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Extending Chang’s construction to the
category of m-zeroids and some category
containing the category of Abelian
£-groups with strong unit

Joshua B. Palmatier

ABSTRACT. In this note we prove that it is impossible to extend the
natural equivalence between the category of MV-algebras and the cat-
egory of Abelian ¢-groups with strong unit described by C. C. Chang,
1958, and Cignoli & Mundici, 1997, to a natural equivalence between
the category of m-zeroids and some category containing the category of
Abelian /-groups with strong unit.
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1. Introduction

In 1958, C. C. Chang [3] showed that there is a natural equivalence
between the category of totally ordered MV-algebras and the category of
totally-ordered Abelian ¢-groups with strong unit. In 1997, Cignoli & Mun-
dici [4] generalized Chang’s construction to show that there is a natu-
ral equivalence between the category of MV-algebras and the category of
Abelian f¢-groups with strong unit with a functor commonly called I'. Tt
is of interest to determine if this functor can be extended to more general
classes of algebraic structures.
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To that end, in 2001, Esteva & Godo [6] introduced a spectrum of monoidal
logic systems which included involutive monoidal t-norm based logic sys-
tems, IMTL-algebras for short, and then proceeded in 2007 (see [7]) to
use the IMTL-algebras to attempt a generalization of the I' functor estab-
lished by Cignoli & Mundici. They succeeded in defining a functor that
is a categorical equivalence between the subcategories of linearly-ordered
objects from the categories of lattice-ordered partially-associative Abelian
groupoids with strong associative unit and IMTL-algebras. This categorical
equivalence cannot be extended (yet) beyond these linearly-ordered subcat-
egories to the corresponding non-linearly-ordered categories.

Using the fact that an m-zeroid is a generalization of an MV-algebra (see
[2]), this paper attempts a generalization of Cignoli & Mundici’s I' functor to
a natural equivalence between the category of m-zeroids and some category
containing the category of Abelian f-groups with strong unit. This is an
attempted generalization of the functor Esteva & Godo [7] developed in
their paper, since it is easy to see that the varieties of IMTL-algebras and
m-zeroids are term equivalent (see Remark 1). The generalization being
made here involves the other side of the functor: the subcategory of linearly-
ordered partially-associative Abelian groupoids with strong associative unit
considered by Esteva & Godo will be generalized to some category containing
the category of Abelian /-groups with strong unit.

In this note we prove the following result:

Main Theorem. There does not exist an extension of the natural equiv-
alence between the category of MV-algebras and the category of Abelian -
groups with strong unit presented by Chang [3] and Cignoli € Mundici [4]
to the category of m-zeroids and some category containing the category of
Abelian £-groups with strong umnit.

We begin in Section 2 by providing definitions for the algebraic structures,
namely the m-zeroid, MV-algebra, Abelian ¢-group, Abelian ¢-monoid, and
the dual Abelian f-monoid. Section 3 summarizes the natural equivalence
between the category of MV-algebras and the category of Abelian £-groups
with strong unit presented by Chang and Cignoli & Mundici, and then con-
siders an extension of this natural equivalence to a natural equivalence be-
tween the category of m-zeroids and the category of dual Abelian £-monoids
with cancellative unit.

2. Definitions

Since C. C. Chang [3] first defined the algebraic system called an MV-
algebra, numerous generalizations for an MV-algebra have been proposed,
including the structure called an m-zeroid. For the purposes of this paper a
combination of the definitions given by F. Paoli [8] and Cignoli & Mundici [4]
for the m-zeroid and the MV-algebra will be used.

Definition 1. An m-zeroid is a structure Z = (Z,+, —, 0, <) such that:
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(21) x+y =y +;

(Z2) x+ (y+2)=(x+y) + z;
(Z3) (Z,<) is a lattice;

(24) ~(Z2) =

(Z5) =+ 0= 0;

(26) v+ —x = 0;

(Z7) 2 <yiff 0 = —x 4+ y;

(Z8) x4+ (yVz)=(xr+y) V(x+2).

Definition 2. An MV-algebra is an m-zeroid that also satisfies:

(29) (—z+y)+y=—(~y+zx)+x

It should be noted that both (Z3) and (Z7) can be expressed equationally
strictly in terms of the algebraic operations + and —. Thus the class of m-
zeroids forms a variety and the class of MV-algebras forms a variety. As a
consequence, a homomorphism between two m-zeroids, or a homomorphism
between two MV-algebras, will be defined as usual—as a function that pre-
serves the operations. However, in general, (Z3) and (Z7) will be sufficient
and their equational representations will not be used.

