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Generalized hyperideals in locally
associative left almost semihypergroups

Venus Amjad, Kostaq Hila and Faisal Yousafzai

Abstract. In this paper, we introduce the concept of a locally asso-
ciative LA-semihypergroup by generalizing the idea of a locally associa-
tive LA-semigroup given in Mushtaq–Yusuf, 1979, and study an (m,n)-
regular class of a locally associative LA-semihypergroup. We give some
examples to connect an LA-semihypergroup with commutative hyper-
groups and commutative semihypergroups. We also characterize a lo-
cally associative LA-semihypergroup H in terms of (m,n)-hyperideals
and prove that if R(L) is a 0-minimal right (left) hyperideal of H, then
either Rm ◦Ln = {0} or Rm ◦Ln is a 0-minimal (m,n)-hyperideal of H
for m,n ≥ 2.
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1. Introduction

A left almost semigroup (LA-semigroup) is a groupoid S whose elements
satisfy the following left invertive law (ab)c = (cb)a for all a, b, c ∈ S. This
concept was first given by Kazim and Naseeruddin in 1972 [16]. In an LA-
semigroup, the medial law [16] (ab)(cd) = (ac)(bd) holds, ∀ a, b, c, d ∈ S.
An LA-semigroup may or may not contain a left identity. The left identity
of an LA-semigroup allows us to introduce the inverses of elements in an
LA-semigroup. If an LA-semigroup contains a left identity, then it is unique
[20]. In an LA-semigroup S with left identity, the paramedial law (ab)(cd) =
(dc)(ba) holds, ∀ a, b, c, d ∈ S. By using medial law with left identity, we get
a(bc) = b(ac) for all a, b, c ∈ S.
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An LA-semigroup is a nonassociative and noncommutative algebraic struc-
ture midway between a groupoid and a commutative semigroup. This
structure is closely related to a commutative semigroup; indeed if an LA-
semigroup contains a right identity, then it becomes a commutative semi-
group [20]. The connection between a commutative inverse semigroup and
an LA-semigroup was established by Yousafzai et al. in [25] as follows:
a commutative inverse semigroup (S, .) becomes an LA-semigroup (S, ∗)
under a ∗ b = ba-1r-1 for all a, b, r ∈ S. An LA-semigroup S with a left
identity becomes a semigroup under the binary operation “◦e” defined as
follows: x ◦e y = (xe)y for all x, y ∈ S [25]. There are lot of results which
have been added to the theory of an LA-semigroup by Mushtaq, Kamran,
Holgate, Jezek, Protic, Madad, Yousafzai and many other researchers. An
LA-semigroup is a generalization of a semigroup [20] and it has vast appli-
cations in semigroups, as well as in other branches of mathematics.

Hyperstructure theory was introduced in 1934, when F. Marty [19] defined
hypergroups, began to analyze their properties and applied them to groups.
In the following decades and nowadays, a number of different hyperstruc-
tures are widely studied from the theoretical point of view and for their
applications to many subjects of pure and applied mathematics by many
mathematicians. Nowadays, hyperstructures have a lot of applications to
several domains of mathematics and computer science and they are studied
in many countries of the world (cf. [3, 4], [10]-[12], [22, 23], [29]). In a
classical algebraic structure, the composition of two elements is an element,
while in an algebraic hyperstructure, the composition of two elements is a
set. A lot of papers and several books have been written on hyperstructure
theory, see [3]. Many authors studied different aspects of semihypergroups,
for instance, Corsini et al. [2], Davvaz et al. [5], Hila et al. [13, 15] and
Leoreanu [18].

Recently, Hila et al. introduced the notion of LA-semihypergroups [14].
They investigated several properties of hyperideals of LA-semihypergroup
and defined the topological space and study the topological structure of
LA-semihypergroups using hyperideal theory. In [24], Yaqoob et al. have
characterized intra-regular LA-semihypergroups by using the properties of
their left and right hyperideals, and investigated some useful conditions
for an LA-semihypergroup to become an intra-regular LA-semihypergroup.
This nonassociative hyperstructure has been further explored by Yousafzai
et al. in [26] and [27].

2. Preliminaries and examples

A map ◦ : H×H → P∗(H) is called hyperoperation or join operation on
the set H, where H is a nonempty set and P∗(H) = P(H)\{∅} denotes the
set of all nonempty subsets of H. A hypergroupoid is a set H together with
a (binary) hyperoperation.

