(j) is connected for all j and Γ(E)f is equal to
K2i for almost all maps f : V t E � [2i], and the number of such maps is

asymptotic to (2i)|V |+n. We therefore have

r2i(B
2i−1,1
Γ,i ) = lim

n→∞

(2i)|V |+ndimDi−1(2i)

(2i)n(2i)!
=

(2i)|V |dimDi−1(2i)

(2i)!
,

and the theorem is proved. �

References

[AB16] Ardila, Federico; Boocher, Adam. The closure of a linear space in a prod-
uct of lines. J. Algebraic Combin. 43 (2016) no. 1 199–235. MR3439307, Zbl
1331.05051, arXiv:1312.6874, doi: 10.1007/s10801-015-0634-x.

[Arn69] Arnol’d, Vladimir Igorevich. The cohomology ring of the group of dyed
braids. Mat. Zametki 5 (1969) 227–231. MR0242196.

[BGS96] Beilinson, Alexander; Ginzburg, Victor; Soergel, Wolfgang. Koszul
duality patterns in representation theory. J. Amer. Math. Soc. 9 (1996) no. 2
473–527. MR1322847, Zbl 0864.17006, doi: 10.1090/S0894-0347-96-00192-0.

[CEF15] Church, Thomas; Ellenberg, Jordan S.; Farb, Benson. FI-modules and
stability for representations of symmetric groups. Duke Math. J. 164 (2015)
no. 9 1833–1910. MR3357185, Zbl 1339.55004, arXiv:1204.4533.

[CEFN14] Church, Thomas; Ellenberg, Jordan S.; Farb, Benson; Nagpal, Rohit.
FI-modules over Noetherian rings. Geom. Topol. 18 (2014) no. 5 2951–2984.
MR3285226, Zbl 1344.20016, arXiv:1210.1854, doi: 10.2140/gt.2014.18.2951.

[EPW16] Elias, Ben; Proudfoot, Nicholas; Wakefield, Max. The Kazhdan–
Lusztig polynomial of a matroid. Adv. Math. 299 (2016) 36–70. MR3519463,
Zbl 1341.05250, arXiv:1412.7408, doi: 10.1016/j.aim.2016.05.005.

[Ged] Gedeon, Katie. Kazhdan-Lusztig polynomials of thagomizer matroids.
arXiv:1610.05349.

[GPY17] Gedeon, Katie; Proudfoot, Nicholas; Young, Benjamin. The equi-
variant Kazhdan–Lusztig polynomial of a matroid. J. Combin. Theory Ser.
A 150 (2017) 267–294. MR3645577, Zbl 1362.05131, arXiv:1605.01777,
doi: 10.1016/j.jcta.2017.03.007.

[OT92] Orlik, Peter; Terao, Hiroaki. Arrangements of hyperplanes. Grundlehren
der Mathematischen Wissenschaften [Fundamental Principles of Mathematical
Sciences], 300. Springer-Verlag, Berlin, 1992. xviii+325 pp. MR1217488, Zbl
0757.55001.

[Pir00] Pirashvili, Teimuraz. Dold–Kan type theorem for Γ-groups. Math.
Ann. 318 (2000) no. 2 277–298. MR1795563, Zbl 0963.18006,
doi: 10.1007/s002080000120.

[PWY16] Proudfoot, Nicholas; Wakefield, Max; Young, Ben. Intersection coho-
mology of the symmetric reciprocal plane. J. Algebraic Combin. 43 (2016) no. 1
129–138. MR3439303, Zbl 1331.05233, arXiv:1504.07348, doi: 10.1007/s10801-
015-0628-8.

http://www.ams.org/mathscinet-getitem?mr=3439307
http://zbmath.org/?q=an:1331.05051
http://zbmath.org/?q=an:1331.05051
http://arXiv.org/abs/1312.6874
http://dx.doi.org/10.1007/s10801-015-0634-x
http://www.ams.org/mathscinet-getitem?mr=0242196
http://www.ams.org/mathscinet-getitem?mr=1322847
http://zbmath.org/?q=an:0864.17006
http://dx.doi.org/10.1090/S0894-0347-96-00192-0
http://www.ams.org/mathscinet-getitem?mr=3357185
http://zbmath.org/?q=an:1339.55004
http://arXiv.org/abs/1204.4533
http://www.ams.org/mathscinet-getitem?mr=3285226
http://zbmath.org/?q=an:1344.20016
http://arXiv.org/abs/1210.1854
http://dx.doi.org/10.2140/gt.2014.18.2951
http://www.ams.org/mathscinet-getitem?mr=3519463
http://zbmath.org/?q=an:1341.05250
http://arXiv.org/abs/1412.7408
http://dx.doi.org/10.1016/j.aim.2016.05.005
http://arXiv.org/abs/1610.05349
http://www.ams.org/mathscinet-getitem?mr=3645577
http://zbmath.org/?q=an:1362.05131
http://arXiv.org/abs/1605.01777
http://dx.doi.org/10.1016/j.jcta.2017.03.007
http://www.ams.org/mathscinet-getitem?mr=1217488
http://zbmath.org/?q=an:0757.55001
http://zbmath.org/?q=an:0757.55001
http://www.ams.org/mathscinet-getitem?mr=1795563
http://zbmath.org/?q=an:0963.18006
http://dx.doi.org/10.1007/s002080000120
http://www.ams.org/mathscinet-getitem?mr=3439303
http://zbmath.org/?q=an:1331.05233
http://arXiv.org/abs/1504.07348
http://dx.doi.org/10.1007/s10801-015-0628-8
http://dx.doi.org/10.1007/s10801-015-0628-8


832 NICHOLAS PROUDFOOT AND BEN YOUNG

[PXY] Proudfoot, Nicholas; Xu, Yuan; Young, Ben. The Z-polynomial of a
matroid. arXiv:1706.05575.

[Sha93] Shapiro, Boris Zalmanovich. The mixed Hodge structure of the comple-
ment to an arbitrary arrangement of affine complex hyperplanes is pure. Proc.
Amer. Math. Soc. 117 (1993) no. 4 931–933. MR1131042, Zbl 0798.32029.

[Slo14] Sloane, Neil James Alexander. The On-Line Encyclopedia of Integer Se-
quences, 2014. http://oeis.org.

[Spr84] Springer, Tonny Albert. A purity result for fixed point varieties in flag
manifolds. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 31 (1984) no. 2 271–282.
MR0763421, Zbl 0581.20048.

[SS17] Sam, Steven V.; Snowden, Andrew. Gröbner methods for representations
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