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Idempotents in βS that are only products
trivially

Neil Hindman and Lakeshia Legette Jones

Abstract. All results mentioned in this abstract assume Martin’s Ax-
iom. (Some of them are known to not be derivable in ZFC.) It is known
that if S is the free semigroup on countably many generators, then there
exists an idempotent p ∈ βS such that if q, r ∈ βS and qr = p, then
q = r = p. We show that the same conclusion holds for the semigroups
(N, ·) and (F ,∪) where F is the set of finite nonempty subsets of N. Such
a strong conclusion is not possible if S is the free group on countably
many generators or is the free semigroup on finitely many (but more
than one) generators, since then any idempotent can be written as a
product involving elements of S. But we show that in these cases we
can produce p such that if q, r ∈ βS and qr = p, then either q = r = p
or q and r satisfy one of the trivial exceptions that must exist. Finally,
we show that for the free semigroup on countably many generators, the
conclusion can be derived from a set theoretical assumption that is at
least potentially weaker than what had previously been required.
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1. Introduction

Given a discrete semigroup (S, ·), we take the points of the Stone–Čech
compactification, βS, of S to be the ultrafilters on S, the principal ultrafil-
ters being identified with the points of S. The operation on S has a natural
extension to βS making (βS, ·) a right topological semigroup, meaning that
for each p ∈ βS, the function ρp : βS → βS defined by ρp(q) = q · p is
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continuous. The only thing we will need to know about the operation on
βS in this paper is that if p, q ∈ βS and A ⊆ S, then A ∈ p · q if and only
if {x ∈ S : x−1A ∈ q} ∈ p, where x−1A = {y ∈ S : x · y ∈ A}. Much more
information, including an elementary introduction, can be found in [8].

Let 〈xt〉∞t=1 be a sequence in a semigroup (S, ·). Then

FP (〈xt〉∞t=1) =

{∏
t∈F

xt : F ∈ Pf (N)

}
where N is the set of positive integers. For any set X, Pf (X) is the set of
finite nonempty subsets of X and

∏
t∈F xt is the product in increasing order

of indices. If the operation is denoted by +, we write

FS(〈xt〉∞t=1) =

{∑
t∈F

xt : F ∈ Pf (N)

}
.

Given sequences 〈xt〉∞t=1 and 〈yt〉∞t=1 in S we say that 〈yt〉∞t=1 is a product
subsystem of 〈xt〉∞t=1 if and only if there is a sequence 〈Hn〉∞n=1 in Pf (N)
such that for each n ∈ N, yn =

∏
t∈Hn xt and maxHn < minHn+1. (For an

additive semigroup, sum subsystem is defined analogously.)
An ultrafilter p on S is said to be strongly productive provided that,

given any A ∈ p there is a sequence 〈xt〉∞t=1 such that FP (〈xt〉∞t=1) ⊆ A
and FP (〈xt〉∞t=1) ∈ p. (The analogue in the additive situation is strongly
summable.) See the introduction to [7] for the history behind the invention
of strongly summable (or productive) ultrafilters.

It follows from [6, Theorem 2.3] that if (S,+) is a countable, commutative,
and cancellative semigroup, then any strongly summable ultrafilter on S is
an idempotent in βS. Given any discrete semigroup S and an idempotent
p ∈ βS, there is a largest subgroup H(p) of βS with p as its identity. Often
H(p) is quite large. In fact, if S is an infinite cancellative semigroup with
cardinality κ, then by [8, Corollary 7.39] βS contains a copy of the free
group on 22

κ
generators. It was shown in [5, Theorem 3.1] that if p is any

strongly summable ultrafilter on N, then any invertible element with respect
to p is a member of Z + p and in particular, H(p) is as small as possible;
that is H(p) = Z+ p. And the question was asked in [5] whether a strongly
summable ultrafilter p on N could be written as a sum of two elements,
neither of which was a member of Z+ p. This question was answered in the
negative in [9, Theorem 4]. (See the introduction to [7] for an explanation
of why the negative answer follows.)