For both the m-zeroid and the MV-algebra, the following binary operation
will be defined in order to reduce the notation where possible:

z-y=—(—z+-y).
The following is then an immediate consequence of property (Z4):
4y =—(—z —y).

Note that for an m-zeroid x V y can be written in terms of the other
operations, including A. However, in an MV-algebra

—(—r+y)+y=—(-y+a)+=
so the join can be written in terms of only the operations + and — as follows:
rVy=—(—z+y)+y=—(—y+z)+x
Similarly for the meet:
v Ay = [z —y)+ —4] = ~[~(y + —2) + —].

In both structures, —0 plays the role of the identity element, and 0 plays
the role of “collector of the opposites”, as Paoli [8] calls it. Also note that
in both m-zeroids and MV-algebras, —0 represents a universal lower bound
and 0 a universal upper bound.

Remark 1. We could denote an IMTL-algebra as (Z,x, —, 1, <), with 0 as
the identity element, where the operations of the IMTL-algebra correspond
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to those of the m-zeroid defined above as follows:

1 <= 0
0 << -0
r—0 << -—=x
Txy = —(—xt-y)
rT—Yy < —IT+yY
(= 0)x(y—0) =0 <= z+y

and where the lattice operations remain identical for both structures. As
noted in [7], by adding the divisibility condition x Vy = (z — y) — vy,
the IMTL-algebra will become an MV-algebra. This divisibility condition is
equivalent to adding (Z9) to an m-zeroid to create an MV-algebra, since:

zVy=(r—y sy<—=azVy=—(—z+y)+y
and since x Vy =y V z, we have —(—z+vy)+y=—(—y + ) + z.
Definition 3. An Abelian (-group is a structure G = (G, +, —,0, <) such

that:
(Gl) z+y=y+uax;
(G2) z+ (y+2) = (x+y) + 2
(G3) (G, <) is a lattice;
(G4) —(—z) = =;
(Gh) x40 =ux;
(G6) x4+ —z =0;
(G7T) x <yiff 0 < —z +y;
(G8) z+ (yVz2)=(z+y)V(z+2).

An Abelian ¢-group is simply a group in which a partial ordering has been
placed on the elements of the group such that the order forms a lattice (G3)
and that the group operation preserves the order, an easy consequence of
(G8):ify <z, thenz+z=z+(yVvVz)=(z+y)V(z+z),s0x+y <z+=z
As with m-zeroids and MV-algebras, (G3) and (G7) can be expressed using
equations, and so the class of Abelian /-groups forms a variety.

One of the fundamental properties of Abelian ¢-groups is the following,
proven in Birkhoff [1]:

Lemma 1. Except for the trivial case G = {0}, an Abelian ¢-group has no
universal bounds.

Definition 4. An element, u > 0, of an Abelian ¢-group is a strong unit if
for all x € G there exists an integer n > 1 such that nu > =x.

For any given Abelian ¢-group, if a strong unit exists, it is not necessarily
unique. Not every Abelian /-group will have a strong unit.

Definition 5. An Abelian {-monoid is a structure M = (M, +,0, <) such
that:

M) 24y =y +
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(M2) 2 + (y + 2) = (¢ +y) + 2
(M3) (M, <) is a lattice;
(M4) 240 = z;

(M5) x+ (yVz)=(x+y)V(z+2).

Definition 6. A dual Abelian {-monoid is a structure M’ = (M’ +,0, <)
such that:

M) z+y=y+

(M2) z+ (y+2) = (z +y) + 2;

(M'3) (M', <) is a lattice;

(M'4) 40 = x;

(M'5) z+ (yAz)=(x+y) A (z+ 2).

Remark 2. It should be noted that these two definitions are not equivalent.
In an Abelian ¢-group,

r+yvz)=@+yVir+z) = z+ynrz)=@+yA(z+2)

This is not true in an Abelian ¢-monoid. Isotonicity of the Abelian ¢-monoid
is a consequence of (M5). Similarly, isotonicity for the dual Abelian /¢-
monoid is a consequence of (M’5). The definition of an Abelian ¢-monoid
has been taken from Birkhoff [1]; the author has introduced the concept
of a dual Abelian ¢-monoid. And lastly, note that the dual of an Abelian
Z-monoid is a dual Abelian /-monoid.

