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Hopf algebra structures and tensor
products for group algebras

Jon F. Carlson and Srikanth B. Iyengar

Abstract. The modular group algebra of an elementary abelian p-
group is isomorphic to the restricted enveloping algebra of a commuta-
tive restricted Lie algebra. The different ways of regarding this algebra
result in different Hopf algebra structures that determine cup products
on cohomology of modules. However, it is proved in this paper that
the products with elements of the polynomial subring of the cohomol-
ogy ring generated by the Bocksteins of the degree one elements are
independent of the choice of these coalgebra structures.
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1. Introduction

This paper concerns the group algebra kE of an elementary abelian p-
group E of order pr over a field k of characteristic p. This algebra has a
natural coalgebra structure kE → kE⊗k kE given by g 7→ g⊗g for each g in
E. On the other hand, if E = 〈g1, . . . , gr〉, a change of variables xi = gi − 1
realizes kE as a truncated polynomial ring k[x1, . . . , xr]/(x

p
1, . . . , x

p
r). This is

isomorphic to the restricted enveloping algebra of the restricted p-Lie algebra
kr with trivial bracket and p-power operation. Again, there is a natural Hopf
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algebra structure, this time given by the map xi 7→ xi ⊗ 1 + 1 ⊗ xi. The
two coalgebra structures are not the same and they define different tensor
products on kE-modules as well as different actions of the cohomology ring
H∗(E, k) ∼= Ext∗kE(k, k) on Ext∗kE(M,N) for kE-modules M,N .

The differences in the Hopf structures have shown up in several works. For
example, Avrunin and Scott [1] exploited a change in the coalgebra structure
to prove a conjecture of the first author [3] that the rank variety and the
support variety of a kE-module are homeomorphic. In [6, 10] the authors
define bundles on projective space using modules of constant Jordan type
and the Lie coalgebra map. The construction is not available with the group
coalgebra map. Both of these works used the fact that with the Lie algebra
structure there is an abundance of sub-Hopf algebras generated by units in
the algebra. The immediate motivation for this paper is the desire to make
efficient use of categorical equivalences and functors relating commutative
algebra and group representation theory; see [7]. The fact that the Hopf
algebra structures differ has been an obstruction to this end.

For any Hopf algebra A over k and A-module M , the cohomology ring
Ext∗A(M,M) is a module over the cohomology ring Ext∗A(k, k). The action
is given by a homomorphism of rings

θM : Ext∗A(k, k) −→ Ext∗A(M,M)

described as follows: take a homogeneous element ζ of ExtnA(k, k), regard it
as a length-n exact sequence beginning and ending in the trivial module k,
then tensor over k with M . The image is the class of that sequence. The
map, in general, depends on the coalgebra structure. The primary result of
this paper is that for the group algebra of an elementary abelian group the
dependence is not so bad.

Specifically, for E an elementary abelian p-group, if S is the polynomial
subring of H∗(E, k) generated by the Bocksteins of the degree one elements,
then the restriction of θM to S is the same for both the group and the Lie
coalgebras structures on kE. As a direct corollary one gets that for ζ ∈ S
and Lζ the kE-module introduced in [4], the isomorphism class of Lζ ⊗kM
does not depend on which of the two Hopf algebra structures is used to
define the action on the tensor product.

A key input in our work is the fact, proved by Pevtsova and Wither-
spoon [12], that for any Hopf algebra A, the map θM factors through the
Hochschild cohomology ring HH∗(A/k;A). The advantage gained by this
observation is that the first map, to HH∗(A/k;A), depends on the coalgebra
structure and not on M , while the second depends on M and not on the
choice of coalgebra structures. So it is sufficient to show that, for A = kE,
the first map is the same on the elements of S regardless of the coalgebra.
This is accomplished by a straightforward calculation using the fact that E
is a direct product of cyclic groups.
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Section 2 of the paper is devoted to preliminaries on Hopf algebras and
cohomology, mainly a detailed proof of the factorization of θM discussed
above. Basic facts about the cohomology of elementary abelian p-groups are
recalled in Section 3, while Section 4 presents a proof of the main theorem.
Results on the tensor products of Lζ modules are presented in Section 5.