Let A and B be two nonempty subsets of H, then we denote
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A ◦B =
⋃

a∈A,b∈B
a ◦ b, a ◦A = {a} ◦A and a ◦B = {a} ◦B.

A hypergroupoid (H, ◦) is called an LA-semihypergroup [14] if

(x ◦ y) ◦ z = (z ◦ y) ◦ x
holds for all x, y, z ∈ H. The law is called a left invertive law. A hyper-
groupoid (H, ◦) is called a right almost semihypergroup (RA-semihypergroup)
if x ◦ (y ◦ z) = z ◦ (y ◦ x) holds for all x, y, z ∈ H. The law is called a
right invertive law. A hypergroupoid (H, ◦) is called an almost semihy-
pergroup (A-semihypergroup) if it is both an LA-semihypergroup and an
RA-semihypergroup. Every LA-semihypergroup satisfies the law

(x ◦ y) ◦ (z ◦ w) = (x ◦ z) ◦ (y ◦ w)

for all w, x, y, z ∈ H. This law is known as medial law (cf. [14]).
Let H be an LA-semihypergroup [24], then an element e ∈ H is called

(i) a left identity (resp. pure left identity) if for all a ∈ H, a ∈ e ◦ a
(resp. a = e ◦ a);

(ii) a right identity (resp. pure right identity) if for all a ∈ H, a ∈ a ◦ e
(resp. a = a ◦ e);

(iii) an identity (resp. pure identity) if for all a ∈ H, a ∈ e ◦ a ∩ a ◦ e
(resp. a = e ◦ a ∩ a ◦ e).

We have shown in [26] that unlike an LA-semigroup, an LA-semihyper-
group may have a right identity or an identity. This fact can lead us to the
following major remark.

Remark 1. The right identity of an LA-semihypergroup need not to be
a left identity in general. An LA-semihypergroup may have a left identity
or a right identity or an identity. Moreover, an LA-semihypergroup with a
right identity need not be associative.

However an LA-semihypergroup with pure right identity becomes a com-
mutative semigroup with identity [26]. An LA-semihypergroup with pure
left identity e is called a pure LA-semihypergroup. A pure LA-semihyper-
group (H, ◦) satisfies the following laws for all w, x, y, z ∈ H:

(x ◦ y) ◦ (z ◦ w) = (w ◦ z) ◦ (y ◦ x),

called a paramedial law, and

x ◦ (y ◦ z) = y ◦ (x ◦ z).

Example 1. Let (H, ◦) be an LA-semihypergroup with pure left identity
e. Define a binary hyperoperation ô (e-sandwich hyperoperation) as follows:

a ô b = (a ◦ e) ◦ b for all a, b ∈ H.

Then (H, ô) becomes a commutative semihypergroup with pure identity .
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Example 2. Let (H, ·,≤) be any ordered LA-semigroup [28]. If we define a
hyperoperation ◦ on H by x ◦ y = {z ∈ H : z ≤ xy} = (xy] for all x, y ∈ H,
then it is easy to see that (H, ◦) becomes an LA-semihypergroup.

Example 3. An A-semihypergroup H with pure left identity becomes an
abelian hypergroup.

If there is an element 0 of an LA-semihypergroup (H, ◦) such that x◦0 =
0 ◦ x = 0 ∀ x ∈ H, we call 0 a zero element of H.

Example 4. Let us consider the following table for H = {a, b, c, d, e} with a
pure left identity d. It is easy to see that (H, ◦) is a pure LA-semihypergroup
with a zero element a.

◦ a b c d e
a a a a a a
b a {a, e} {a, e} {a, c} {a, e}
c a {a, e} {a, e} {a, b} {a, e}
d a b c d e
e a {a, e} {a, e} {a, e} {a, e}

A subset A of an LA-semihypergroup H is called a left (right) hyperideal
of H if H ◦ A ⊆ A (A ◦ H ⊆ A), and is called a hyperideal of H if it is
both left and right hyperideal of H. A subset A of an LA-semihypergroup
H is called an LA-subsemihypergroup of H if A2 ⊆ A. A hyperideal A of
an LA-semihypergroup H with zero is said to be 0-minimal if A 6= {0} and
{0} is the only hyperideal of H properly contained in A.

