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The fundamental theorem of affine
geometry on tori

Jacob Shulkin and Wouter van Limbeek

Abstract. The classical Fundamental Theorem of Affine Geometry
states that for n ≥ 2, any bijection of n-dimensional Euclidean space
that maps lines to lines (as sets) is given by an affine map. We consider
an analogous characterization of affine automorphisms for compact quo-
tients, and establish it for tori: A bijection of an n-dimensional torus
(n ≥ 2) is affine if and only if it maps lines to lines.
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1. Introduction

1.1. Main result. A map f : Rn → Rn is affine if there exists a real
n × n-matrix A and b ∈ Rn such that f(x) = Ax + b for all x ∈ Rn. The
classical Fundamental Theorem of Affine Geometry (hereafter abbreviated
as FTAG), going back to Von Staudt’s work in the 1840s [11], characterizes
invertible affine maps of Rn for n ≥ 2: Namely, if f : Rn → Rn is a bijection
so that for any line `, the image f(`) is also a line, then f is affine.

Since then, numerous generalizations and variations have been proven,
both algebraic and geometric. For example, on the algebraic side, there is
a version for for projective spaces (see, e.g., [2]), general fields k, and for
noninvertible maps (by Chubarev–Pinelis [4]). On the geometric side, an
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analogue of FTAG holds in hyperbolic geomety (see, e.g., [6]), as well as
in Lorentzian geometry, where the role of lines is played by lightcones (by
Alexandrov [1]).

All of these versions have in common that they are characterizations of
self-maps of the model space of the corresponding geometry (e.g., En,Hn,
or Pn). On the other hand, if X is some topological space, and C is a
sufficiently rich family of curves on X, then one can expect rigidity for self-
maps of X preserving C. In this light it seems reasonable to ask for the
following generalized version of the FTAG:

Question 1.1 (Generalized FTAG). Let M be an affine manifold of dimen-
sion > 1. Suppose that f : M → M is a bijection such that for any affine
line ` in M , the image f(`) is also an affine line (as a set). Is f affine?

Remark 1.2. Here by affine manifold and affine line, we use the language
of geometric structures: If M is a smooth manifold of dimension n, then
an affine structure on M is a covering of M by Rn-valued charts whose
transition functions are locally affine. An affine line in an affine manifold
M is a curve in M that coincides with an affine line segment in affine charts.
A map is affine if in local affine coordinates, the map is affine. See [5] for
more information on affine manifolds and geometric structures.

Remark 1.3. Of course one can formulate analogues of Question 1.1 for
the variations of FTAG cited above, e.g., with affine manifolds (affine lines)
replaced with projective manifolds (projective lines) or hyperbolic manifolds
(geodesics).

The only case in which Question 1.1 is known is the classical FTAG (i.e.,
M = An is affine n-space). Our main result is that Question 1.1 has a
positive answer for the standard affine torus:

Theorem 1.4. Let n ≥ 2 and let T = Rn/Zn denote the standard n-torus.
Let f : T → T be any bijection that maps lines to lines (as sets). Then f is
affine.

Remark 1.5. Note that f is not assumed to be continuous! Therefore
it is not possible to lift f to a map of Rn and apply the classical FTAG.
In addition, the proof of FTAG does not generalize to the torus setting:
The classical proof starts by showing that f maps midpoints to midpoints.
Iteration of this property gives some version of continuity for f , which is
crucial to the rest of the proof. The reason that f preserves midpoints
is that the midpoint of P and Q is the intersection of the diagonals of any
parallellogram that has PQ as a diagonal. This property is clearly preserved
by f .

There are several reasons this argument fails on the torus: First, any two
lines may intersect multiple, even infinitely many, times. Hence there is no
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hope of characterizing the midpoint as the unique intersection of two diago-
nals. And second, any two points are joined by infinitely many distinct lines.
Therefore there is no way to talk about the diagonals of a parallellogram.

In fact, these two geometric differences (existence of multiple intersections
and multiple lines between points) will play a crucial role in the proof of
Theorem 1.4.

Remark 1.6. The standard affine structure on the torus is the unique
Euclidean structure. However, there are other affine structures on the torus,
both complete and incomplete. We refer to [5] for more information. We do
not know whether a similar characterization of affine maps holds for these
other, non-Euclidean structures.

Finally, let us mention some related questions in (pseudo-)Riemannian
geometry. If M is a smooth manifold, then two metrics g1 and g2 on M are
called geodesically equivalent if they have the same geodesics (as sets). Of
course if M is a product, then scaling any factor will not affect the geodesics.
Are any two geodesically equivalent metrics isometric up to scaling on fac-
tors?

This is of course false for spheres (any projective linear map preserves
great circles), but Matveev essentially gave a positive answer for Riemannian
manifolds with infinite fundamental group [8]: If M admits two Riemannian
metrics that are geodesically equivalent but not homothetic, and π1(M) is
infinite, then M supports a metric such that the universal cover of M splits
as a Riemannian product.

Of course Matveev’s result makes no reference to maps that preserve
geodesics. The related problem for maps has been considered with a reg-
ularity assumption, and has been called the “Projective Lichnerowicz Con-
jecture” (PLC): First we say that a smooth map f : M → M of a closed
(pseudo-)Riemannian manifold M is affine if f preserves the Levi-Civita
connection ∇. Further f is called projective if ∇ and f∗∇ have the same
(unparametrized) geodesics. PLC then states that unless M is covered by
a round sphere, the group of affine transformations has finite index in the
group of projective transformations.

For Riemannian manifolds, Zeghib has proven PLC [12]. See also [10] for
an earlier proof by Matveev of a variant of this conjecture. In view of these
results, and Question 1.1, let us ask:

Question 1.7. Let M be a closed nonpositively curved manifold of dimen-
sion > 1 and let ∇ be the Levi-Civita connection. Suppose f : M →M is a
bijection (not necessarily continuous) that maps geodesics to geodesics (as
sets). Is f affine (i.e., smooth with f∗∇ = ∇)?

As far as we are aware, the answer to Question 1.7 is not known for any
choice of M . Theorem 1.4 is of course a positive answer to Question 1.7 for
the case that M = Tn is a flat torus.
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1.2. Outline of the proof. Let f : Tn → Tn be a bijection preserving
lines. The engine driving the proof is that f preserves the number of in-
tersections of two objects. A key observation is that affine geometry of Tn

allows for affine objects (lines, planes, etc.) to intersect in interesting ways
(e.g., unlike in Rn, lines can intersect multiple, even infinitely many, times).