2. Hopf algebras and cohomology

This section concerns the cohomology of modules over Hopf algebras.
The main result is Theorem 2.7, due to Pevtsova and Witherspoon [12,
Lemma 13]. We present a detailed proof because the constructions of the
maps involved in the statement of the result are of critical importance in
the next section.

Let k denote a field and A a Hopf algebra over k, with unit η : k → A,
coalgebra map ∆: A → A ⊗k A, and counit ε : A → k. We assume that A
has an antipode σ, that is to say, σ is the inverse of the identity on A, under
the convolution product. We adapt Sweedler’s notation and write

∆(α) =
∑
(α)

α1 ⊗ α2 for α ∈ A.

Unless stated to the contrary, the term “module” means a left module.

Construction 2.1. Let M be an A-module. Recall that for each A-module
X, there is a structure of an A-module on X⊗kM induced by the diagonal:

α · (x⊗m) =
∑
(α)

α1x⊗ α2m.

The assignment X 7→ X ⊗k M defines an additive functor, that we denote
θM∆ , on the category of A-modules, and has the following properties.

(1) The natural map M → k⊗kM = θM∆ (k) that sends m to 1⊗m is an
isomorphism of left A-modules.

(2) When M is projective, so is the A-module θM∆ (X) = X ⊗kM .

These are standard computations. It follows that there is an induced homo-
morphism of graded k-algebras:

(2.2) ΘM
∆ : Ext∗A(k, k) −→ Ext∗A(M,M) .

The notation is intended to emphasize the fact that the map depends on the
coalgebra structure on A.

We write Ae for the enveloping algebra A⊗k Aop of A. Since k is a field,
the Hochschild cohomology of A as a k-algebra can be introduced as

HH∗(A/k;A) = Ext∗Ae(A,A) .

An Ae-module is the same thing as a left-right A-bimodule. In particular,
A is naturally an Ae-module, with action defined by (α⊗ β) · a = αaβ.
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Construction 2.3. Given an A-module M and an Ae-module Y , there is
a residual A-module structure on Y ⊗AM , defined by

α · (y ⊗m) = (αy)⊗m,

for α ∈ A, y ∈ Y and m ∈M . The assignment Y 7→ Y ⊗AM is an additive
functor, denoted ψM , from Ae-modules to A-modules. The next assertions
are immediate.

(1) The natural map ψM (A) = A⊗AM →M that sends a⊗m to am, is
an isomorphism of A-modules.

(2) When P is a projective Ae-module, the A-module ψM (P ) is projective.

It follows that ψM induces a homomorphism of graded k-algebras:

(2.4) ΨM : HH∗(A/k;A) −→ Ext∗A(M,M) .

Note that this map is entirely independent of the coalgebra structure on A.

Construction 2.5. Let X be an A-module. Then X ⊗k A has a structure
of an A-module induced by the diagonal ∆. It also has a right A-module
action induced by the right action of A on itself. In short, X ⊗k A is a left
Ae-module, with action determined by

(α⊗ β) · (x⊗ a) =
∑
(α)

α1x⊗ α2aβ.

The assignment X 7→ X ⊗k A defines an additive functor, that we denote
φ∆, from A-modules to Ae-modules. This has the following properties.

(1) The natural isomorphism A
∼=−→ k ⊗k A = φ∆(k), mapping a→ 1⊗ a,

is one of Ae-modules, where the Ae-action on A is the usual one.
(2) The Ae-linear map ι : Ae → φ∆(A) = A ⊗k A where 1 ⊗ 1 maps to

1⊗ 1, is an isomorphism, with inverse defined by the assignment

α⊗ β 7→
∑
(α)

α1 ⊗ σ(α2)β .

In particular, φ∆(A) is a free Ae-module of rank one, and φ∆(P ) is
projective whenever P is a projective A-module.

Statement (1) is readily verified, given that ε : A→ k is the counit of the
coalgebra structure on A; that is to say, for any α ∈ A, one has∑

(α)

ε(α1)α2 = α .