An LA-subsemihypergroup A of an LA-semihypergroup H is said to be
an (m,n)-hyperideal of H if (Am ◦H) ◦An ⊆ A where m,n are nonnegative
integers such that m,n 6= 0. Here Am or An are suppressed if m = 0 or
n = 0, that is A0 ◦ H = H or H ◦ A0 = H. Note that if m = n = 1, then
an (m,n)-ideal A of an LA-semihypergroup H is called a bi-hyperideal of
H. If we take m = 0 or n = 0, then an (m,n)-hyperideal A of an LA-
semihypergroup H becomes a (0, n)-hyperideal or a (m, 0)-hyperideal of H,
respectively.

An (m,n)-hyperideal A of an LA-semihypergroup H with zero is said to
be 0-minimal if A 6= {0} and {0} is the only (m,n)-hyperideal of H properly
contained in A.

An LA-semihypergroup H with zero is said to be nilpotent if H l = {0}
for some positive integer l.

Let m,n be nonnegative integers and H be an LA-semihypergroup. We
say that H is (m,n)-regular if for every element a ∈ H there exists some
x ∈ H such that a ∈ (am ◦ x) ◦ an. Note that a0 is defined as an operator
element such that a0 ◦ y = y and z ◦ a0 = z for any y, z ∈ H.

An LA-semihypergroup H is said to be locally associative LA-semihyper-
group if for all a ∈ H, (a ◦ a) ◦ a = a ◦ (a ◦ a).
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Example 5. Let H = {a, b, c, d}. Then the following multiplication table
shows that (H, ◦) is a locally associative LA-semihypergroup with a zero
element a.

◦ a b c d
a a a a a
b a {a, b, c, d} {a, b, c} {a, b, c}
c a {a, b, c} {a, b, c} {a, b, c}
d a {a, b, c} {a, b, c} {a, b, c}

Assume that H is a locally associative LA-semihypergroup. Let us define
a1 = a, am+1 = am ◦ a and am = ((((a ◦ a) ◦ a) ◦ a) ◦ · · · ◦ a) ◦ a = am−1 ◦ a
for all a ∈ H where m ≥ 1. It is easy to see that am = am−1 ◦ a = a ◦ am−1
for all a ∈ H and m ≥ 2 if H has a pure left identity. Also, we can show by
induction, (a ◦ b)m = am ◦ bm and am ◦ an = am+n.

3. On locally associative LA-semihypergroups

In this section, we characterize a pure locally associative LA-semihyper-
group in terms of (m,n)-hyperideals with the assumption that m,n ≥ 2. If
H is a pure locally associative LA-semihypergroup, then it is easy to see
that H ◦ Am = Am ◦ H and Am ◦ An = An ◦ Am for m,n ≥ 2 such that
A0 = e if occurs, where e is a pure left identity of H.

Lemma 1. Let H be a pure LA-semihypergroup. If R and L are the right
and left hyperideals of H respectively, then R ◦ L is an (m,n)-hyperideal of
H.

Proof. Let R and L be the right and left hyperideals of H respectively,
then

{(R ◦ L)m ◦H} ◦ (R ◦ L)n = [(Rm ◦ Lm) ◦H] ◦ (Rn ◦ Ln)

= [(Rm ◦ Lm) ◦Rn] ◦ (H ◦ Ln)

= [(Lm ◦Rm) ◦Rn] ◦ (H ◦ Ln)

= [(Rn ◦Rm) ◦ Lm] ◦ (H ◦ Ln)

= [(Rm ◦Rn) ◦ Lm] ◦ (H ◦ Ln)

= (Rm+n ◦ Lm) ◦ (H ◦ Ln)

= H ◦ [(Rm+n ◦ Lm) ◦ Ln]

= H ◦ [(Ln ◦ Lm) ◦Rm+n]

= (H ◦H) ◦ (Lm+n ◦Rm+n)

= (H ◦ Lm+n) ◦ (H ◦Rm+n)

= (Rm+n ◦H) ◦ (Lm+n ◦H)

= (H ◦Rm+n) ◦ (H ◦ Lm+n),



1068 VENUS AMJAD, KOSTAQ HILA AND FAISAL YOUSAFZAI

and

(H ◦Rm+n) ◦ (H ◦ Lm+n) = [H ◦ (Rm+n−1 ◦R)] ◦ [(H ◦ (Lm+n−1 ◦ L)]