In Section 2, we give a characterization of rational subtori in terms of
intersections with lines. This is used to prove that f maps rational subtori
to rational subtori.

Then we start the proof of Theorem 1.4. The proof is by induction on
dimension, and the base case (i.e., dimension 2) is completed in Sections 3
and 4. In Section 3, we start by recalling a characterization of the homology
class of a rational line in terms of intersections with other lines. This allows
us to associate to f an induced map A on H1(T

2), even though f is not
necessarily continuous. We regard A as the linear model for f , and the rest
of the section is devoted to proving f = A (up to a translation) on the
rational points Q2/Z2. In Section 4, we finish the proof by showing that
A−1 ◦ f is given by a (group) isomorphism on each factor of T 2 = S1 × S1.
We show this isomorphism lifts to a field automorphism of R, and hence is
trivial. This completes the proof of the 2-dimensional case

Finally in Section 5, we use the base case and the fact that f preserves
rational subtori (proven in Section 2), to complete the proof in all dimen-
sions.

1.3. Notation. We will use the following notation for the rest of the paper.
Let n ≥ 1. Then T = Rn/Zn will be the standard affine n-torus. If x ∈ Rn,
then [x] denotes the image of x in T . Similarly, if X ⊆ Rn is any subset,
then [X] denotes the image of X in T .

1.4. Acknowledgments. WvL would like to thank Ralf Spatzier for in-
teresting discussions on the geodesic equivalence problem, which sparked his
interest in Question 1.1. In addition we would like to thank Kathryn Mann
for conversations about the structure of homomorphisms of S1. This work
was completed as part of the REU program at the University of Michigan,
for the duration of which JS was supported by NSF grant DMS-1045119. We
would like to thank the organizers of the Michigan REU program for their
efforts. Finally, we would like to thank an anonymous referee for helpful
suggestions.

2. Rational subtori are preserved

Definition 2.1. Let n ≥ 1 and 1 ≤ k ≤ n. Set T = Rn/Zn. Then a k-plane
W in T is the image in T of an affine k-dimensional subspace V ⊆ Rn. Let
V0 be the translate of V containing the origin. If V0 is spanned by V0 ∩Qn,
we say W is rational. In this case we also say W is a rational subtorus of
dimension k. If k = 1, we also say W is a rational line.

The goal of this section is to show:
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Proposition 2.2. Let n ≥ 2 and 1 ≤ k ≤ n. Write T = Rn/Zn and let
f : T → T be a bijection that maps lines to lines. Then the image under
f of any rational k-dimensional subtorus is again a rational k-dimensional
subtorus.

For the rest of this section, we retain the notation of Proposition 2.2. We
start with the following criterion for subtori to be rational:

Lemma 2.3. Let W be a plane in T . Then the following are equivalent:

(i) W is rational.
(ii) W is compact.
(iii) Every rational line not contained in W intersects W at most finitely

many times.

Proof. The equivalence of (i) and (ii) is well-known. We prove (ii) =⇒ (iii).
First suppose that W is compact and let ` be any rational line not contained
in W . If ` ∩W = ∅, we are done. If w0 ∈ ` ∩W , we can translate ` and
W by −w0, so that we can assume without loss of generality that ` and W
intersect at 0. Then ` ∩W is a compact subgroup of T and not equal to `.
Because ` is 1-dimensional, any proper compact subgroup of ` is finite. This
proves ` and W intersect only finitely many times.

Finally we prove (iii) =⇒ (ii). Suppose that W is not compact. Then W
is a compact torus foliated by parallel copies of W . Let

ψ : U → Rk × Rn−k

be a chart near 0 ∈ T such that the slices Rk×{y}, y ∈ Rn−k, correspond to
the local leaves of the foliation. Since W is dense in W , there are infinitely
many values of y such that Rk × y ⊆ ψ(W ∩ U).

Now choose a rational line ` in W that is not contained in W but with
0 ∈ `. If the neighborhood U above is chosen sufficiently small, then ψ(`∩U)
intersects all leaves Rk × y. Since there are infinitely many values of y such
that Rk × y ⊆ ψ(W ), it follows that ` ∩W is infinite. �

Recall that we are trying to show that the image under f of any rational
subtorus is again a rational subtorus. We first show the image is a plane.

Claim 2.4. Let S be any rational subtorus of dimension k. Then f(S) is a
k-plane.

Proof. We induct on k = dim(S). The base case k = 1 is just the assertion
that f maps lines to lines.

Suppose now k ≥ 2 and that the claim holds for l-planes where l < k,
and let S be a rational k-dimensional subtorus. Choose some x0 ∈ S and
let S0 := S − x0 be the translate of S passing through 0. Let V0 ⊆ Rn be
the subspace that projects to S0. Since S is rational, we can choose a basis
v1, . . . , vk of V0 with vi ∈ Qn for every 1 ≤ i ≤ k.
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To use the inductive hypothesis, consider the (k − 1)-plane

V1 = span{v1, ..., vk−1}

and similarly V2 = span{v2, ..., vk}. For i = 1, 2, set Si := [Vi + x0]. Since vi
are rational vectors for each i, we clearly have that S1 and S2 are rational
(k − 1)-dimensional subtori. Also let S12 := S1 ∩ S2 be the intersection,
which is a (k − 2)-dimensional rational subtorus. The inductive hypothesis
implies that f(S1) and f(S2) and f(S12) are all rational subtori of T .

Since f(S1) and f(S2) are (k− 1)-planes that intersect in a (k− 2)-plane,
they span a k-dimensional plane. More precisely, let U1 (resp. U2) be the
subspace of Rn that projects to f(S1)− f(x0) (resp. f(S2)− f(x0)). Then
U1 and U2 are (k−1)-dimensional subspaces of Rn that intersect in a (k−2)-
dimensional subspace, and hence span a k-dimensional subspace U0. Then
the k-plane W := [U0] + f(x0) contains both f(S1) and f(S2).