As to (2), since the map ι is Ae-linear, by construction, it suffices to verify
that its composition with the given map (henceforth denoted ι−1, in antici-
pation) is the identity. Moreover, ι−1 is evidently a homomorphism of right
A-modules, and since

ι(α⊗ 1) = (α⊗ 1) · (1⊗ 1) =
∑
(α)

α1 ⊗ α2
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it suffices to verify that ι−1 maps the term on the right to α ⊗ 1, for any
α ∈ A. To this end, recall that ∆ is coassociative, so that∑

(α)

∑
(α1)

α11 ⊗ α12 ⊗ α2 =
∑
(α)

∑
(α2)

α1 ⊗ α21 ⊗ α22.

This explains the second of the following equalities.

ι−1

∑
(α)

α1 ⊗ α2

 =
∑
(α)

∑
(α1)

α11 ⊗ σ(α12)α2

=
∑
(α)

∑
(α2)

α1 ⊗ σ(α21)α22

=
∑
(α)

α1 ⊗ ε(α2)

=

∑
(α)

α1ε(α2)

⊗ 1

= α⊗ 1.

The third equality is a consequence of the definition of the antipode and the
last equality holds because ε is the counit of the coalgebra structure on A.

Given properties (1) and (2) of φ∆, it is immediate that it induces a
homomorphism of graded k-algebras:

(2.6) Φ∆ : Ext∗A(k, k) −→ HH∗(A/k;A) .

The result below, proved by Pevtsova and Witherspoon [12], links the
three homomorphisms, (2.2), (2.4), and (2.6), constructed above.

Theorem 2.7. Let A be a Hopf algebra over k. For each A-module M , the
following diagram of graded k-algebras commutes.

Ext∗A(k, k)
ΘM

∆

**

Φ∆

��

Ext∗A(M,M)

HH∗(A/k;A)
ΨM

44

Proof. Let X be an A-module. Using the description of the A-action on
X ⊗k M and the Ae-action on φ∆(X), it is a direct verification that the
canonical bijection

X ⊗kM −→ (X ⊗k A)⊗AM = φ∆(X)⊗AM where x⊗m 7→ x⊗ 1⊗m



356 J. F. CARLSON AND S. B. IYENGAR

is compatible with the A-module structures. It yields an isomorphism of
functors θM∆

∼= ψMφ∆ on the category of A-modules. Since φ∆ take projec-
tives to projectives, it follows that there is an equality of induced functors.
This is the stated result. �

Definition 2.8. Let k be a field and A a k-algebra. In what follows we
say that A-modules M and N are stably isomorphic if there exist projective
A-modules P and Q such that M ⊕ P ∼= N ⊕Q.

Let P∗ be a projective resolution of an A-module M . For any integer
d ≥ 0, the image of the boundary map ∂ : Pd → Pd−1 is independent of the
choice of P , up to a stable isomorphism. We denote it Ωd(M), and call it a
dth syzygy module of M .

Fix an element ζ in ExtdA(k, k) and a dth syzygy module Ωd(k). Then ζ
is represented by a homomorphism on Ωd(k), that we also call ζ. So we get
an exact sequence of A-modules:

(2.9) 0 // Lζ // Ωd(k)
ζ
// k // 0.

That is, the module Lζ is defined to be the kernel of map ζ on Ωd(k). Up to
a stable isomorphism, this is independent of the choice of a syzygy module.

Given a k-algebra A, we say that a map ∆: A→ A⊗k A induces a Hopf
structure on A if there exists a Hopf algebra structure on A (and this includes
an antipode) with ∆ as the comultiplication. For ease of comprehension,
given a coalgebra map ∆ and A-modules X,M, the A-module defined on
the vector space X ⊗kM using the Hopf structure ∆ is denoted

∆(X ⊗kM).

This is precisely the module θM∆ (X) defined in Construction 2.1.

Corollary 2.10. Let ∆1,∆2 : A → A ⊗k A be maps inducing Hopf algebra
structures on A. If ζ ∈ ExtdA(k, k) is such that Φ∆1(ζ) = Φ∆2(ζ), then for
each A-module M , the A-modules ∆1(Lζ⊗kM) and ∆2(Lζ⊗kM) are stably
isomorphic.