There are significant differences between Abelian /-monoids, dual Abelian
Z-monoids, and Abelian ¢-groups. Both Abelian /-monoids and dual Abelian
f-monoids can have universal upper bounds and universal lower bounds,
unlike Abelian ¢-groups (see Lemma 1). In fact, it is possible for them to
have both a universal upper bound and a universal lower bound.

Another difference between Abelian /-groups and Abelian £-monoids deals
with the dual lattice. If L is a lattice, then the dual lattice L' is found by
simply inverting the lattice, so that meets become joins and joins become
meets.

Similarly, if w is a statement involving meets and joins, then the dual
statement w' is the same statement but with the meets and joins inter-
changed. (This concept is described in Darnel [5].)

Lemma 2. The dual of an Abelian (-group is an Abelian £-group.

This is stated in Birkhoff [1] and is true since in an Abelian ¢-group both
statements (M5) and (M’5) hold. However, the same cannot be said for
either Abelian /-monoids nor dual Abelian /-monoids.

3. Extension of Chang’s construction

First consider the construction of the natural equivalence between the
category of MV-algebras and the category of Abelian /-groups with strong
unit presented by Chang [3] and refined by Cignoli & Mundici [4]. Lemmas 3,
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4,5,6, 7, and 8, and Theorems 1 and 2, have all been proven in Cignoli &
Mundici [4].

Let MYV be the category of MV-algebras and let A; be the category of
Abelian ¢-groups with strong unit. Let G = (G, +, —, 0, <, u) be an Abelian
f-group with a specified strong unit .

Definition 7. The unit interval [0,u] of G = (G, +,—,0,<,u) is defined
by:
0,ul ={z e G|0<xz<u}.
Now define ®(G,u) = ([0, u], ®, -, u, <) such that for each z,y € [0, u],
- =u—,

rdy=uAN(x+y).
As done with m-zeroids earlier, to shorten the notation, define:

2Oy = ~(~z & ).

At this point we have two different symbols for binary addition, namely +
and @, used for a multitude of structures. @ will be used when the interval
structure of the corresponding algebra needs to be emphasized, but it should
be noted that the two symbols are interchangeable.

Lemma 3. ®(G,u) is an MV-algebra in which the natural lattice-order of
®(G,u) agrees with the order of [0,u] inherited from G by restriction.

A unital £-group homomorphism will be a group homomorphism:
f : <G7 +G7 _Ga OG; §G7 u) — <H7 +H7 _H7 0H7 SHa ’U>
in A; that also satisfies:

flzVvy) = f(z)V f(y),
flxAy) = fx) A f(y),
flu) =w.

For every unital /-group homomorphism f, let ®; = f||y ) be the restriction
of f to the interval [0, u]. Then:

Lemma 4. ® is a functor from A into MV.

The functor necessary for the other direction is a little more complicated.
Every MV-algebra A = (A, ®,—,0, <) must give rise to an Abelian ¢-group
with strong unit. The Abelian ¢-group with strong unit corresponding to A
will be denoted G 4. The construction from A to G 4 is described in detail
by Cignoli & Mundici [4] and begins with the following definition:

Definition 8. For every MV-algebra A, a sequence (a) = (a1, as,...) of
elements of A is good if and only if for each i = 1,2,..., a; ® a;41 = a;, and
there exists an integer n > 0 such that a, = —0 for all r > n.
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As in Cignoli & Mundici’s paper, the sequence
<a’> = (a’lv ag,...,an,—0,-0,-0,.. )

shall be denoted as simply (a) = (a1, a2,...,a,). This implies that:

(a1,a2,...,a,) = (a1,a2,...,a,,—0™)
for any arbitrary m-tuple of —0s. However the sequence (0™, a1, as, ..., a,)
is distinct from the sequence (ai,ag, ..., ay).

Definition 9. Let A be an MV-algebra. Let (a) = (a1,aq,...,a,) and
(b) = (b1,ba,...by) be good sequences in A. Define the sum (c) = (a) + (b)
to be the sequence (c) = (c1,ca,...), where for all i = 1,2,.. .,

i =0a;P(ai—10b1) B (ai—20b2) BB (a1 ©bi—1) B b;.

Note that when p > n and ¢ > m, a, = b; = —0 and so ¢; = —0 when
j > n+m. In fact:

Lemma 5. For any MV-algebra A, the sum of two good sequences of A is
a good sequence of A.