We claim that f(S) = W . We start by showing the inclusion f(S) ⊆ W .
Let x ∈ S. If x ∈ S1 ∪ S2, then clearly f(x) ∈ W , so we will assume that
x ∈ S but x /∈ S1 ∪ S2.

Figure 1. A ball B ⊆ S2 such that lines from x to B meet S1.

Since S1 and S2 are closed codimension 1 submanifolds of S, there is an
open ball B ⊆ S2 such that for any y ∈ B, there is a line joining x and y
that intersects S1 (see Figure 1). Set Y := f(B). Since f sends lines to lines
and preserves intersections, f(x) is a point with the property that for any
y ∈ Y , there is a line `y joining f(x) and y that intersects f(S1). We claim
that this implies that f(x) ∈W .
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Write W1 := f(S1)− f(x0) for the translate of f(S1) that passes through
the origin. We can regard W1 as a subgroup of T . Recall that the inductive
hypothesis yields that W1 is a rational subtorus so that W1 is compact (see
Lemma 2.3). Consider the projection

π : T → T/W1.

The image π(W ) of W is a line because f(S1) has codimension 1 in W .
Further π(f(x)) is a point with the property that for any y ∈ Y , the line
π(`y) joins the point π(f(S1)) = π(f(x0)) and π(f(x)), and intersects π(W )
at the point π(y).

Note that there are only countably many lines from π(f(x0)) to π(f(x)),
and unless one of them is contained in π(W ), each one has at most count-
ably many intersections with the line π(W ). Since π(Y ) is uncountable, we
conclude that we must have that π(f(x)) ∈ π(W ), and hence f(x) ∈ W .
This proves that f(S) ⊆W .

To establish the reverse inclusion, we just apply the same argument to
f−1. The above argument then yields that f−1(W ) ⊆ S. Applying f gives
W ⊆ f(S), as desired. �

Actually the above proof also shows the following more technical state-
ment, which basically states that linearly independent lines are mapped to
linearly independent lines. We will not need this until Section 5, but it is
most convenient to state it here.

Lemma 2.5. Let S = [V ] be a rational subtorus containing 0, where V ⊆ Rn
is a subspace. For 1 ≤ i ≤ k := dim(S), let vi ∈ Qn such that v1, . . . , vk is
a basis for V . Set `i := [Rvi] and choose ui ∈ Qn such that f(`i) = [Rui].
Then

f(S) = [span{u1, . . . , uk}].

Proof. Recall that (with the notation of the proof of Claim 2.4), we have

U = span{u1, . . . , uk},

and we have shown f(S) = [U ], as desired. �

It remains to show that if S is a rational subtorus, then f(S) is also
rational. We first show this for S of codimension 1.

Claim 2.6. Let S ⊆ T be a rational codimension 1 subtorus. Then f(S) is
also rational.

Proof. Let S ⊆ T be a codimension 1 rational subtorus and let ` be any
rational line not contained in S. By Lemma 2.3 applied to S, we see that
` ∩ S is finite. Then f(`) and f(S) also intersect only finitely many times.

Suppose now that f(S) is not rational. Then f(S) is a connected com-
pact torus properly containing the codimension 1 plane f(S), and therefore
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f(S) = T , i.e., f(S) is dense in T . But if f(S) is dense, then it inter-
sects any line that is not parallel to S infinitely many times. We know that
f(`) is not parallel to f(S), because f(`) and f(S) intersect at least once.
On the other hand, f(`) and f(S) intersect finitely many times. This is a
contradiction. �

Finally we can finish the proof of Proposition 2.2.

Proof of Proposition 2.2. Note that if S1 and S2 are rational subtori,
then any component of S1∩S2 is also rational (e.g., by using that rationality
is equivalent to compactness).

Now let S be any rational subtorus of codimension l. Then we can choose
l rational codimension 1 subtori S1, . . . , Sl such that S is a component of
∩iSi. Since f is a bijection, we have

f(S) ⊆ f

 ⋂
1≤i≤l

Si

 =
⋂

1≤i≤l
f(Si)

and by Claim 2.6, we know that f(Si) are rational. Therefore f(S) is a
codimension l-plane contained in ∩if(Si). The components of ∩if(Si) have
codimension l, so we must have that f(S) is a component, and hence is
rational. �

3. The 2-dimensional case: affinity on rational points

The goal of this section is to prove a rational version Theorem 1.4 in
the two-dimensional case. More precisely, under the assumptions of Theo-
rem 1.4, we will prove that there is a linear automorphism A of T 2 such that,
up to a translation of T 2, we have f = A on Q2/Z2. In the next section, we
will complete the proof of the two-dimensional case by proving that, up to
a translation, f = A on all of T 2.

We start by recalling the following elementary computation of the number
of intersections of a pair of rational lines.

Proposition 3.1. Let `1 and `2 be two affine rational lines in the torus.
For i = 1, 2, let vi ∈ Z2 be a primitive tangent vector to the translate of `i
passing through 0 ∈ T 2. Then the number of intersections of `1 and `2 is
given by

|`1 ∩ `2| =

∣∣∣∣∣∣det

 | |
v1 v2
| |

∣∣∣∣∣∣ .
We now turn towards proving Theorem 1.4 in the two-dimensional case.

For the rest of this section, suppose f : T 2 → T 2 is a bijection that maps lines
to lines. Also let us fix the following notation: For i = 1, 2, set `i :=

[
Rei
]
.

We first make some initial reductions: By replacing f with

x 7→ f(x)− f(0),
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we can assume that f(0) = 0. For the next reduction, we need the following
claim.

Claim 3.2. There exists a linear automorphism A : T 2 → T 2 such that
A`i = f(`i) for i = 1, 2.

Proof. Since f(0) = 0, the lines f(`i) pass through 0. In addition, because
`i are rational, so are f(`i) (see Proposition 2.2). Therefore there are coprime
integers pi and qi such that

f(`i) =

[
R
(
pi
qi

)]
.