Proof. Let P∗ be a projective resolution of k. For i = 1, 2 the complex
θM∆i

(P∗) is a projective resolution of θM∆i
(k) ∼= M . Thus, the A-modules

θM∆i
(Ωd(k)) and Ωd(M) are stably isomorphic. Therefore, the exact sequence

(2.9) induces an exact sequence of A-modules

0 // θM∆i
(Lζ) // Ωd(M)⊕ (proj)

ΘM
∆i

(ζ)
// M // 0

where ΘM
∆i

is the map (2.2). Since Φ∆1(ζ) = Φ∆2(ζ), by hypothesis, Theo-

rem 2.7 implies ΘM
∆1

(ζ) = ΘM
∆2

(ζ). This yields the desired result. �

Remark 2.11. Assume that the k-algebra A is finite dimensional. Then
finitely generated modules over A admit minimal projective resolutions, and
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hence syzygy modules are well-defined, up to isomorphism of A-modules.
What is more, each ζ ∈ ExtdA(k, k) is represented by a unique homomor-
phism Ωd(k)→ k, and then setting Lζ to be its kernel pins down the latter,

up to isomorphism. In the same vein, Ωd(k) ⊗k M ∼= Ωd(M), so we get a
well-defined module Lζ ⊗kM .

It follows from the argument in Corollary 2.10 that if Φ∆1(ζ) = Φ∆2(ζ)
the A-modules ∆1(Lζ ⊗kM) and ∆2(Lζ ⊗kM) are in fact isomorphic.

3. Cohomology of elementary abelian p-groups

In this section, we set notation and review some facts about the coho-
mology, and Hochschild cohomology, of elementary abelian p-groups; see [8,
Section 4.5] and [11] for details. Throughout k will be a field of positive
characteristic p.

Let E := 〈g〉 be a cyclic group of order p. Setting x = g− 1 we may write
A := kE, the group algebra of E over k, as a truncated polynomial ring
A ∼= k[x]/(xp). Consider the complex of projective A-modules

(3.1) P∗ : · · · // A
x // A

xp−1
// A

x // A // 0 ,

that is nonzero in degrees ≥ 0. The augmentation ε : P∗ → k, that maps Pi
to zero for i > 0 and is the canonical surjection for i = 0, is a morphism
of complexes, and a quasi-isomorphism; thus (P∗, ε) is a minimal projective
resolution of k, over A.

Let E := 〈g1, . . . , gr〉 be an elementary abelian group of order pr. For
each integer i = 1, . . . , r, set Ai := k[xi]/(x

p
i ). Then A := A1 ⊗k · · · ⊗k Ar

is the group algebra of E, where xi = gi − 1 for each i. With (P
(i)
∗ , εi) the

projective Ai-resolution of k, from (3.1), the complex

(3.2) (P∗, ε) := (P
(1)
∗ ⊗k · · · ⊗k P

(r)
∗ , ε1 ⊗ · · · ⊗ εr) .

is a projective A-resolution of k. Set

Pj1,··· ,jr := P
(1)
j1
⊗k · · · ⊗k P

(r)
jr

= A1 ⊗k · · · ⊗k Ar = A

and let θj1,...,jr : P∗ → k be the map whose restriction to Pj1,...,jr is the
augmentation A → k and whose restriction to P`1,...,`r is zero if ji 6= `i for

some i. Let η̂i := θj1,...,jr where ji = 1 and j` = 0 for ` 6= i. Let ζ̂i := θj1,...,jr
where ji = 2 and j` = 0 for ` 6= i.

The cohomology ring of A has the form

Ext∗A(k, k) =

{
k[η1, . . . , ηr] if p = 2,

Λ(η1, . . . , ηr)⊗k k[ζ1, . . . , ζr] otherwise,

where each ηi is represented by the cocycle η̂i and each ζi is represented by
ζ̂i. Here ηi is in degree 1 and ζi is in degree 2. As the resolution (P∗, ε) is

minimal, ηi and ζi are uniquely represented by η̂i and ζ̂i, respectively.
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When p = 2, let ζi = η2
i for i = 1, . . . , r. Let S be the polynomial subring

of Ext∗A(k, k) generated by the ζi’s, so that

(3.3) S = k[ζ1, . . . , ζr] .