Now consider the set of all good sequences M4 on an MV-algebra A,
equipped with the sum operation defined in Definition 9 and identity (—0).
This structure satisfies cancellation:

Lemma 6. M4 is an Abelian monoid called the enveloping monoid of A and
satisfies cancellation: For any good sequences (a), (b), and (c), if (a)+ (b) =
(a) + (c), then (b) = (c).

The Abelian group G 4 is the group of quotients of this enveloping monoid
May.

Lemma 7. G4 is an Abelian group called the enveloping group of A.

To complete the construction, a translation invariant lattice structure is
defined for both M4 and G 4. This lattice structure arises naturally from
the underlying lattice structure of A (see Cignoli & Mundici [4]). Once the
translation invariant lattice structure is established, the Abelian group G 4
becomes an Abelian ¢-group. This Abelian ¢-group G4 = (Ga,+, —, —0, <)
is called the Chang £-group of A. It contains a strong unit, namely uyg =
[(0),(—0)], and so is an Abelian ¢-group with strong unit.

Now, define an mz-homomorphism to be a function:

f: <A7 +A7_A70A7SA> — <B7+B7_B7OB7§B>
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in MYV that also satisfies:

fl+2y) = f(z) +B fly)
f(—2z) = -Bf(a)
flzvy) = f(z)V fly
flxAy) = f(x) A fly
F(0%) = 0P

Then if (a) = (a1,az,...) is a good sequence of A, then (f(ay), f(a2),...)
is a good sequence of B. Let f*({(a)) = (f(a1), f(a2),...). Note that f* :
M4 — Mp satisfies:

F({a) +4 (b)) = f*({a)) +7 £*((b))
((a) A (b)) = f*({a)) A f7((B))
((a) v (b)) = f*({a)) Vv [*((b))-
This is proven in Cignoli & Mundici [4]. Lastly, define
F2([{a), ()] = [f*({a)), f*((B))]
and let ug and up be the strong units of G4 and Gp respectively as

defined above. Then f® is a unital £-group homomorphism from (G a,u4)
into (Gg,up). Let W(A) = (Ga,ua) and ¥y = ¥ Then:

Lemma 8. ¥ is a functor from MYV into A;.

A
[ ({a) A
[ ({a) v

The two functors ® and ¥ together will yield that:

Theorem 1. There exists a natural equivalence between the category of MV-
algebras and the category of Abelian £-groups with strong unit.

One of the more interesting properties of the construction of the Abelian
{-group presented by Chang and Cignoli & Mundici is the following:

Theorem 2. Let A be an MV-algebra and let ua be the strong unit of G
defined as above. Let oo : A — ®(Ga,ua) C G4 be defined by:

p(a) = [(a), (=0)]

for all a € A. Then @4 isomorphically maps A onto ®(Ga,ua).

This finishes the construction of the natural equivalence between the cat-
egory of MV-algebras and the category of Abelian /-groups with strong unit
presented in Cignoli & Mundici [4]. The question now is whether or not this
natural equivalence can be extended to a natural equivalence between the
category of m-zeroids and some category containing the category of Abelian
l-groups with strong unit. The natural instinct is to try to extend the nat-
ural equivalence to the category of m-zeroids and the category of Abelian
l-groups. Another possibility is to extend the natural equivalence to the
category of m-zeroids and the category of Abelian ¢-groups with some type
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of unit that is a generalization of the strong unit. For our purposes, a more
general category will be considered.

There are two properties that it seems reasonable, and desirable, for a
natural equivalence to retain for this extension: cancellation of the special-
ized unit and an equivalent of Theorem 2 for the m-zeroids. The requirement
of cancellation of the specialized unit is necessary for the construction of the
enveloping monoid. And in order for the natural equivalence to be an ex-
tension of the construction above, the m-zeroid should map isomorphically
onto some interval of the dual Abelian ¢-monoid. In fact, if the extension is
to work properly and v is the specialized unit in the dual Abelian /-monoid,
then the m-zeroid should map isomorphically onto the interval [0,u]. In
an attempt to retain these properties, consider an extension of the natural
equivalence to a natural equivalence between the category of m-zeroids and
the category of dual Abelian /-monoids.