It was shown in [6, Theorem 4.5] that if (G,+) is a countable group which
can be embedded in the circle group T, p is a sparse strongly summable
ultrafilter on G, and q, r ∈ G∗ = βG \ G such that q + r = p, then p is an
idempotent, q ∈ G+ p, and r ∈ G+ p.

Definition 1.1. Let (S,+) be a semigroup and let p ∈ βS. Then p is a
sparse strongly summable ultrafilter if and only if for every A ∈ p, there



TRIVIAL PRODUCTS IN βS 59

exist a sequence 〈xt〉∞t=1 and a subsequence 〈yt〉∞t=1 of 〈xt〉∞t=1 such that
FS(〈xt〉∞t=1) ⊆ A, FS(〈yt〉∞t=1) ∈ p, and {xn : n ∈ N} \ {yn : n ∈ N} is
infinite.

In [7, Theorem 4.2] it was shown that if S is a countable subsemigroup
of T and p is a nonprincipal strongly summable ultrafilter on S, then p is
sparse, and thus as a consequence of [6, Theorem 4.5], if G is the group
generated by S and q, r ∈ G∗ with q + r = p, then q and r are in G + p.
It was recently shown in [3, Theorem 2.1] that all nonprincipal strongly
summable ultrafilters on

⊕
n<ω Z2 are sparse.

All of the results cited so far in this introduction deal with commutative
semigroups. It was shown in [11, Theorem 3.10] that, assuming Martin’s
Axiom, if S is the free semigroup on countably many generators, then there
is an idempotent p ∈ βS such that, if q, r ∈ βS and q ·r = p, then q = r = p.
That idempotent is a strongly productive ultrafilter on S. In fact it satisfied
the following stronger requirement.

Definition 1.2. Let S be the free semigroup on the generators 〈at〉∞t=1 and
let p ∈ βS. Then p is a very strongly productive ultrafilter on S if and only
if for every A ∈ p there is a product subsystem 〈xt〉∞t=1 of 〈at〉∞t=1 such that
FP (〈xt〉∞t=1) ⊆ A and FP (〈xt〉∞t=1) ∈ p.

Very strongly productive ultrafilters correspond to ordered union ultrafil-
ters introduced in [1]. Given a sequence 〈An〉∞n=1 in Pf (N),

FU(〈An〉∞n=1) =

{⋃
t∈F

At : F ∈ Pf (N)

}
.

Definition 1.3. Let Θ be an ultrafilter on Pf (N).

(a) Θ is a union ultrafilter if and only if for each A ∈ Θ there exists a
sequence 〈An〉∞n=1 of pairwise disjoint elements of Pf (N) such that
FU(〈An〉∞n=1) ⊆ A and FU(〈An〉∞n=1) ∈ Θ.

(b) Θ is an ordered union ultrafilter if and only if for each A ∈ Θ
there exists a sequence 〈An〉∞n=1 in Pf (N) such that for each n ∈ N,
maxAn < minAn+1, FU(〈An〉∞n=1) ⊆ A, and FU(〈An〉∞n=1) ∈ Θ.

It was shown in [1, Theorem 2.4] that the Continuum Hypothesis implies
the existence of ordered union ultrafilters, it was shown in [4, Theorem 4.1]
that Martin’s axiom implies the existence of union ultrafilters, and it was
shown in [2, Theorem 3] that the existence of union ultrafilters cannot be
established in ZFC.

If S is the free semigroup on a finite alphabet A with at least two members,
then there is no idempotent p ∈ βS such that, if q, r ∈ βS and q ·r = p, then
q = r = p. The reason is that for p ∈ S∗ = βS \ S,

⋃
a∈A aS ∈ p so some

aS ∈ p. Then a−1p = {B ⊆ S : aB ∈ p} ∈ S∗ and thus

(pa) · (a−1p) = p · p = p.
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In Section 2 we show that the existence of ordered union ultrafilters implies
the existence of an idempotent p in βS and distinct elements b, c ∈ A such
that if q, r ∈ βS, q · r = p, and it is not the case that q = r = p, then some
one of the following trivial cases must hold, and in particular H(p) = {p}.