The Bockstein map is an operation on cohomology that raises degrees by
one. If p = 2 it coincides with the Steenrod square. For each i, the Bockstein
of the cohomology class ηi is the class ζi. Thus, when k = Fp, the subring S
is the subring generated by the images of the degree one classes under the
Bockstein map.

Now consider the Hochschild cohomology. As before, set A := k[x]/(xp).
The enveloping algebra Ae is a truncated polynomial ring in variables

y := x⊗ 1 and z := 1⊗ x,

so that Ae = k[y, z]/(yp, zp). The Ae action on A is defined by the surjection
µ : Ae → A that maps y and z to x. Thus Ae ∼= A[y−z]/(y−z)p. The kernel
of µ is the ideal (y − z) and the minimal projective resolution of A as an
Ae-module has the form:

(3.4) Q∗ : . . . // Ae y−z
// Ae

(y−z)p−1

// Ae y−z
// Ae // 0

with canonical augmentation Q∗ → A, also denoted µ.

Let A := k[x1, . . . , xr]/(x
p
1, . . . , x

p
r) and Ai := k[xi]/(x

p
i ). With (Q

(i)
∗ , µi)

the projective Ai
e-resolution of Ai from (3.4), the complex

(3.5) (Q∗, µ) := (Q
(1)
∗ ⊗k · · · ⊗k Q

(r)
∗ , µ1 ⊗ · · · ⊗ µr)

is a projective Ae-resolution of A. Set

Qj1,··· ,jr := Q
(1)
j1
⊗k · · · ⊗k Q

(r)
jr

= A1
e ⊗k · · · ⊗k Are ∼= Ae .

Let σj1,...,jr : Q∗ → A be the map whose restriction to Qj1,...,jr is the canon-
ical map Ae → A and whose restriction to Q`1,...,`r is zero if ji 6= `i for some

i. Let δ̂i := σj1,...,jr where ji = 1 and j` = 0 for ` 6= i and χ̂i := σj1,...,jr
where ji = 2 and j` = 0 for ` 6= i.

The Hochschild cohomology ring of A over k has the form

Ext∗Ae(A,A) =

{
A[δ1, . . . , δr] if p = 2,

ΛA(δ1, . . . , δr)⊗A A[χ1, . . . , χr] otherwise,

with δi and χi the cohomology classes of δ̂i and χ̂i respectively.

4. Changing the coalgebra structure on kE

Let k be a field of positive characteristic p and set

A = k[x1, . . . , xr]/(x
p
1, . . . , x

p
r) .

There are two often-used coalgebra structures on Amaking it a Hopf algebra.



HOPF ALGEBRAS AND TENSOR PRODUCTS 359

The first comes from viewing A as the group algebra of an elementary
abelian p-group, say 〈g1, . . . , gc〉 with base field of characteristic p. Then A
has comultiplication ∆Gr : A→ A⊗A given by g 7→ g ⊗ g; equivalently,

∆Gr(xi) = xi ⊗ 1 + xi ⊗ xi + 1⊗ xi .

The antipode is the homomorphism of k-algebras (note that A is commuta-
tive) induced by the map gi 7→ g−1

i , which translates to

σGr(xi) = (1 + xi)
−1 − 1 = −xi + x2

i − · · ·+ xp−1
i .

The other coalgebra structure on A comes from viewing it as the restricted
enveloping algebra of the restricted p-Lie algebra kr, with trivial bracket and
p-power operation. Then the comultiplication ∆Lie : A→ A⊗A is given by

∆Lie(xi) = xi ⊗ 1 + 1⊗ xi .

The antipode is the homomorphism of k-algebras A→ A defined by

σLie(xi) = −xi.

The different coalgebra structures induce different actions of Ext∗A(k, k) on
the cohomology of modules; see Example 5.4. However, the actions do agree
on the subalgebra generated by the Bocksteins of the degree one elements.
This is the content of Theorem 4.4. A key step in its proof is an explicit
computation of the map Φ∆ from Construction 2.5 for the different coalgebra
structures. In view of the computations recalled in Section 3, this amounts
to describing the maps

Φ∆Gr
,Φ∆Lie

: k[η1, . . . , ηr, ζ1, . . . , ζr] −→ A[δ1, . . . , δr, χ1, . . . , χr]

from the cohomology of A to its Hochschild cohomology.

