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The symmetrized topological complexity
of the circle

Donald M. Davis

Abstract. We determine the symmetrized topological complexity of
the circle, using primarily just general topology.
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1. Introduction

Let PX denote the space of all paths in a topological space X, and de-
fine p : PX → X × X by p(σ) = (σ(0), σ(1)). If U ⊂ X × X, a section
s : U → PX is called a motion planning rule on U . The reduced topological
complexity of X, TC(X), is 1 less than the minimal number of open sets U
covering X×X which admit motion planning rules. The notion of topologi-
cal complexity was introduced by Farber in [4] in unreduced form, but most
recent papers have preferred the reduced notation. Topological complexity
can be applied to robotics when X is the space of configurations of a robot.

A set U ⊂ X ×X is symmetric if (x, y) ∈ U iff (y, x) ∈ U . A symmetric
motion planning rule on such a set U is one which satisfies

s(x1, x0) = s(x0, x1).

Here σ(t) = σ(1− t).
In [1], (reduced) symmetrized topological complexity TCΣ(X) of X was

defined to be 1 less than the minimal number of symmetric open sets covering
X × X which admit symmetric motion planning rules. We will prove the
following new result.

Theorem 1.1. TCΣ(S1) = 2.

Received March 27, 2017.
2010 Mathematics Subject Classification. 55M30, 55M25, 54-99.
Key words and phrases. Symmetrized topological complexity, motion planning on cir-

cle, general topology.

ISSN 1076-9803/2017

593

http://nyjm.albany.edu/nyjm.html
http://nyjm.albany.edu/j/2017/Vol23.htm


594 DONALD M. DAVIS

An earlier variant, called symmetric topological complexity, TCS(X), was
introduced in [5]. Employing here the reduced TC terminology, TCS(X)
equals the minimal number of symmetric open sets covering X × X − ∆
admitting symmetric motion planning rules. Here ∆ = {(x, x) ∈ X ×X} is
the diagonal. This notion assumes that one motion planning rule chooses the
constant path from x to x, possibly extended over a small neighborhood of
∆, and then considers separately symmetric paths between distinct points.
The reduced version employed here has the−1 in the reduction which cancels
the +1 from the section over the diagonal. As noted in [1, Prop 4.2], it is
immediate that for all X

TCS(X)− 1 ≤ TCΣ(X) ≤ TCS(X).

The advantage of the TCS(−) concept is that, with P ′X denoting the
space of paths between distinct points of X, there is a Z2-equivariant fibra-
tion P ′X → X ×X −∆ of free Z2-spaces. This leads to nice cohomological
bounds for TCS(−). In an email to the author, Michael Farber confirmed
that he felt that the TCΣ definition was “more natural” than TCS . One nice
feature of TCΣ is that it is a homotopy invariant ([1, Prop 4.7]), whereas
TCS is not. In the paper [6], written at the same time as ours, Mark Grant
discusses more fully the relationships between TCΣ and TCS . In that paper
he develops cohomological bounds for TCΣ.

In [5], it was shown that TCS(Sn) = 2 for all n ≥ 1. Since cohomol-
ogy shows that when n is even, three (not necessarily symmetric) motion
planning rules are required for Sn, we obtain that TCΣ(Sn) = 2 when n is
even. In [1, Expl 4.5] and in [7, Expl 17.5], it was noted that for odd n, it
was not known whether TCΣ(Sn) = 1 or 2, and the case n = 1 was given
special attention as an “Open Problem” in [7, 17.6]. Our contribution here
is to resolve this open problem. In [6], Grant has proved TCΣ(Sn) = 2 for
all n, including n = 1, which required special methods. We thank him for
interesting and helpful discussion about his approach and ours.

2. Our approach and an example

Our approach is to associate to a symmetric motion planning rule on an
open subset of S1 × S1 a locally constant function d on an open subset of
I × I with certain properties, and then show (in the next section) that the
domains of two such functions cannot cover I × I.

Let ρ : I × I → S1 × S1 be the usual quotient map defined by

ρ(t, t′) = (e2πit, e2πit′),

and e : R→ S1 the usual covering map defined by e(t) = e2πit.