Note that `1 and `2 intersect exactly once, and hence so do f(`1) and f(`2).
By Proposition 3.1, the number of intersections is also given by

|f(`1) ∩ f(`2)| =
∣∣∣∣det

(
p1 p2
q1 q2

)∣∣∣∣ ,
so the linear transformation A : T 2 → T 2 with matrix

A =

(
p1 p2
q1 q2

)
is an automorphism, and clearly satisfies A`i = f(`i). �

Let A be as in Claim 3.2. Then by replacing f by A−1 ◦f , we can assume
that f(`i) = `i for i = 1, 2. Note that because each vi is only unique up to
sign, the matrix A is not canonically associated to f . Therefore we cannot
expect that A−1 ◦f = id, and we have to make one further reduction to deal
with the ambiguity in the definition of A. Let us introduce the following

notation: For a rational line ` =

[
R
(
p
q

)]
, let R(`) be the line obtained by

reflecting ` in the x-axis, i.e., R(`) =

[
R
(
p
−q

)]
.

Claim 3.3. Let ` be a rational line in T 2 passing through the origin. Then
f(`) = ` or f(`) = R(`).

Proof. Let p, q be coprime integers such that ` =

[
R
(
p
q

)]
. Also choose

coprime integers r, s such that f(`) =

[
R
(
r
s

)]
. We can compute p, q, r, s

as suitable intersection numbers. Indeed, we have

|p| =
∣∣∣∣det

(
p 0
q 1

)∣∣∣∣ = |` ∩ `2|.

Since f(`2) = `2 and f preserves the number of intersections of a pair of
lines, we see that

|p| = |` ∩ `2| = |f(`) ∩ `2| = |r|,



640 JACOB SHULKIN AND WOUTER VAN LIMBEEK

and similarly |q| = |s|. Therefore we find that

R
(
p
q

)
= R

(
r
s

)
or R

(
p
−q

)
= R

(
r
s

)
,

which exactly corresponds to ` = f(`) or R(`) = f(`). �

We will now show that whichever of the two alternatives of Claim 3.3
occurs does not depend on the line ` chosen.

Claim 3.4. Let ` be a rational line passing through the origin that is neither
horizontal nor vertical (i.e., ` 6= `i for i = 1, 2). Suppose that f(`) = `. Then
for any rational line m passing through the origin, we have f(m) = m.

Proof. Let p, q coprime integers such that ` =

[
R
(
p
q

)]
. Since ` is neither

vertical nor horizontal, we know that p and q are nonzero.
Now let m be any other rational line, and choose coprime integers r, s

such that m =

[
R
(
r
s

)]
. The number of intersections of ` and m is given

by

|` ∩m| =
∣∣∣∣det

(
p r
q s

)∣∣∣∣ = |ps− qr|.

We will argue by contradiction, so suppose that f(m) 6= m. Using the other
alternative of Claim 3.3 for m, we have that

|f(`) ∩ f(m)| =
∣∣∣∣det

(
p r
q −s

)∣∣∣∣ = |ps+ qr|.

Since f preserves the number of intersections, we therefore have

|ps− qr| = |ps+ qr|
which can only happen if ps = 0 or qr = 0. Since we know that p and q are
nonzero, we must have r = 0 or s = 0. This means that m is horizontal or
vertical, but in those cases the alternatives provided by Claim 3.3 coincide.

�

We can now make the final reduction: If f(`) = ` for any rational line `
through 0, then we leave f as is. In the other case, i.e., f(`) = R(`) for any
rational line ` through 0, we replace f by(

1 0
0 −1

)
◦ f,

after which we have f(`) = ` for any rational line ` passing through the
origin. After making these initial reductions, our goal is now to prove that
f = id on the rational points Q2/Z2. We start with the following easy
observation:

Claim 3.5. If ` and m are parallel lines in T , then f(`) and f(m) are also
parallel.



THE FUNDAMENTAL THEOREM OF AFFINE GEOMETRY ON TORI 641

Proof. Since dim(T ) = 2, two lines in T are parallel if and only if they do
not intersect. This property is obviously preserved by f . �

Combining our reductions on f so far with Claim 3.5 yields the following
quite useful property for f : Given any rational line `, the line f(`) is parallel
to `. However, we still do not know the behavior of f in the direction of `
or transverse to `. In particular we do not know

• whether or not f leaves invariant every line `; we only know this for
` passing through the origin, and
• whether or not f = id on rational lines ` passing through the origin.

We can now prove:

Theorem 3.6. For any rational point x ∈ Q2/Z2 we have f(x) = x.

Proof. For n > 2, set

Gn =

[
1

n
Z2

]
.

Clearly we have Q2/Z2 = ∪nGn, so it suffices to show that f = id on Gn
for every n > 2. We purposefully exclude the case n = 2 because G2 only
consists of 4 points, and this is not enough for the argument below. However,
since we have G2 ⊆ G6, this does not cause any problems. Fix n > 2.

Set Q :=

[
1

n

(
1
1

)]
.

Claim 3.7. If f(Q) = Q, then f = id on Gn.

Proof. Suppose that x =

[
x1
y1

]
is any point of Gn with f(x) 6= x. We can

choose x1 and y1 that lie in [0, 1). Write f(x) =

[
x2
y2

]
, where x2, y2 ∈ [0, 1).

Then there are two cases: Either x1 6= x2 or y1 6= y2. Clearly the entire
setup is symmetric in the two coordinates, so we will just consider the case
x1 6= x2. See Figure 2 for an illustration of the various lines introduced
below.

For a ∈ [0, 1), let va (resp. ha) denote the vertical (resp. horizontal)
line

[
x = a

]
(resp.

[
y = a

]
). Since f maps parallel lines to parallel lines

by Claim 3.5 and f(`i) = `i by assumption, we know that f maps vertical
(resp. horizontal) lines to vertical (resp. horizontal) lines. In particular we
have that f(vx1) = vx2 and f(hy1) = hy2 .

Consider the point z :=

[
x1,

1

n

]
∈ T 2. Since x ∈ Gn, there is an integer

0 ≤ a < n such that x1 =
a

n
. First note that a > 0: For if a = 0, then

x ∈ `2. Since f(`2) = `2, we see that x2 = 0 as well. This contradicts the
initial assumption that x1 6= x2.

Since a > 0, z lies on the line ` of slope
1

a
going through the origin. By

Claim 3.4 we have f(`) = `, so f(z) ∈ `.
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Figure 2. Illustration of the proof of Claim 3.7. The points
in aqua are the possibilities for f(z). The proof amounts to
showing all of these lie at different heights than z does.

In addition, since z ∈ vx1 , we have f(z) ∈ vx2 . An easy computation
yields

` ∩ vx2 =

[
x2
x2
a

]
+

1

a

[
0
Z

]
.