Theorem 4.1. With the Hopf algebra structure on A induced by ∆Gr and
σGr, the homomorphism Φ∆Gr

: Ext∗A(k, k) → Ext∗Ae(A,A) of k-algebras is
given by

Φ∆Gr
(ηi) = (1 + xi)δi and Φ∆Gr

(ζi) = χi for i = 1, . . . , r.

Proof. We first verify the result for r = 1; then A = k[x]/(xp). In what
follows we use the maps φ∆Gr

and ι, and their properties, from Construc-
tion 2.5 without comment. Let P∗ be the minimal projective resolution of
k over A from (3.1) and Q∗ the minimal projective resolution of A over Ae

from (3.4). Applying φ∆Gr
to P∗ yields a projective resolution of A over Ae.

This gives the top row in the following commutative diagram of complexes
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of Ae-modules:

· · ·
φ∆Gr

(x)
// φ∆Gr

(A)
φ∆Gr

(xp−1)
// φ∆Gr

(A)
φ∆Gr

(x)
// φ∆Gr

(A)
φ∆Gr

(ε)
// // φ∆Gr

(k)

· · ·
y−z
1+z

// Ae

ι

OO

( y−z
1+z

)p−1

// Ae

ι

OO

y−z
1+z

// Ae

ι

OO

µ
// // A

∼=

OO

· · ·
y−z

// Ae

(y−z)p−1
// Ae

(1+z)

OO

y−z
// Ae µ

// // A

The bottom row is the augmentation of the minimal projective resolu-
tion (3.4) of A over Ae. It is clear that the lower part of the diagram is
commutative. As to the upper part, the commutativity of the square on the
top right corner is clear. For the next square, we note that φ∆Gr

(x) is the
map that takes 1⊗1 to x⊗1 in φ∆Gr

(A). However, this is not multiplication
by the element y = x⊗ 1 in Ae; see Construction 2.5. Instead, we have that

y(1⊗ 1) = x⊗ 1 + x⊗ x+ 1⊗ x and z(1⊗ 1) = 1⊗ x

in φ∆Gr
(A). Hence, one has

(y − z)(1⊗ 1) = (1 + z)(x⊗ 1)

and φ∆Gr
(x) is multiplication by (y − z)/(1 + z) as asserted. Likewise,

φ∆Gr
(xp−1) is multiplication by ((y − z)/(1 + z))p−1.

It is clear from the construction that the cocycles η̂ and ζ̂, from P∗ → k,
are mapped to the cocycles (1+z)δ̂ and χ̂, respectively, from Q∗ → A. This
yields the desired result. For later use we denote

(4.2) κ : Q∗ −→ φ∆Gr
(P∗)

the morphism of complexes of Ae-modules constructed above.
Assume r ≥ 2. Let P∗ be the resolution of k over A, and let Q∗ be

the resolution of A over Ae. The tensor product, over k, of the morphisms

κ(i) : Q
(i)
∗ → φ∆Gr

(P
(i)
∗ ) from (4.2) yields a morphism

κ := κ(1) ⊗k · · · ⊗k κ(r) : Q∗ −→ φ∆Gr
(P∗) ,

of complexes of Ae-modules that lifts the isomorphism A ∼= φ∆Gr
(k). Once

again, it is evident, by inspection, that the cocycles η̂i and ζ̂i are mapped
to the cocycles (1 + z)δ̂i and χ̂i, respectively. �

An analogous argument gives also the next result.