Proposition 2.1. If U ⊂ S1 × S1 is a symmetric open set, and

s : U → PS1
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is a symmetric motion planning rule, there is a continuous function

d : ρ−1(U)→ Z

satisfying, for all points in its domain,

d(t, 1)− d(t, 0) = −1,(2.2)

d(1, t)− d(0, t) = 1,(2.3)

d(t′, t) = −d(t, t′).(2.4)

Proof. Suppose ρ(t, t′) ∈ U with σ = s(ρ(t, t′)) ∈ PS1. Let σ̃ : I → R
satisfy e ◦ σ̃ = σ. Note that σ̃(1) − σ̃(0) is independent of the choice of σ̃.
Let

d(t, t′) = σ̃(1)− σ̃(0)− (t′ − t) ∈ R.
Then

e(d(t, t′)) = σ(1)σ(0)−1e2πi(t−t′)

= e2πit′e−2πite2πi(t−t′) = 1.

Therefore d(t, t′) ∈ Z.
To see continuity of d, first note that σ varies continuously with (t, t′).

Thus σ̃(0) can be chosen to vary continuously with (t, t′), and hence so does
σ̃(1), by the Homotopy Lifting Theorem.

Since ρ(t, 1) = ρ(t, 0), the σ’s associated to these points are the same,
and hence so are the two values of σ̃(1)− σ̃(0). Now property (2.2) follows
immediately from the change in t′, and (2.3) follows similarly. Property
(2.4) is clear, since both t′− t and σ̃(1)− σ̃(0) are negated when t and t′ are
interchanged. �

Since d is a continuous integer-valued function, it is constant on connected
sets, a fact which we will use frequently. Note that, since ρ(t, 1) = ρ(t, 0),
(t, 1) is in the domain of d iff (t, 0) is, and similarly for (1, t) and (0, t). Also,
(t, t′) is in the domain of d iff (t′, t) is.

Next we provide an example of the functions d associated to three motion
planning rules whose domains cover the torus. The rules for moving from z
to z′ are as follows.

• If z and z′ are not antipodal, follow the geodesic.
• If z and z′ are not at the same horizontal level, let w = z−z′

|z−z′| and

w′ = −w, and follow the geodesic from z to w, then the path from
w to w′ which passes through 1, then the geodesic from w′ to z′.
• If z and z′ are not at the same vertical level, let w = z−z′

|z−z′| and

w′ = −w, and follow the geodesic from z to w, then the path from
w to w′ which passes through i = eiπ/2, then the geodesic from w′

to z′.

The functions d for these are as pictured in Figure 2.5:
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Figure 2.5. Domains of the functions d associated to three motion planning
rules.
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For example, the region labeled “1” in the second square corresponds to

points (z, z′) = (e2πit, e2πit′) with t > t′ and 1
2 < t+ t′ < 3

2 . One such point

has (t, t′) = (1
2 ,

1
8). For the second motion planning rule above, w = ei9π/8,

w′ = eiπ/8, and σ is a counterclockwise rotation from z to z′, passing through
w and w′. Thus σ̃(1)− σ̃(0) = 5

8 , and

d(1
2 ,

1
8) = 5

8 − (1
8 −

1
2) = 1.

This is illustrated in Figure 2.6.

Figure 2.6. Circle illustrating a motion planning rule.
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Note that for each of the domains V in Figure 2.5, if a second open set V ′

covers the interior boundary lines, then its function d′ in the first two figures
would have to satisfy d′(0, 1

2) = −1
2 in order to satisfy (2.3) and (2.4), while

in the third figure, d′ must be 0 on a neighborhood of the two diagonal lines,
and this will contradict (2.2) and (2.3).

3. Proof of Theorem 1.1

Our proof uses the following result of general topology. Throughout the
paper, ∂K is the boundary in the sense of general topology, sometimes called
frontier.

Proposition 3.1. If W is a connected bounded open set of the plane, and
K is the unbounded connected component of R2−W , then its boundary, ∂K,
is connected.

Proof. [2, Cor 1,p. 352] states that a bounded connected open set in the
plane has connected complement iff it has connected boundary, and calls
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this result “well known.” We apply this to R2 −K, and note that

∂(R2 −K) = ∂K. �

A recent proof of this proposition appears in [3]. We will use the following
corollary several times. It deals with a subspace V of the unit square which
is open in the subspace topology. By ∂V , we mean its boundary in R2.

Corollary 3.2. Let V be a connected open subset of I2 which intersects ∂I2,
and let P and Q be distinct points of the boundary in ∂I2 of V ∩∂I2. Let B
and B′ be the two components of ∂I2 − {P,Q}. Suppose B ∩ V = ∅. Then
there is a connected subset of ∂V − (B′ ∩ ∂V ) which contains P and Q.