= [H ◦ {(Rm+n−2 ◦R) ◦R}] ◦ [H ◦ {(Lm+n−2 ◦ L) ◦ L}]
= [H ◦ {(R ◦R) ◦Rm+n−2)] ◦ [H ◦ {(L ◦ L) ◦ Lm+n−2}]
⊆ [(H ◦H) ◦ (R ◦Rm+n−2)] ◦ [(H ◦H) ◦ (L ◦ Lm+n−2)]

⊆ [(H ◦R) ◦ (H ◦Rm+n−2)] ◦ [(H ◦ L) ◦ (H ◦ Lm+n−2)]

⊆ [(Rm+n−2 ◦H) ◦ (R ◦H)] ◦ [L ◦ (H ◦ Lm+n−2)]

⊆ [(Rm+n−2 ◦H) ◦R] ◦ [H ◦ (L ◦ Lm+n−2)]

= [(R ◦H) ◦Rm+n−2] ◦ (H ◦ Lm+n−1)

⊆ (R ◦Rm+n−2) ◦ (H ◦ Lm+n−1)

⊆ (H ◦Rm+n−1) ◦ (H ◦ Lm+n−1).

Therefore

[(R ◦ L)m ◦H] ◦ (R ◦ L)n ⊆ (H ◦Rm+n) ◦ (H ◦ Lm+n)

⊆ (H ◦Rm+n−1) ◦ (H ◦ Lm+n−1)

⊆ · · · ⊆ (H ◦R) ◦ (H ◦ L)

⊆ [(H ◦H) ◦R] ◦ L
= [(R ◦H) ◦H] ◦ L ⊆ R ◦ L,

and also

(R ◦ L) ◦ (R ◦ L) = (L ◦R) ◦ (L ◦R) = [(L ◦R) ◦R] ◦ L
= [(R ◦R) ◦ L] ◦ L ⊆ [(R ◦H) ◦H] ◦ L ⊆ R ◦ L.

This shows that R ◦ L is an (m,n)-hyperideal of H. �

Theorem 1. Let H be a pure LA-semihypergroup with zero. If H has the
property that it contains no nonzero nilpotent (m,n)-hyperideals and R (L)
is a 0-minimal right (left) hyperideal of H, then either R ◦L = {0} or R ◦L
is a 0-minimal (m,n)-hyperideal of H.

Proof. Assume that R (L) is a 0-minimal right (left) hyperideal of H such
that R ◦ L 6= {0}, then by Lemma 1, R ◦ L is an (m,n)-hyperideal of
H. Now we show that R ◦ L is a 0-minimal (m,n)-hyperideal of H. Let
{0} 6= M ⊆ R◦L be an (m,n)-hyperideal of H. Note that since R◦L ⊆ R∩L,
we have M ⊆ R ∩L. Hence M ⊆ R and M ⊆ L. By hypothesis, Mm 6= {0}
and Mn 6= {0}. Since {0} 6= H ◦Mm = Mm ◦H, we have

{0} 6= Mm ◦H ⊆ Rm ◦H = (Rm−1 ◦R) ◦H = (H ◦R) ◦Rm−1

= (H ◦R) ◦ (Rm−2 ◦R) = (R ◦Rm−2) ◦ (R ◦H)

⊆ (R ◦Rm−2) ◦R = Rm,
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and

Rm ⊆ H ◦Rm = (H ◦H) ◦ (R ◦Rm−1) = (Rm−1 ◦R) ◦H
= [(Rm−2 ◦R) ◦R] ◦H = [(R ◦R) ◦Rm−2] ◦H
= (H ◦Rm−2) ◦ (R ◦R) ⊆ (H ◦Rm−2) ◦R
= [(H ◦H) ◦ (Rm−3 ◦R)] ◦R
= [(R ◦Rm−3) ◦ (H ◦H)] ◦R
= [(R ◦H) ◦ (Rm−3 ◦H)] ◦R
⊆ [R ◦ (Rm−3 ◦H)] ◦R
= [Rm−3 ◦ (R ◦H)] ◦R
⊆ (Rm−3 ◦R) ◦R = Rm−1.