Since Q ∈ h 1
n

and f(Q) = Q by assumption, we have f(h 1
n

) = h 1
n

. Therefore

f(z) belongs to h 1
n
∩`∩vx2 . Since this intersection is nonempty, there exists

an integer k with 0 ≤ k < a such that

1

a
x2 +

k

a
≡ 1

n
mod Z.

Solving for k yields

k ≡ a

n
− x2 mod aZ.

Since 0 ≤ k < a and 0 < a < n and 0 ≤ x2 < 1, we see that the only option
is that k = 0. Hence x2 ≡ a

n ≡ x1 mod Z, which contradicts our initial
assumption that x1 6= x2. �

It remains to show that f(Q) = Q. Let us give a brief sketch of the
idea so that the subsequent algebraic manipulations are more transparent.
Consider the points P,R, S as shown in Figure 3.

Because P and Q lie on a vertical line, and f maps vertical lines to vertical
lines, f(P ) and f(Q) have to lie on the same vertical line. Because P lies
on the line of slope n − 1 through the origin, f(P ) also has to lie on this
line. Therefore however much P and f(P ) differ in the horizontal direction
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Figure 3. Quadrilateral in T 2 with vertices P,Q,R, S.

determines how much they differ in the vertical direction. Finally since P
and S lie on a horizontal line, the vertical difference between P and f(P )
equals the vertical difference between S and f(S). The upshot of this is
that any difference between Q and f(Q) translates into information about
the vertical difference between S and f(S).

The same reasoning with P replaced by R yields information about the
horizontal difference between S and f(S). Finally because S lies on a line
of slope 1 through the origin, any horizontal difference between S and f(S)
matches the vertical difference. Therefore the information gained about the
difference between S and f(S) using the two methods (once using P and
once using R) has to match. We will see that this forces f(Q) = Q.

Let us now carry out the calculations. Choose δ ∈
(
−1

n
,
n− 1

n

)
such

that

f(v 1
n

) = v 1
n

+

[
δ
0

]
,

so that f(P ) and f(Q) have first coordinate 1
n + δ. Note that the boundary

cases δ = − 1
n and δ = n−1

n are impossible since these imply f(v 1
n

) = `2.

Since Q lies on the line of slope 1 through the origin, we have

(3.1) f(Q) =


1

n
+ δ

1

n
+ δ





644 JACOB SHULKIN AND WOUTER VAN LIMBEEK

Since P lies on the line of slope n − 1 through the origin, there is some
integer kP such that

(3.2) f(P ) =


1

n
+ δ

n− 1

n
+ δ(n− 1)− kP

 .
Here we can choose kP such that

0 ≤ n− 1

n
+ δ(n− 1)− kP < 1.

Using that R lies on the line of slope 1
n−1 through the origin, we similarly

find an integer kR such that

0 ≤ n− 1

n
+

δ

n− 1
− kR < 1

and

f(R) =


n− 1

n
+

δ

n− 1
− kR

1

n
+ δ

 .
Finally, using that S lies on the same horizontal line as P , and on the same
vertical line as R, we find

(3.3) f(S) =


n− 1

n
+

δ

n− 1
− kR

n− 1

n
+ δ(n− 1)− kP

 .
Since S lies on the line of slope 1 through the origin, so does f(S). Setting
the two coordinates of f(S) given by Equation 3.3 equal to each other, we
find (after some simple algebraic manipulations):

(3.4) kP − kR = δ

(
n− 1− 1

n− 1

)
.

We can obtain one more equation relating kP and δ by noting that P lies
on the line of slope −1 through the origin, and hence so must f(P ). This
means that f(P ) is of the form (x, 1 − x). Using Equation 3.2, this gives
after some algebraic manipulations:

(3.5) kP = nδ

We can use Equation 3.5 to eliminate kP from Equation 3.4 to obtain:

(3.6) kR = δ

(
1 +

1

n− 1

)
.

Using that

− 1

n
< δ <

n− 1

n
,
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one easily sees that

−1 < kR < 1.

Since kR is also an integer, this forces kR = 0. Combining this with Equation
(3.6), we see that δ = 0. Therefore f(Q) = Q, as desired. �

This finishes the proof that f is affine on Q2/Z2. In the next section, we
will promote this to the entire torus.

4. The 2-dimensional case: end of the proof

At this point we know that the map f : T 2 → T 2 is a bijection sending
lines to lines, with the additional properties that:

• f = id on Q2/Z2.
• If ` is a line with rational slope α, then f(`) is also a line with slope
α.
• If ` has irrational slope, then so does f(`).

In this section we will prove that f = id on all of T 2. We start with the
following observation. Write T 2 = S1 × S1 and for x, y ∈ S1, write

f(x, y) = (f1(x, y), f2(x, y)).

Since f maps vertical lines to vertical lines, the value of f1(x, y) does not
depend on y. Similarly, the value of f2(x, y) does not depend on x. Hence
for i = 1, 2, there are functions fi : S1 → S1 such that

f(x, y) = (f1(x), f2(y)).

We actually have f1 = f2: Indeed, for any x ∈ S1, consider the point
p := (x, x) ∈ T 2. Since p lies on the line of slope 1 through the origin, so
does f(p) = (f1(x), f2(x)). Hence f1 = f2. We will write σ : S1 → S1 for
this map, so that

f(x, y) = (σ(x), σ(y))

for any x, y ∈ S1.
Let us now outline the proof that f = id. We first show that σ is a

homomorphism S1 → S1 (Claim 4.3), and then that σ lifts to a map

σ̃ : R→ R

(Claim 4.4). We finish the proof by showing that σ̃ is a field automorphism
of R and hence trivial (Claims 4.5–4.8).

We start with the observation that besides collinearity of points, f pre-
serves another geometric configuration:

Definition 4.1. A set of 4 points in T 2 is a block B if the points are the
vertices of a square all of whose sides are either horizontal or vertical, i.e.,
if we can label the points P,Q,R, S such that:

• P and Q lie on a horizontal line hx0 , and R and S lie on a horizontal
line hx1 .
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• P and R lie on a vertical line vy0 , and Q and S lie on a vertical
line vy1 .
• P and S lie on a line of slope 1, and Q and R lie on a line of slope −1.