Proof. Apply Proposition 3.1 to W = V − (V ∩ ∂I2), with K being the
unbounded component of R2 −W . Then ∂K is connected. Note that

{P,Q} ⊂ ∂K and V ∩ ∂I2 ⊂ ∂K.

The connected component of ∂K − (V ∩ ∂I2) containing P also contains Q
and is contained in ∂V − (B′ ∩ ∂V ). �

Proof of Theorem 1.1. Suppose I × I is covered by two open sets V and
V ′ equipped with locally constant functions d and d′ satisfying (2.2), (2.3),
and (2.4). We will show that this leads to a contradiction, which, along with
the three symmetric motion planning rules described in Section 2, implies
the theorem.

By compactness, only finitely many connected components of V and V ′

need be considered. At least one of these sets, say V , must contain (0, 0)
and hence also the other three corner points. Schematically, there are three
ways that the connected components of V containing the corner points can
occur, as illustrated in Figure 3.3, with the d-values in each indicated. We
will call a portion such as occurs in the center of the second and third figures
a ”bridge.” A fourth possibility, a 90-degree rotation of the second figure,
would have to have d = 0 in all three parts by (2.4), and this would contradict
(2.2) and (2.3). The small rectangular portions in the third figure are not a
connected component of V containing a corner point, but are necessary in
order to satisfy (2.2) and (2.3).

Figure 3.3. Three possibilities for corner-point neighborhoods.
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The d-values are as indicated because a connected open set containing a
neighborhood of a point (t, t) must have d = 0 by (2.4), and then the other
sets have d = ±1 by (2.2) and (2.3). The boundaries of these regions need
not be smooth curves as suggested by the diagram, but by Corollary 3.2
they are connected sets containing the two points on ∂I2. These connected
open sets can have holes, either in the interior of I2 or, more significantly,
containing an open set in ∂I2. We will deal with the consequences of such
holes later in the proof.

The other open set, V ′, must contain connected open sets covering the
boundaries of the components of V just considered. There are several pos-
sibilities. We have indicated in orange a variety of such possibilities, again
very schematically, in Figure 3.4. The V ′ components may (cases a1, b1, c1)
or may not (a2, b2, c2) contain the corner points. A neighborhood of the
boundaries of a bridge may (cases b1, c1) or may not (b2, c2) contain the
entire bridge. A V ′ neighborhood of the sets in Figure 3.3a may (case a2) or
may not (a1) contain a bridge. We list the d-values for the V -neighborhoods
in Figure 3.4 to emphasize which portions of the diagram are included in V .

Figure 3.4. Six possibilities for first V ′ neighborhoods.
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Note that only Figure 3.4b2 has the property that the displayed sets V
and V ′ cover I2. However, in this case, V ′ does not admit a d′ function. If
CL and CR are its two components, then d′(CR) = −d′(CL) by (2.4) but
d′(CR) = d′(CL) + 1 by (2.3), and so these cannot have integer values. In
all the other cases of Figure 3.4, V ′ admits a d′-function which equals the
d-value of the V -set which it intersects.
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Next, V must contain open connected sets containing all of the V ′-bound-
aries just obtained which were not contained in the initial V -sets. Note that
the boundary of a V -component can never intersect the boundary of a V ′-
component because (since V and V ′ are open) the boundary points are not
in the open sets, and so an intersection point of the two boundaries would
not be in V ∪ V ′, which is supposed to cover the square.

In order to have V ∪ V ′ cover the square, we must continue alternately
adding new components of V and V ′, each time covering new boundary
parts of the other set just added. At some stage, the situation illustrated in
3.3a and 3.4a1 must yield to a bridge, in order that the diagonal is covered
by V ∪ V ′. At some stage, the bands coming down to the right from the
bridge, and up from the lower right corner must combine. For example,
that could happen with the next V -component in Figure 3.4 parts a2, b1,
c1, or c2. We claim that this will necessarily cause a contradiction on the
d-function similar to that observed in Figure 3.4b2.

To see this, we consider now the V -boundaries which extend from the
lower edge to the right edge, as well as their symmetric counterparts. These,
as well as the analogous V ′-boundaries, are obtained iteratively using Corol-
lary 3.2 with P equal to the sup of the set of x such that (x, 0) is in the
closure of the V or V ′ component being considered, and Q the inf of y’s such
that (1, y) is in this closure. The V -boundaries are illustrated schematically
in Figure 3.5.