Therefore {0} 6= Mm ◦H ⊆ Rm ⊆ Rm−1 ⊆ · · · ⊆ R. It is easy to see that
Mm ◦H is a right hyperideal of H. Thus Mm ◦H = R since R is 0-minimal.
Also

{0} 6= H ◦Mn ⊆ H ◦ Ln = H ◦ (Ln−1 ◦ L)

= Ln−1 ◦ (H ◦ L) ⊆ Ln−1 ◦ L = Ln,

and

Ln ⊆ H ◦ Ln = (H ◦H) ◦ (L ◦ Ln−1) = (Ln−1 ◦ L) ◦H
= [(Ln−2 ◦ L) ◦ L] ◦H = (H ◦ L) ◦ (Ln−2 ◦ L)

⊆ L ◦ (Ln−2 ◦ L) = Ln−2 ◦ (L ◦ L) ⊆ Ln−2 ◦ L
= Ln−1 ⊆ · · · ⊆ L,

therefore {0} 6= H ◦Mn ⊆ Ln ⊆ Ln−1 ⊆ · · · ⊆ L. It is easy to see that
H ◦Mn is a left hyperideal of H. Thus H ◦Mn = L since L is 0-minimal.
Therefore

M ⊆ R ◦ L = (Mm ◦H) ◦ (H ◦Mn) = (Mn ◦H) ◦ (H ◦Mm)

= [(H ◦Mm) ◦H] ◦Mn = [(H ◦Mm) ◦ (H ◦H)] ◦Mn

= [(H ◦ (Mm ◦H)] ◦Mn = [(Mm ◦ (H ◦H)] ◦Mn

= (Mm ◦H) ◦Mn ⊆M.

Thus M = R◦L, which means that R◦L is a 0-minimal (m,n)-hyperideal
of H. �

Theorem 2. Let H be a pure LA-semihypergroup. If R (L) is a 0-minimal
right (left) hyperideal of H, then either Rm ◦ Ln = {0} or Rm ◦ Ln is a
0-minimal (m,n)-hyperideal of H.

Proof. Assume that R (L) is a 0-minimal right (left) hyperideal of H such
that Rm ◦ Ln 6= {0}, then Rm 6= {0} and Ln 6= {0}. Hence {0} 6= Rm ⊆ R
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and {0} 6= Ln ⊆ L, which shows that Rm = R and Ln = L since R (L) is a
0-minimal right (left) hyperideal of H. Thus by Lemma 1, Rm ◦Ln = R ◦L
is an (m,n)-hyperideal of H. Now we show that Rm ◦ Ln is a 0-minimal
(m,n)-hyperideal of H. Let {0} 6= M ⊆ Rm ◦ Ln = R ◦ L ⊆ R ∩ L be an
(m,n)-hyperideal of H. Hence

{0} 6= H ◦M2 = (M ◦M) ◦ (H ◦H) = (M ◦H) ◦ (M ◦H)

⊆ (R ◦H) ◦ (R ◦H) ⊆ R,

and {0} 6= H ◦M ⊆ H ◦ L ⊆ L. Thus

R = H ◦M2 = (M ◦M) ◦ (H ◦H) = (H ◦M) ◦M ⊆ H ◦M,

and H ◦M = L since R (L) is a 0-minimal right (left) hyperideal of H.
Therefore

M ⊆ Rm ◦ Ln ⊆ (H ◦M)m ◦ (H ◦M)n = (Hm ◦Mm) ◦ (Hn ◦Mn)

= (H ◦H) ◦ (Mm ◦Mn) = (Mn ◦Mm) ◦H = (H ◦Mm) ◦Mn

= (Mm ◦H) ◦Mn ⊆M.

Thus M = Rm ◦ Ln, which shows that Rm ◦ Ln is a 0-minimal (m,n)-
hyperideal of H. �

Theorem 3. Let H be a pure LA-semihypergroup with zero. Assume that
A is an (m,n)-hyperideal of H and B is an (m,n)-hyperideal of A such that
B is idempotent. Then B is an (m,n)-hyperideal of H.