To begin, consider the specialized unit:

Definition 10. Let L = (L,+,0,<) be an Abelian ¢-monoid (or a dual
Abelian ¢-monoid). A non-zero element u > 0 in L is a cancellative unit if
for all z,y € L, x +u =y + u implies x = y.

Now, let MZ be the category of m-zeroids and let M; be the category
of dual Abelian /-monoids with cancellative unit. If there is to be a natu-
ral equivalence with the required properties above, then for every m-zeroid
Z = (Z,®,—,0,<) there must be a corresponding dual Abelian ¢-monoid
M = (M,+,—,0,<) with cancellative unit u such that Z gets mapped
isomorphically onto [0, u] in M.

Theorem 3. Let Z = (Z,®,,0,<) be an m-zeroid. Let M = (M, +,0, <)
be a dual Abelian £-monoid with cancellative unit u. If ¢ + Z — M is an
injective mapping such that for all x,y € Z:

i) ¢(0) =
i) (- )
111) oz)+ ¢ —mv) =u, and
v) p(zDy) =uA (<p( )+ o)),

then Z is an MV-algebra.

Proof. Since Z is already an m-zeroid, the only property that needs to be
proven is =(—x @ y) &y = ~(—y @ z) & x. For convenience in the notation,
if x € Z, its corresponding element ¢(x) will be denoted as simply x in M.
Similarly, ¢(Z) will simply be denoted Z. Also recall that the symbols +
and @ are interchangeable, but @ will be used when the interval structure
of Z needs to be emphasized.

To prove =(-z @ y) Dy = —(—y @ x) @ x, first consider the following:
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For all a,b e Z C M,

a+b+ (mad —b) = [u/\(ﬂa—i-—'b)]
+u] A [(a + b) + (—a + —b)]
+u] A [(a+ —a) + (b+ —b)]

+ u] A Ju + u]

= (a®b) +u.

Thus a +b+ (—a® —b) = (a ®b) + u.
Now let z,y € Z C M. Then:
r+(zdy)+tu=z+(z)+y+(z&y)
=u+ty+(z&y).

Thus, using cancellation,
z+(rz®y) =y + (xS )
Adding =(—z ® y) + =(z & —y) to both sides yields:

z+ (z®y)+(-zdy)+ -(x B )
=y+ @@y +-(zey) +-(z® )
This implies
rtuto(z@-y)=y+ut(-zody),

which in turn implies
Jj+—\(x@—|y) :y—|——|(—|ﬂj@y)

Now, since z @ ~y > x, ~(z @ —~y) < —z and so x + —(x ® —y) < u. Thus,
T+ =(x®-y) =z ®~(z®~y). Similarly, y + (-2 @ y) =y & ~(-z DY)
Therefore:

“(woy)dy=-(wydr)d

and so Z is an MV-algebra. O

Thus if there exists an isomorphic image of an m-zeroid Z in a dual
Abelian /-monoid with a cancellative unit M, the structure imposed on it
by M forces Z to be an MV-algebra. This leads to the following corollary:

Corollary 1. There does not exist an extension of the natural equivalence
between the category of MV-algebras and the category of Abelian £-groups
with strong unit presented by Chang [3] and Cignoli & Mundici [4] to the
category of m-zeroids and some category containing the category of Abelian
L-groups with strong unit.
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Proof. Suppose such an extension were possible. Let  be the functor
from MZ to My, and let A be the functor from M; to MZ. Let Z
be an m-zeroid which is not an MV-algebra. By the natural equivalence, Z
corresponds to a dual Abelian /-monoid ©(Z) with cancellative unit u. Since
the natural equivalence is an extension, every m-zeroid Z must be mapped
isomorphically to A(2(Z),u) C Q(Z). But by Theorem 3, A(Q(Z), u) is an
MV-algebra, and thus Z is an MV-algebra, which is a contradiction. Thus
the natural equivalence cannot be extended. O

4. Conclusion

Even though the result is negative, Theorem 3 is more general than the
negative result stated in Remark 3 by Esteva & Godo [7]. However, their suc-
cess in extending Cignoli & Mundici’s I' functor to a functor that is a categor-
ical equivalence between the subcategories of linearly-ordered objects from
the categories of lattice-ordered partially-associative Abelian groupoids with
strong associative unit and IMTL-algebras indicates that further study needs
to be made of IMTL-algebras and these lattice-ordered partially-associative
Abelian groupoids.

I’d like to thank the referee for invaluable advice and suggestions during
revisions of this paper.
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