It is immediate from the fact that f preserves horizontal lines, vertical
lines, and lines of slope ±1, that f preserves blocks. If B is a block, we will
denote the block obtained by applying f to the vertices of B by f(B). We
have the following useful characterization of blocks:

Lemma 4.2. Let x0, x1, y0, y1 ∈ S1. Then the collection of points (xi, yj)
where i, j ∈ {1, 2} form a block if and only if either

(1) x1 − x0 = y1 − y0, or
(2) x1 − x0 = y0 − y1

as elements of S1.

Proof. This immediately follows from the condition that the points (x0, y0)
and (x1, y1) lie on a line of slope 1. �

We have the following application of this characterization.

Claim 4.3. σ : S1 → S1 is a (group) isomorphism.

Proof. Since σ(0) = 0, it suffices to show that σ(x + y) = σ(x) + σ(y) for
all x, y ∈ S1. We will first show that this holds if y is rational. Consider
the block B consisting of the vertices (0, y), (0, x+ y), (x, y), and (x, x+ y).
The two alternatives of Lemma 4.2 applied to the block f(B) yield

(1) σ(x) = σ(x+ y)− σ(y), or
(2) σ(x) = σ(y)− σ(x+ y).

If (1) holds we are done. If (2) holds we reverse the roles of x, y (note that
we have not used yet that y is rational). Again we obtain either

σ(y) = σ(x+ y)− σ(x),

in which case we are done, or σ(y) = σ(x)−σ(x+ y). If the latter holds, we
find that 2(σ(x)− σ(y)) = 0, so that either σ(x) = σ(y) or σ(x) = σ(y) + 1

2 .
In either case, using that y = σ(y) is rational, we see that σ(x) is rational
as well, and hence we have x = σ(x). This finishes the proof under the
additional assumption that y is rational.

We will now show that σ(x+ y) = σ(x) + σ(y) for all x, y. Note that we
only used that y is rational in the above argument to deal with the final two
cases, where either σ(x) = σ(y) or σ(x) = σ(y) + 1

2 . We consider these two
cases separately.

Case 1. (σ(x) = σ(y)): Since σ is a bijection, we have x = y. Consider the
block B with vertices (0, x), (x, x), (0, 2x), (x, 2x). The two alternatives of
Lemma 4.2 for the block f(B) yield that either

(1) σ(x) = σ(2x)− σ(x), or
(2) σ(x) = σ(x)− σ(2x).
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In the first case we obtain that σ(2x) = 2σ(x), so that

σ(x+ y) = σ(2x) = 2σ(x) = σ(x) + σ(y).

If (2) holds, we have that σ(2x) = 0 and hence 2x = 0, so that x is rational
(in which case the claim is already proven).

Case 2. (σ(x) = σ(y) + 1
2): Since σ is additive if one of the variables is

rational, we see that

σ(x) = σ(y) +
1

2
= σ

(
y +

1

2

)
.

Since σ is a bijection, we must have x = y + 1
2 . Hence

σ(x+ y) = σ

(
2y +

1

2

)
= σ(2y) +

1

2

= 2σ(y) +
1

2
= σ

(
y +

1

2

)
+ σ(y)

= σ(x) + σ(y),

where on the second line we also use that σ(2z) = 2σ(z) for all z, which was
proven in the solution of Case 1. This completes the proof. �

For the remainder of this section, we introduce the following notation: If
α ∈ R, let `α be the line in T 2 of slope α through 0. Also recall that hα (resp.
vα) denotes the horizontal line [y = α] (resp. the vertical line [x = α]). We
use the homomorphism property of σ to provide a link between the σ and
the image under f of any line:

Claim 4.4. Let x0 ∈ R and let y0 be the slope of f(`x0). Then we have
y0 ≡ σ(x0) mod Z.

Proof. Since we already know that f preserves slopes of rational lines (see
the comment before Theorem 3.6), we can assume that x0 is irrational.
Consider the intersections of `x0 with the line v0 := [x = 0]. We have

`x0 ∩ v0 = {[0, kx0] | k ∈ Z}.
Let f(`x0) have slope y0. Then [0, σ(x0)] ∈ f(`x0) ∩ v0, so we can write

σ(x0) ≡ ky0 mod Z
for some k ∈ Z. On the other hand [0, y0] ∈ f(`x0) ∩ v0 = f(`x0 ∩ v0), so
there exists l ∈ Z such that y0 ≡ lσ(x0) mod Z. Hence we have

y0 ≡ lσ(x0) ≡ lky0 mod Z.
Since images under f of lines with irrational slope are irrational, and x0 is
irrational, we must have that y0 is irrational. Therefore we have lk = 1, so
that l = ±1.

It remains to show that k = 1. Suppose not, so that y0 ≡ −σ(x0) mod Z.
Write y0 = −σ(x0) + k0 for some k0 ∈ Z. Consider the intersections of `x0
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with the line v 1
3
. These occur at the points [13 ,

1
3x0 + lx0] for l ∈ Z. Now

application of f maps these points to intersections of f(`x0) and v 1
3
, which

are given by [13 ,
1
3y0 + ly0] for l ∈ Z. Consider the image of the point

[13 ,
1
3x0] ∈ `x0 ∩ v 1

3
. Then we can write

σ

(
1

3
x0

)
≡ 1

3
y0 + k3y0 mod Z

for some k3 ∈ Z. Now using that y0 = −σ(x0) + k0, we have

σ

(
1

3
x0

)
≡ −1

3
σ(x0) +

k0
3

+ k3σ(x0) mod Z.

Hence

σ(x0) ≡ 3σ

(
1

3
x0

)
≡ (3k3 − 1)σ(x0) mod Z.

Since σ(x0) /∈ Q, we must have 3k3 − 1 = 1, which is a contradiction. �

Consider now the map

σ̃ : R→ R

defined by σ̃(x0) := y0, where the image under f of a line with slope x0 has
slope y0. The claim above establishes that σ̃ is a lift of σ : S1 → S1. Also
note that because f preserves slopes of rational lines, we know that σ̃ = id
on Q. In the claims below we will establish that σ̃ is a field automorphism
of R and hence σ̃ = id.

Claim 4.5. For any integer a and x0 ∈ R, we have σ̃(ax0) = aσ̃(x0).