Proof. It is trivial that B is an LA-subsemihypergroup H. Secondly, since
(Am ◦H) ◦An ⊆ A and (Bm ◦A) ◦Bn ⊆ B, then

(Bm ◦H) ◦Bn = [(Bm ◦Bm) ◦H] ◦ (Bn ◦Bn)

= (Bn ◦Bn) ◦ [(H ◦ (Bm ◦Bm)]

= [{H ◦ (Bm ◦Bm)} ◦Bn] ◦Bn

= [{Bn ◦ (Bm ◦Bm)} ◦ (H ◦H)] ◦Bn

= [{Bm ◦ (Bn ◦Bm)} ◦ (H ◦H)] ◦Bn

= [H ◦ {(Bn ◦Bm) ◦Bm}] ◦Bn

= [H ◦ {(Bn ◦Bm) ◦ (Bm−1 ◦B)}] ◦Bn

= [H ◦ {(B ◦Bm−1) ◦ (Bm ◦Bn)}] ◦Bn

= [H ◦ {(Bm ◦ (Bm ◦Bn)}] ◦Bn

= [Bm ◦ {(H ◦H) ◦ (Bm ◦Bn)}] ◦Bn

= [Bm ◦ {(Bn ◦Bm) ◦ (H ◦H)}] ◦Bn

= [Bm ◦ {(H ◦Bm) ◦Bn}] ◦Bn

=
[
Bm ◦ [{(H ◦H) ◦ (Bm−1 ◦B)} ◦Bn]

]
◦Bn

= [Bm ◦ {(Bm ◦H) ◦Bn}] ◦Bn
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⊆ [Bm ◦ {(Am ◦H) ◦An}] ◦Bn

⊆ (Bm ◦A) ◦Bn ⊆ B,

which shows that B is an (m,n)-hyperideal of H. �

Lemma 2. Let 〈a〉(m,n) = (am◦H)◦an, then 〈a〉(m,n) is an (m,n)-hyperideal

of a pure LA-semihypergroup H.

Proof. Assume that H is a pure LA-semihypergroup, then by using induc-

tion, it is easy to see that
(
〈a〉(m,n)

)n
⊆ 〈a〉(m,n) . Also(

{〈a〉(m,n)}
m ◦H

)
◦ {〈a〉(m,n)}

n

= [{((am ◦H) ◦ an)}m ◦H] ◦ {(am ◦H) ◦ an}n

= [{(amm ◦Hm) ◦ amn} ◦H] ◦ {(amn ◦Hn) ◦ ann}
= [ann ◦ (amn ◦Hn)] ◦ [H ◦ {(amm ◦Hm) ◦ amn}]
= [[H ◦ {(amm ◦Hm) ◦ amn}] ◦ (amn ◦Hn)] ◦ ann

= [amn ◦ [[H ◦ {(amm ◦Hm) ◦ amn}] ◦Hn]] ◦ ann

⊆ (amn ◦H) ◦ ann = (amn ◦Hn) ◦ ann

= {(am ◦H) ◦ an}n ⊆
(
〈a〉(m,n)

)n
⊆ 〈a〉(m,n) ,

which shows that 〈a〉(m,n) is an (m,n)-hyperideal of H. �

Theorem 4. Let H be a pure LA-semihypergroup and 〈a〉(m,n) be an (m,n)-

hyperideal of H. Then the following statements hold:

(i)
(
〈a〉(1,0)

)m
◦H = am ◦H.

(ii) H ◦
(
〈a〉(0,1)

)n
= H ◦ an.

(iii)
[(
〈a〉(1,0)

)m
◦H

]
◦
(
〈a〉(0,1)

)n
= (am ◦H) ◦ an.

Proof. (i). As 〈a〉(1,0) = a ◦H, we have(
〈a〉(1,0)

)m
◦H = (a ◦H)m ◦H

= [(a ◦H)m−1 ◦ (a ◦H)] ◦H
= [H ◦ (a ◦H)](a ◦H)m−1

= (a ◦H) ◦ (a ◦H)m−1

= (a ◦H) ◦ [(a ◦H)m−2 ◦ (a ◦H)]

= (a ◦H)m−2 ◦ [(a ◦H) ◦ (a ◦H)]

= (a ◦H)m−2 ◦ (a2 ◦H)

= · · · = (a ◦H)m−(m−1) ◦ (am−1 ◦H) [if m is odd]

= · · · = (am−1 ◦H) ◦ (a ◦H)m−(m−1) [if m is even]



1072 VENUS AMJAD, KOSTAQ HILA AND FAISAL YOUSAFZAI

= am ◦H.