Theorem 4.3. With the Hopf algebra structure on A induced by ∆Lie and
σLie, the homomorphism Φ∆Lie

: Ext∗A(k, k) → Ext∗Ae(A,A) of k-algebras is
given by

Φ∆Lie
(ηi) = δi and Φ∆Lie

(ζi) = χi for i = 1, . . . , r.
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Proof. The key point, as in the proof of the preceding theorem, is to verify
that one has a commutative diagram of complexes of Ae-modules:

· · ·
φ∆Lie

(x)
// φ∆Lie

(A)
φ∆Lie

(xp−1)
// φ∆Lie

(A)
φ∆Lie

(x)
// φ∆Lie

(A)
φ∆Lie

(ε)
// // φ∆Lie

(k)

· · ·
y−z

// Ae

ι

OO

(y−z)p−1

// Ae

ι

OO

y−z
// Ae

ι

OO

µ
// // A

∼=

OO

· · ·
y−z

// Ae

(y−z)p−1
// Ae

(1+z)

OO

y−z
// Ae µ

// // A

This proof of the commutativity is similar to that of the previous case. �

The next result is direct consequence of the preceding computations.

Theorem 4.4. Let A = k[x1, . . . , xr]/(x
p
1, . . . , x

p
r), with k a field of positive

characteristic p. For any A-module M , the homomorphisms

ΘM
∆Gr

,ΘM
∆Lie

: Ext∗A(k, k) −→ Ext∗A(M,M)

defined in (2.2) using the coalgebra maps ∆Gr and ∆Lie, respectively, coin-
cide on the subring S = k[ζ1, . . . , ζr] of Ext∗A(k, k) defined in (3.3). �

Remark 4.5. In ongoing work, in collaboration with Luchezar L. Avramov,
we have established a version of the preceding theorem for more general finite
dimensional commutative algebras; the techniques required are rather more
involved and will be presented elsewhere. This raises that possibility that
such a result holds for any finite dimensional commutative Hopf algebra.

5. Tensor products of Lζ-modules

As in Section 4, let k be a field of positive characteristic p and set

A = k[x1, . . . , xr]/(x
p
1, . . . , x

p
r) .

Let S be the subalgebra of Ext∗A(k, k) identified in (3.3). We investigate
the circumstances under which the tensor products of Lζ modules (see Def-
inition 2.8) are independent of the Hopf algebra structures on A described
in Section 4. The main result is as follows; see the paragraph preceding
Corollary 2.10 for notation.

Theorem 5.1. Let ζ be a homogeneous element of S. For any A-module
M , there is an isomorphism ∆Gr(Lζ ⊗kM) ∼= ∆Lie(Lζ ⊗kM) of A-modules.

Proof. The result is immediate from Corollary 2.10 and Theorem 4.4. �

Corollary 5.2. Suppose that ζ1, . . . , ζn are homogeneous elements of pos-
itive degree in Ext∗A(k, k). If all but one of ζ1, . . . , ζn is in the subring S,
then there is an isomorphism of A-modules

∆Gr(Lζ1 ⊗k · · · ⊗k Lζn) ∼= ∆Lie(Lζ1 ⊗k · · · ⊗k Lζn) .



362 J. F. CARLSON AND S. B. IYENGAR

Proof. Without loss of generality, it may be assumed that ζ1, . . . , ζn−1 are
in S. The proof is by a backwards induction on n, the base case n = 1 being
a tautology. The induction hypothesis yields the second isomorphism below

∆Gr(Lζ1 ⊗k · · · ⊗k Lζn) ∼= ∆Gr(Lζ1 ⊗k ∆Gr(Lζ2 ⊗k · · · ⊗k Lζn))

∼= ∆Gr(Lζ1 ⊗k ∆Lie(Lζ2 ⊗k · · · ⊗k Lζn))

∼= ∆Lie(Lζ1 ⊗k ∆Lie(Lζ2 ⊗k · · · ⊗k Lζn))

∼= ∆Lie(Lζ1 ⊗k · · · ⊗k Lζn).

The third one is by Theorem 5.1, and the other two are standard. �

Remark 5.3. The modules Lζ have some remarkable properties. Under
certain circumstances, the annihilator in H∗(E, k) of Ext∗kE(Lζ , Lζ) is the
ideal generated by ζ. This happens, for example, if p > 2 and n is even [5].
In general, the annihilator of the cohomology of Lζ depends on the choice
of the coalgebra structure as we see in Example 5.4. The sequence (2.9) has
a translation

Eζ : 0 // Ω1(k) // Lζ ⊕Q // Ωd(k) // 0

where Q is the projective cover of k. The translated sequence represents the
cohomology class ζ in Ext1

kE(Ωd(k),Ω1(k)) ∼= ExtdkE(k, k). Thus ζ is in the
annihilator of Ext∗kE(M,M) for a module M , if and only if Eζ ⊗k M splits.
This is equivalent to the requirement that there is a stable isomorphism

Lζ ⊗kM ∼= Ωd(M)⊕ Ω1(M).