Proof. Let a ∈ Z and x0 ∈ R. If x0 is rational then the claim is already
proven (because σ̃ = id on Q), so we will assume that x0 is irrational. Since
we have

σ̃(ax0) ≡ σ(ax0) ≡ aσ(x0) ≡ aσ̃(x0) mod Z,

we can choose k ∈ Z such that σ̃(ax0) = aσ̃(x0) + k. Choose p > 1 prime
and let `ax0 be the line in T 2 through 0 with slope ax0. The intersections
of `ax0 and v 1

p
occur at heights a

px0 + aZx0 mod Z. Under f these are

bijectively mapped to the intersections of v 1
p

and `σ̃(ax0), which occur at

heights 1
p σ̃(ax0) + Zσ̃(ax0). In particular there exists l ∈ Z such that

(4.1) σ

(
a

p
x0 + lax0

)
≡ 1

p
σ̃(ax0) mod Z.

For the left-hand side we have

(4.2) σ

(
a

p
x0 + lax0

)
≡ aσ

(
1

p
x0 + lx0

)
mod Z.
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Note that [1p ,
1
px0 + lx0] is an intersection point of `x0 and v 1

p
so that

[1p , σ(1px0 + lx0)] is an intersection point of `σ̃(x0) and v 1
p
. Hence there exists

n ∈ Z such that

(4.3) σ

(
1

p
x0 + lx0

)
≡ 1

p
σ̃(x0) + nσ̃(x0) mod Z.

Combining Equations 4.1, 4.2 and 4.3, we see that

a

p
σ̃(x0) + anσ̃(x0) ≡

1

p
σ̃(ax0) mod Z.

Further using that σ̃(ax0) = aσ̃(x0) + k, we have

a

p
σ̃(x0) + anσ̃(x0) ≡

a

p
σ̃(x0) +

k

p
mod Z,

so that

anσ̃(x0) ≡
k

p
mod Z.

Because σ̃(x0) is irrational, this is impossible unless an = 0 and k
p ∈ Z.

Since p was an arbitrary prime number, we must have k = 0. �

Claim 4.6. σ̃ is a homomorphism of R (as an additive group).

Proof. The previous claim with a = −1 shows that σ̃(−x) = −σ̃(x). There-
fore it remains to show that σ̃ is additive. Let x, y ∈ R be arbitrary. Since
σ̃ is a lift of σ, we have for any n ≥ 1:

σ̃

(
x+ y

n

)
≡ σ

(x
n

+
y

n

)
≡ σ

(x
n

)
+ σ

(y
n

)
≡ σ̃

(x
n

)
+ σ̃

(y
n

)
mod Z.

Multiplying by n and using Claim 4.5 with a = n, we have

σ̃(x+ y) ≡ σ̃(x) + σ̃(y) mod nZ.

Since n was arbitrary, we must have σ̃(x+ y) = σ̃(x) + σ̃(y) as desired. �

Claim 4.7. For any x 6= 0, we have

σ̃

(
1

x

)
=

1

σ̃(x)
.

Proof. We will first show that σ̃( 1x) ≡ 1
σ̃(x) mod Z for x 6= 0. Let x0 ∈ R×

and let `x0 again be the line with slope x0 through 0. We can assume that
x0 is irrational. Note that the intersections of `x0 with the horizontal line
h0 occur at the points [ kx0 , 0]. Under f these are bijectively mapped to the
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intersections of `σ̃(x0) with h0. In particular there are integers k, l ∈ Z such
that

σ

(
1

x0

)
≡ k

σ̃(x0)
mod Z

and

σ

(
l

x0

)
≡ 1

σ̃(x0)
mod Z.

Hence
1

σ̃(x0)
≡ σ

(
l

x0

)
≡ lσ

(
1

x0

)
≡ kl 1

σ̃(x0)
mod Z.

Since σ̃(x0) is irrational, we must have kl = 1 so that k = ±1. We claim
that k = 1. To see this, consider the intersections of `x0 with the horizontal
line h 1

3
. These occur at [ 1

3x0
+ n

x0
, 13 ] for n ∈ Z. Under f these are mapped

to the intersections of `σ̃(x0) with h 1
3
. Hence there exists n ∈ Z such that

(4.4) σ

(
1

3x0

)
≡ 1

3σ̃(x0)
+

n

σ̃(x0)
mod Z.

For the left-hand side, we have

(4.5) σ

(
1

3x0

)
≡ σ̃

(
1

3x0

)
≡ 1

3
σ̃

(
1

x0

)
≡ k

3

1

σ̃(x0)
mod Z,

where we used that σ̃ is Q-linear (because it is a homomorphism R → R).
Combining Equations 4.4 and 4.5, we find

(3n+ 1− k)
1

σ̃(x0)
≡ 0 mod 3Z.

Since σ̃(x0) is not rational, we must have 3n+ 1− k = 0, so k ≡ 1 mod 3.
Since we already found that k = 1 or −1, we must have k = 1, as desired.

At this point we know that σ̃( 1x) ≡ 1
σ̃(x) mod Z for any x 6= 0. It remains

to show that σ̃( 1x) = 1
σ̃(x) . To see this, let x ∈ R× be arbitrary. We can

assume that x is irrational. Let n ∈ Z such that

σ̃

(
1

x

)
=

1

σ̃(x)
+ n.

Set N = |n|+ 1, and note that because σ̃ is Q-linear, we have

σ̃

(
1

Nx

)
=

1

N
σ̃

(
1

x

)
=

1

σ̃(NX)
+
n

N
.

Hence if n 6= 0, we have σ̃
(

1
Nx

)
6≡ 1

σ̃(Nx) mod Z, a contradiction. �

In the final two claim we will show that σ̃ is multiplicative.

Claim 4.8. For any x, y ∈ R, we have σ̃(xy) = σ̃(x)σ̃(y).
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Proof. Let x0, y0 ∈ R. Note that since σ̃ is an isomorphism of R as an
additive group, σ̃ is Q-linear. Hence without loss of generality, we assume
that x0 is irrational. Consider the intersections of `x0 with the vertical line
vy0 . These occur at the points [y0, x0y0 + kx0] for k ∈ Z. Under f these
intersection points are mapped to the points of intersection of `σ̃(x0) with
vσ̃(y0). In particular, by considering the image of [y0, x0y0], we see that there
is k ∈ Z such that

σ(x0y0) ≡ σ̃(x0)σ̃(y0) + kσ̃(x0) mod Z.