Analogously, we can prove (ii) and (iii). �

Corollary 1. Let H be a pure LA-semihypergroup and let 〈a〉(m,n) be an

(m,n)-hyperideal of H. Then the following statements hold:

(i)
(
〈a〉(1,0)

)m
◦H = H ◦ am.

(ii) H ◦
(
〈a〉(0,1)

)n
= an ◦H.

(iii)
[(
〈a〉(1,0)

)m
◦H

]
◦
(
〈a〉(0,1)

)n
= (H ◦ am) ◦ (an ◦H).

Let L(0,n), R(m,0) and A(m,n) denote the sets of (0, n)-hyperideals, (m, 0)-
hyperideals and (m,n)-hyperideals of an LA-semihypergroup H respectively.

Theorem 5. If H is a pure LA-semihypergroup, then the following state-
ments hold:

(i) H is (0, 1)-regular if and only if ∀ L ∈ L(0,1), L = H ◦ L.
(ii) H is (2, 0)-regular if and only if ∀ R ∈ R(2,0), R = R2 ◦H such that

every R is semiprime.
(iii) H is (0, 2)-regular if and only if ∀ U ∈ A(0,2), U = U2 ◦H such that

every U is semiprime.

Proof. (i). Let H be (0, 1)-regular, then for a ∈ H there exists x ∈ H such
that a ∈ x ◦ a. Since L is (0, 1)-hyperideal, therefore H ◦ L ⊆ L. Let a ∈ L,
then a ∈ x ◦ a ∈ H ◦ L ⊆ L. Hence L = H ◦ L. Converse is simple.

(ii). Let H be (2, 0)-regular and R be (2, 0)-hyperideal of H, then it is
easy to see that R = R2 ◦H. Now for a ∈ H there exists x ∈ H such that
a ∈ a2 ◦ x. Let a2 ⊆ R, then

a ∈ a2 ◦ x ⊆ R ◦H = (R2 ◦H) ◦H = (H ◦H) ◦R2 = R2 ◦H = R,

which shows that every (2, 0)-hyperideal is semiprime.
Conversely, let R = R2 ◦ H for every R ∈ R(2,0). Since H ◦ a2 is a

(2, 0)-hyperideal of H such that a2 ⊆ H ◦ a2, therefore a ∈ H ◦ a2. Thus

a ∈ H ◦ a2 = (H ◦ a2)2 ◦H = [(H ◦ a2) ◦ (H ◦ a2)] ◦H
= [(a2 ◦H) ◦ (a2 ◦H)] ◦H = [a2 ◦ {(a2 ◦H) ◦H}] ◦H
= [a2 ◦ (H ◦ a2)] ◦H = [H ◦ (H ◦ a2)] ◦ a2 ⊆ H ◦ a2 = a2 ◦H,

which implies that H is (2, 0)-regular.
Analogously, we can prove (iii). �

The proof of the follwing is straightforward:

Lemma 3. If H is a pure LA-semihypergroup, then the following statements
hold:

(i) If H is (0, n)-regular, then ∀ L ∈ L(0,n), L = H ◦ Ln.
(ii) If H is (m, 0)-regular, then ∀ R ∈ R(m,0), R = Rm ◦H.
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(iii) If H is (m,n)-regular, then ∀ U ∈ A(m,n), U = (Um ◦H) ◦ Un.

Corollary 2. If H is a pure LA-semihypergroup, then the following state-
ments hold:

(i) If H is (0, n)-regular, then ∀ L ∈ L(0,n), L = Ln ◦H.
(ii) If H is (m, 0)-regular, then ∀ R ∈ R(m,0), R = H ◦Rm.

(iii) If H is (m,n)-regular, then ∀ U ∈ A(m,n),

U = Um+n ◦H = H ◦ Um+n.

The following is also straightforward:

Theorem 6. Let H be a pure (m,n)-regular LA-semihypergroup such that
m = n. Then for every R ∈ R(m,0) and L ∈ L(0,n), R∩L = Rm ◦L∩R ◦Ln.

Theorem 7. Let H be a pure (m,n)-regular LA-semihypergroup. If M (N)
is a 0-minimal (m, 0)-hyperideal ((0, n)-hyperideal) of H such that M ◦N ⊆
M ∩N, then either M ◦N = {0} or M ◦N is a 0-minimal (m,n)-hyperideal
of H.