The following example, noted already in [3, 9], shows that the conclusion
of Theorem 5.1 may fail if ζ is not in S.

Example 5.4. Let k be a field of characteristic 2 and E an elementary
abelian group of order 4; thus H(E, k) = k[η1, η2]; see Section 3. Set

ζ = η1 − αη2 ∈ H1(E, k)

where α ∈ k with α 6= 0 or 1. The module Lζ has a k-basis consisting of
elements u, v such that x1u = αx2u and x1v = x2v. Using the Lie coalgebra
structure, we can compute that Lζ⊗kLζ is isomorphic to a direct sum of two
copies of Lζ generated by u⊗u and u⊗v. However, with the group coalgebra
structure, Lζ⊗kLζ is indecomposable. Indeed, under this structure, one has

x1(u⊗ u) = α(u⊗ v) + α(v ⊗ u) + α2(v ⊗ v) = x2(u⊗ u) + α2(v ⊗ v).

and the last term that makes it impossible to decompose Lζ ⊗k Lζ .

Remark 5.5. Computer calculations using Magma [2] give evidence that
Corollary 5.2 might have a strong converse. In one experiment, two random
elements γ1 and γ2 were chosen in H4(E, k) with E an elementary abelian
group of order 8 and k the field with 8 elements. The tensor product of
modules Lγ1 and Lγ2 was taken using both of the coalgebra structures and
the two results were compared. This operation was performed several times
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and in every case, the two tensor products were isomorphic if and only if
one of the two chosen cohomology elements was in S. The same experiment
was performed taking two elements in degree two of an elementary abelian
group of order 27 over a field of order 9, with the same result.

6. An equality of varieties

Let E be an elementary abelian p-group and k an algebraically closed field
of characteristic p. In the paper [1], Avrunin and Scott prove a conjecture
of the first author (see [3]) asserting the equivalence of the support variety
of a module with a rank variety for that same module. For notation, let
kE = k[x1, . . . , xr]/(x

p
1, . . . , x

p
r). Let M be a kE-module. The support

variety VG(M) of M is the closed subset of Proj H∗(G, k) consisting of all
homogeneous prime ideals that contain the annihilator J(M) in H∗(E, k) of
the cohomology ring Ext∗kE(M,M). The rank variety of M , denoted V r

G(M)
is the set of all points [α1, . . . , αr] in Pr−1 such that α∗(M) is not a free
module. Here α : k[t]/(tp) → kE is given by α(t) = α1x1 + · · · + αrxr and
α∗(M) is the restriction of M to a k[t]/(tP )-module along the map α.

The conjecture states that for α ∈ Pr−1, α ∈ V r
G(M) if and only if

α∗(J(M)) = {0}, where α∗(J(M)) is the restriction of the ideal to the
cohomology ring of k[t]/(tp) along α. This all makes sense because α is a
flat embedding. The most difficult part is the proof of the assertion that if
α∗(J(M)) = {0}, then α∗(M) is a free module over k[t]/(tp). The proof by
Avrunin and Scott uses a spectral sequence argument under the assumption
that kE has the coalgebra structure of the restricted enveloping algebra of
an elementary Lie algebra. In this case any such α is a map of Hopf algebras
and this point is important in the proof. The other key step is their proof
that the variety is independent of the coalgebra structure.

This last step is an easy consequence of Theorem 4.4. The point is to
restrict to the subring S. The annihilator in S of Ext∗kE(M,M) is S∩J(M).
Moreover VG(J(M)) = VG(S ∩ J(M)). While the ideal J(M) depends on
the coalgebra structure, the ideal J(M) ∩ S does not, by Theorem 4.4.
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