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On the density of scattered translates of
the general multiquadric in C([a, b))

Jeff Ledford

ABSTRACT. This note concerns density properties of the general multi-
quadric, (z? 4 02)]“71/2, where k is a fixed natural number. We estab-
lish that scattered translates of the general multiquadric are dense in
C([a,b]), where a and b are finite. As a corollary, we show that scat-
tered translated of the general multiquadric are dense in the function
spaces L”([a, b]), for 1 < p < oco.
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1. Introduction

Approximation and interpolatory properties of the function
$(x) = (a* + )2,

called the multiquadric, have been investigated before, see for instance
[1, 2, 5, 6]. These papers deal with integer or near-integer translates of
the multiquadric. In [5], it was shown that continuous functions on a closed
interval may be uniformly approximated by scattered translates of the mul-
tiquadric. We will improve the result found there, showing that the same is
true for the k* order multiquadric, ¢y(z) = (22 + ¢®)*~V/2, where k € N.
This family of general multiquadrics has also been studied, [3, 4], although
the aims of those papers are a bit different than the present goal, since they
consider divided differences of the general multiquadric.

This note is organized as follows. In the next section, various definitions
and facts are collected. The third section contains the main theorem to
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be proved, while the fourth section contains the details of the proof. Some
general comments are collected in the final section.

2. Definitions and basic facts

We will need to know what “scattered” means. For our purposes, we have
the following definition in mind.

Definition 1. A sequence of real numbers X is said to be scattered if:
(1) There exists § > 0 such that inf |z —y| > 6.

T,yeX
TFY
(2) lim z; = —oo0 and lim z; = oco.
j——00 j—oo
It’s not hard to see that a scattered sequence must be countable. Take
intervals of length §/3 centered at each point in X', each of these intervals is
disjoint and contains a rational number r. Letting a member of X’ correspond
to the number r which is in the same interval shows that the set & is at
most countable. This allows us to index X with the integers.
Throughout the remainder of the paper we let X = {z; : j € Z} be a
fixed but otherwise arbitrary scattered sequence.
Part of the proof that we give later requires the following summation
formula, which we state as a lemma.

Lemma 1. For N € N, 0 <[ < N, and p a polynomial of degree [. We
have,

Y (N 0 0<1I<N,
2 <j>p(‘7): {(—1)NaN-N! L= N,

where apn is the leading coefficient of p.

Proof. To see this we need only to use the binomial series expansion. For
N € N, we have,

N /NN .
(1—xz)V = Z(—1)7< ) 7,
j=0 J
Now we can differentiate [ times to yield
d (N . -
() =0 = (T)iG -0t e
§=0

Since we can write an [** degree polynomial p(j) as an appropriate linear
combination of

(L7, -1.00 -0 —=2),..,30G 1) (G -1+ 1D},

all we must do to get the result is evaluate at x = 1. ([
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3. Main result

This section contains our theorem and an outline of the proof. We also
give a corollary, which extends the main result.

Theorem 1. Given k € N, a scattered sequence {x;}, € > 0, and a contin-
uous function f : [a,b] — R, we may find a sequence of coefficients {aj}é\[:l,
such that

N
sup |f(z) — Zajgbk(m —xj)| <e.
j=1

z€[a,b]

Sketch of Proof. The idea is to develop a Taylor expansion
e A ()
(1) dr(x —y) =y 120;-
J:

Here, we will take y >> 0, so that the series converges. Then we show that
the linear span of {A ;(x)} contains 27 for j = 0,1,2,.... We then find
coefficients to approximate an n* degree polynomial by using an appropriate
Vandermonde matrix. Finally, since we may approximate polynomials, we
appeal to the Stone-Weierstrass Theorem to finish the proof. [l

This theorem, when combined with Holder’s Inequality allows us to re-
place the sup-norm above with the LP([a,b]) norm. We state this in the
following corollary.

Corollary 1. Given k € N, a scattered sequence {x;}, € > 0, and a contin-
uous function f : [a,b] — R, then for 1 < p < co we may find a sequence of
coefficients {aj}évzl, such that

N
f(x) —Zajqﬁk(:n—wj) < €.
=t L7 ((a,b])
Remark. The corollary above cannot be extended to the p = oo case. This

follows from the continuity of each approximation and the fact that C([a, b))
is a closed subspace of L*([a, b]).