Figure 3.5. Boundaries of V -bands.
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The open bands between these boundary sets could have interior holes,
which are not an issue at all, as a hole in a V -band can be covered by a
V ′ open set with no problem regarding the d-function, and vice versa, and
they can have holes or modifications at the boundary, which we will consider
later. Temporarily ignoring this possibility, each of the open bands between
consecutive boundary sets must be either a component of V , or else covered
by a component of V ′. The requirement that (0, t) ∈ V iff (1, t) forces
additional components as illustrated in the tiny portions of Figure 3.5.
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The region between the two x1y1 boundary sets must have d = 0 by (2.4).
If y1 < x1, as is the case in Figure 3.5, then for t between y1 and x1, we obtain
a contradiction to (2.3). If y1 = x1, then the V ′ sets containing the two
x1y1 boundary sets imply d′(0, x1) = −1

2 by (2.3) and (2.4), contradicting
integrality of d′. At the other extreme, if yn > xn, then if xn < t < yn,
then (0, t) and (1, t) lie in symmetric regions, so d(0, t) = −d(1, t), which is
inconsistent with (2.3) and integrality of d. See Figure 3.7 for an illustration
of a variation on this.

Otherwise, let k be minimal such that yk ≤ xk. The preceding paragraph
shows that such a k must exist with 1 < k < n. If yk < xk, then there
exists t satisfying xk−1 < t < xk and yk < t < yk−1. Then (0, t) and (1, t)
lie in symmetric bands, and so (2.4) and (2.3) imply the usual contradiction
to integrality of d. If yk = xk, the contradiction is obtained on d′(0, xk)
and d′(1, xk) using the V ′ sets which contain the xkyk boundary set and its
symmetric counterpart.

Our contradictions have all been due to points of ∂I2 which lie in sym-
metric bands of components of V or V ′. It is conceivable that these bands
might have one or more holes where they meet ∂I2. Suppose yk < xk−1 <
yk−1 < xk, so that we expect to obtain a contradiction in this band. It could
happen that for all t such that xk−1 < t < yk−1 either (0, t) or (1, t) is cut
off from the main band as indicated schematically in Figure 3.6, in which we
write k′ instead of k − 1 for typographical reasons. Part a is when a single
hole cuts off all such t, while part b illustrates the situation when several
holes, split between the two sides, cut off all such points.

Figure 3.6. Hole or holes at contradiction point.
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With one hole, the indicated regionR (in a) and its symmetric counterpart
must be part of V or part of V ′. Since (t, 0) ∈ V (resp. V ′) iff (t, 1) ∈ V
(resp. V ′), there will be an opposing part of V or V ′, as suggested by the set S
in Figure 3.6a, which will also have a symmetric counterpart. The boundary
of R must intersect the xk−1yk−1 boundary, for otherwise there would be
points of ∂I2 in the band giving the previous contradiction. There must be
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a V ′ component containing the union of ∂R and the xk−1yk−1 boundary,
as indicated by the orange set in Figure 3.6a. The values d′(0, xk−1) and
d′(1, xk−1) give the usual contradiction ((2.4), (2.3), and integrality).

It could happen that there are several holes which account for all t be-
tween xk−1 and yk−1, and none of their boundaries intersect the boundary
of the band. This is illustrated in Figure 3.6b. It must be the case that for
each point (0, y) where the boundary of one of these regions (including the
boundary of the band) intersects 0× I, the point (1, y) must also be such an
intersection point, and vice versa. In the typical situation illustrated in Fig-
ure 3.6b, in which t0 is the additional such intersection value and the orange
sets illustrate V ′ sets covering ∂V , we have, using d′(−) for the d-function
on V ′,

d′(0, t0) = d′(0, yk−1) = d′(1, yk−1)− 1 = d′(xk−1, 0)− 1

= −d′(0, xk−1)− 1 = −d′(1, xk−1) = −d′(1, t0)

= −d′(0, t0)− 1.

Hence d′(0, t0) = −1
2 , contradicting integrality. A similar contradiction is

obtained with more than two holes.
A similar situation could occur regarding the contradiction that was ob-

tained earlier in the case that yn > xn. As illustrated in Figure 3.7, the
t-values between xn and yn on ∂I2 could be cut off from the main symmet-
ric regions. We obtain the same sort of contradiction as was obtained in
Figure 3.6, using here the V ′-component containing the union of the xnyn-
boundary and ∂R, and its symmetric counterpart. �

Figure 3.7. Hole at contradiction point when yn > xn.
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