Proof. Let M (N) be a 0-minimal (m, 0)-hyperideal ((0, n)-hyperideal) of
H. Let O = M ◦N, then clearly O2 ⊆ O. Moreover

(Om ◦H) ◦On = [(M ◦N)m ◦H] ◦ (M ◦N)n

= [(Mm ◦Nm) ◦H] ◦ (Mn ◦Nn)

⊆ [(Mm ◦H) ◦H] ◦ (H ◦Nn) = (H ◦Mm) ◦ (H ◦Nn)

= (Mm ◦H) ◦ (H ◦Nn) ⊆M ◦N = O,

which shows that O is an (m,n)-hyperideal of H. Let {0} 6= P ⊆ O be a
nonzero (m,n)-hyperideal of H. Since H is (m,n)-regular, therefore by using
Lemma 3, we have

{0} 6= P = (Pm ◦H) ◦ Pn = [Pm ◦ (H ◦H)] ◦ Pn

= [H ◦ (Pm ◦H)] ◦ Pn = [Pn ◦ (Pm ◦H)] ◦ (H ◦H)

= (Pn ◦H) ◦ [(Pm ◦H) ◦H] = (Pn ◦H) ◦ (H ◦ Pm)

= (Pm ◦H) ◦ (H ◦ Pn).

Hence Pm ◦H 6= {0} and H ◦Pn 6= {0}. Further P ⊆ O = M ◦N ⊆M ∩N
implies that P ⊆M and P ⊆ N. Therefore {0} 6= Pm ◦H ⊆Mm ◦H ⊆M
which shows that Pm◦H = M since M is 0-minimal. Likewise, we can show
that H ◦ Pn = N. Thus we have

P ⊆ O = M ◦N = (Pm ◦H) ◦ (H ◦ Pn) = (Pn ◦H) ◦ (H ◦ Pm)

= [(H ◦ Pm) ◦ (H ◦H)] ◦ Pn = [H ◦ (Pm ◦H)] ◦ Pn

= (Pm ◦H) ◦ Pn ⊆ P.

This means that P = M ◦N and hence M ◦N is 0-minimal. �
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Theorem 8. Let H be a pure (m,n)-regular LA-semihypergroup. If M
(N) is a 0-minimal (m, 0)-hyperideal ((0, n)-hyperideal) of H, then either
M ∩N = {0} or M ∩N is a 0-minimal (m,n)-hyperideal of H.

Proof. Once we prove that M ∩N is an (m,n)-hyperideal of H, the rest of
the proof is same as in Theorem 6. Let O = M∩N, then it is easy to see that
O2 ⊆ O. Moreover (Om◦H)◦On ⊆ (Mm◦H)◦Nn ⊆M ◦Nn ⊆ H ◦Nn ⊆ N.
But, we also have

(Om ◦H) ◦On ⊆ (Mm ◦H) ◦Nn = [Mm ◦ (H ◦H)] ◦Nn

= [H ◦ (Mm ◦H)] ◦Nn = [Nn ◦ (Mm ◦H)] ◦H
= [Mm ◦ (Nn ◦H)] ◦ (H ◦H)

= (Mm ◦H) ◦ [(Nn ◦H) ◦H]

= (Mm ◦H) ◦ (H ◦Nn)

= (Mm ◦H) ◦ (Nn ◦H)

= Nn ◦ [(Mm ◦H) ◦H]

= Nn ◦ (H ◦Mm) = Nn ◦ (Mm ◦H)

= Mm ◦ (Nn ◦H) = Mm ◦ (H ◦Nn)

⊆Mm ◦N ⊆Mm ◦H ⊆M.

Thus (Om◦H)◦On ⊆M∩N = O and therefore O is an (m,n)-hyperideal
of H. �

4. Conclusions

Every LA-semigroup can be considered as an LA-semihypergroup but
the converse is not true in general [27]. This leads us to the fact that an
LA-semihypergroup can be seen as the generalization of an LA-semigroup.
Thus the results of section 3 will generalize the results on an LA-semigroup
without hyper theory and the obtained results will give us the extension of
the work carried out in [1] on (m,n)-ideals. Also if we consider the results
of section 3 without hyper theory, then the obtained results will give us
the extension of the work carried out in [21]. Finally if we take m,n ≥ 5
in section 3, then all the results can be trivially followed for a pure LA-
semihypergroup without local associativity.
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