Since σ(x0y0) ≡ σ̃(x0y0) mod Z, we see that

σ̃(x0y0)− σ̃(x0)σ̃(y0) ∈ Z + Zσ̃(x0).

For x ∈ R, let µx : R → R denote multiplication by x. Then the above
argument shows that the homomorphism

(σ̃ ◦ µx0)−
(
µσ̃(x0) ◦ σ̃

)
: R→ R

has image contained in Z + Zσ̃(x0). Since σ̃(x0) is irrational, we have

Z + Zσ̃(x0) ∼= Z2

as additive groups. But any homomorphism f : R→ Z2 is trivial because R
is a divisible group: Indeed, for any x ∈ R and n ≥ 1, we have

f(x) = f
(
n
x

n

)
= nf

(x
n

)
so we must have f(x) = 0. It follows that σ̃◦µx0 = µσ̃(x0)◦ σ̃, as desired. �

As commented at the beginning of this section, the above results finish
the 2-dimensional case of Theorem 1.4. Indeed, up to precomposition by an
affine automorphism, any bijection f : T 2 → T 2 that maps lines to lines,
is of the form (σ, σ), where σ is a homomorphism S1 → S1 that lifts to a
field automorphism σ̃ of R. Since any field automorphism of R is trivial, it
follows that σ = id and hence the original map is affine.

5. The n-dimensional case

We finish the proof of Theorem 1.4 that for n ≥ 2, any bijection of
T = Rn/Zn that maps lines to lines is an affine map. We argue by induction
on n. The base case n = 2 has been proven in the previous section. Let
f : T → T be a bijection that maps lines to lines. We recall that in Section
2, we showed that for any rational subtorus S ⊆ T , the image f(S) is also
a rational subtorus.

Proof of Theorem 1.4. Without loss of generality, we assume f(0) = 0.
For 1 ≤ i ≤ n, we let

`i :=
[
Rei
]
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denote the (image of the) coordinate line. Each `i is a rational line, so f(`i)
is also a rational line. Choose primitive integral vectors vi ∈ Zn such that

f(`i) =
[
Rvi
]
.

Note that vi is unique up to sign. Let A be the linear map of Rn with
Aei = vi for every i. Our goal is to show that f = A as maps of the torus.

Claim 5.1. A is invertible with integer inverse.

Proof. To show that A is invertible, we need to show that v1, . . . , vn span
Rn. To show that A−1 has integer entries, we need to show that in addition,
v1, . . . , vn generate Zn (as a group). For 1 ≤ j ≤ n, set

Uj := span{ei | i ≤ j},
and

Vj := span{vi | i ≤ j}.
Note that f [Uj ] = [Vj ] by Lemma 2.5. Taking j = n, this already shows
that v1, . . . , vn span Rn, so A is invertible. We argue by induction on j
that {v1, . . . , vj} generate π1[Vj ] ⊆ π1T . For j = n, this exactly means that
v1, . . . , vn generate π1T , which would finish the proof.

The base case j = 1 is exactly the assertion that v1 is a primitive vector.
Now suppose the statement is true for some j. Consider the composition

(5.1) f(`j) ↪→ Vj → Vj/Vj−1.

This composition is a homomorphism of f(`j) ∼= S1 to Vj/Vj−1
∼= S1. The

kernel is given by

f(`j) ∩ Vj−1 = f(`j ∩ Uj−1) = f(0) = 0.

Therefore the map f(`j)→ Vj/Vj−1 is an isomorphism, and

π1(Vj) ∼= π1(Vj−1)⊕ π1(f(`j)).

Since we know by the inductive hypothesis that π1(Vj−1) is generated by
v1, . . . , vj−1, and that π1(f(`j)) is generated by vj (again because vj is prim-
itive), we find that π1(Vj) is generated by v1, . . . , vj , as desired. �

For the remainder of the proof we set g := A−1 ◦ f . Our goal is to show
that g = id. Note that g is a bijection of T with g(0) = 0 and g(`i) = `i for
every i. Let

Hi :=
[
span{ej | j 6= i}

]
denote the (image of the) coordinate hyperplane. Since g(`i) = `i for every
i, we know (using Lemma 2.5 again) that g(Hi) = Hi. By the inductive hy-
pothesis, g is given by a linear map Ai on Hi. But any linear automorphism
of Hi that leaves the coordinate lines `j , j 6= i, invariant, must be of the
form ±1

. . .

±1

 .
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Now recall that vi was unique up to sign. Replace vi by −vi whenever
g|`i = −id. After this modification, we have that g = id on every coordinate
hyperplane Hi. Our goal is to show that g = id on T .

Claim 5.2. Fix 1 ≤ i ≤ n and let ` be any line parallel to `i. Then g(`) = `.

Proof. First recall the following elementary general fact about the number
of intersections of a line with a coordinate hyperplane: If m is any rational
line and

v =

v1...
vn


is a primitive integer vector with m = [Rv], then

|m ∩Hi| = |vi|.

Now let ` be parallel to `i. If ` ∈ Hj for some j, then the claim is already
proven. So we assume that ` /∈ Hj for any j. Then

|` ∩Hj | = δij ,

and hence also

|g(`) ∩Hj | = |g(`) ∩ g(Hj)| = |` ∩Hj | = δij .

Therefore we see that if v is a primitive integer vector with g(`) = [Rv], then
v = ei. This exactly means that ` and g(`) are parallel. Hence to show that
` = g(`), it suffices to show that ` ∩ g(`) is nonempty.

Since ` is parallel to `i, there is a unique point of intersection x` := `∩Hi.
Since x` ∈ Hi, we have g(x`) = x`, so x` ∈ ` ∩ g(`), as desired. �

We are now able to finish the proof of the main theorem. Let x ∈ T and
let `i(x) be the unique line parallel to `i that passes through x. For any two
distinct indices i 6= j, the point x is the unique point of intersection of `i(x)
and `j(x). On the other hand,

g(x) ∈ g(`i(x)) ∩ g(`j(x)) = `i(x) ∩ `j(x),

so we must have g(x) = x. �
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