4. Detalils

This section provides a rigorous justification for the outline of the proof.
We begin with the Taylor expansion, which we recognize as the familiar
binomial series. For y >> 0 we have,
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J .
NS <§>x2(j—l>c2ly—(n+j)

=0

)
EEECDO e
“EEE(N(L)C ey

0o i J Jj—n .
_ Z (—;)J Z <7<7 ; 5) (j ibn> <J ;n> (2lo2n—j i
j /21 1=0

J=0 n=[3j/2]
_ i Ak,j (.’L‘)
Y

In the fourth line we have re-indexed the sum, and in the fifth changed the
order of summation. All of this hinges on the binomial series being absolutely
convergent, but since we’ve assumed y >> 0, the argument of the binomial
series will be close to 0. This gives us a formula for the polynomials Ay ;(x):

o = 3 S ()7

M

We can glean lots of information from (2), for instance, deg(Ay ;) has the
same parity as j and deg(Ay ;) < j. We are interested in the leading term for
Ay, j, for this will tell us the exact degree. We need only re-index and change
the order of summation, since both sums are finite, there is no problem with
convergence.

EJ: — (k - %) ( n ) (j - “) 92n—j 21, 1.j 21
- n j—n l

[7/21  j—1 .
_ Jz: ] (k - %) < n > <J - ”> 92n—j 20,.j—2
, n ]j—n l
=0 n=[j/2
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To simplify notation, we write

(3)  Ag;(2)

[5/2] izt 1 n i—n
_ j 21, j—2l -3 - i
ey ()80

=0 n=[j/2]

1372 '
= (—1)J Z aj_21$j_2l.

=0
We are in position to state the following lemma.
Lemma 2. Given k € N, and j > 2k, we have

0 0<1 <k,
GRATY () =k

Hence, the polynomial Ay j(x) is a polynomial of degree j — 2k.
Proof. We need only find the sum in (3). To do this, we re-index:

5 (0

n=[j/2]
i—[3/21-1 . . .
:j ]z: < k—1/2 ) ( n+[j/2] )(] —[4/2] _n>22n+2]'j/2'\—j‘
2 \nt15/21) G Tj/21 = n z
Now we let j = 2k + N, for N = 0,1,2,..., and we have two cases, the

case that N is even, and the case that N is odd. Both cases being similar
calculations, we will work the odd case here. By letting N = 2m + 1, we
have

e

n=0

k4+m—I1

B Z k—1/2 n+k+m+1\[/k+m-—n o2n+1
- o n+k+m+1 k+m—n l

VAT V) W (2(n +m) + D!
_k!< k > P +1(2n+1)!l!(k+m—n—l)!

n=0

(=D =12\ Pk m =1\ (2(n+m) + D!
_l!(k‘—I—m—l)!( k > Z (1)< n ) 2m(2n+ 1N 7

n=0
The last summand may be reduced by noting that
Crn+m)+ 1! 2n+2m+1)2n+2m—1)---(2n+ 3)

2m(2n + 1)!! 2m
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is a monic, m‘* degree polynomial in the variable n. Thus Lemma 1, gives
us the result provided k£ — [ > 0. This proves the case when N is odd, the
even case is virtually the same computation. ([

Now we choose a subset of X which allows us to recover Ay op1 (). Pick
aset {yj:1<j<2k+ N+ 1} C X using the following conditions:
oy >> 0.
oy >2y;i—1; j=2,3,....,2k+N+1.
The modified (2k + N + 1) x (2k + N + 1) Vandermonde system

2k+N+1
ST obyt=0 v 1=2%-1,2k-2,...,-N-1
j=1
is invertible. The solution may be found by repeated use of Cramer’s rule.
We get
2k+N+1 g1t
i+1, N+1 j
I=11#] :

As a result of this, we have that the set of products
{bﬂ/j_(NH) nJ = 1,2,---,2K+N+1}

is uniformly bounded. Using these coefficients, we have

2k+N+1 1
> bidk(x —y;) = Agnyar() + O <y1> , a<z<b
j=1

Since y; may be as large as we like and Ay, o4 v () is an N th degree polyno-
mial, to approximate continuous function f, we need only find a polynomial
to approximate f on [a,b], then approximate the polynomial with the sum
above.

5. Comments

In looking over the method provided here, it may seem that a large va-
riety of functions may be substituted in place of the multiquadric without
substantially changing the argument. We will provide some examples to
illustrate that this is not the case. Since we use the Stone-Weierstrass theo-
rem, we need the span of the expansion polynomials A;(z) to be the same as
the span of the monomials z7. In particular, finite expansions will not work.
Even though ¢(x) = (1 4+ 22)? shares many of the same properties as the
general multiquadric, it does not share the same approximation property. A
less trivial example is provided by ¢(z) = (1+2*)%/4, which seems to mimic
the behavior of the multiquadric (1 + 22)%/2. Using the technique above
mutatis mutandis, one can show that for j > 5 the leading term of A;(x) is
not a multiple of 3, z*, 2%, or %, however, all other powers are represented.
Hence this function does not enjoy the approximation property.
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