(1) There is some n ∈ N such that q = bn and r = b−np;
(2) there is some n ∈ N such that q = pbn and r = b−np;
(3) there is some n ∈ N such that q = pc−n and r = cn; or
(4) there is some n ∈ N such that q = pc−n and r = cnp.

Similarly, if G is the free group on countably many generators, then there
is no idempotent p ∈ βG such that, if q, r ∈ βS and q · r = p, then q =
r = p. The reason is that given any w ∈ G, one may let q = pw and
r = w−1p. We show in Section 3 that Martin’s axiom implies the existence
of a sparse ordered union ultrafilter, and thus of a sparse very strongly
productive ultrafilter. It is also shown that if p is a sparse very strongly
productive ultrafilter, then the only way to write p nontrivially as a product
in βG is as (pw)(w−1p), w(w−1p), or (pw)w−1 for some w ∈ G.

In Section 4 we show that the existence of a union ultrafilter implies the
existence of an idempotent p ∈ (βN, ·) such that if q, r ∈ βN\{1} and qr = p,
then q = r = p. We also show in this section that Martin’s Axiom implies
that there is an idempotent p ∈ βS, where S is the free semigroup on the
generators 〈at〉∞t=1, which is not very strongly productive, in fact not even
strongly productive, but still has the property that it can only be written
trivially as a product.

Acknowledgements. The authors would like to thank David Fernández
Bretón for a careful reading of an early draft of this paper, and the referee
for his helpful comments.

2. The free semigroup on a finite alphabet

Throughout this section we shall let D be a finite alphabet with at least
two members and will fix distinct elements b and c of D. We will let S be the
free semigroup, with identity ι, on the alphabet D. We write [N]<ω for the
set of finite subsets of N. Thus [N]<ω = Pf (N)∪ {∅}. The following notions
are based on the similar definitions in [11]. We agree that

∏
t∈∅ xt = ι,

max ∅ = 0, and min ∅ =∞.
We shall denote by T the subsemigroup of S generated by 〈btct〉∞t=1. Then

T is a copy of the free semigroup on countably many generators. Recall from
[1] that the Continuum Hypothesis implies that ordered union ultrafilters
exist, and by [11, Theorem 3.3] the existence of ordered union ultrafilters
implies the existence of very strongly productive ultrafilters.

Lemma 2.1. Let p be a very strongly productive ultrafilter on T . For
each A ∈ p, there is a product subsystem 〈xt〉∞t=1 of 〈btct〉∞t=1 such that
FP (〈xt〉∞t=1) ⊆ A and for all m ∈ N, FP (〈xt〉∞t=m) ∈ p.



TRIVIAL PRODUCTS IN βS 61

Proof. For i ∈ {1, 2}, let Ci = {3n(3k + i) : n, k ∈ ω}. (Note that Ci is
the set of elements of N whose rightmost nonzero ternary digit is i.) For
i ∈ {1, 2}, let Di = {x ∈ S \ {ι} : `(x) ∈ Ci}, where `(x) is the length
of the word x. Pick i ∈ {1, 2} such that Di ∈ p. Define f : S \ {ι} → ω
by f(x) = n where 3n divides `(x) and 3n+1 does not divide `(x). (Thus
f(x) is the number of rightmost 0’s in the ternary expansion of `(x).) If
u, v ∈ Di and f(u) = f(v), then uv /∈ Di. Consequently, if {u, v, uv} ⊆ Di,
then f(uv) = min{f(u), f(v)}.

Let A ∈ p and pick a product subsystem 〈xt〉∞t=1 of 〈btct〉∞t=1 such that
FP (〈xt〉∞t=1) ⊆ A ∩Di and FP (〈xt〉∞t=1) ∈ p. Let m ∈ N and suppose that
FP (〈xt〉∞t=m) /∈ p. Then m > 1. Since

FP (〈xt〉∞t=1) = FP (〈xt〉∞t=m) ∪ FP (〈xt〉m−1t=1 )

∪
⋃
{u · FP (〈xt〉∞t=m) : u ∈ FP (〈xt〉m−1t=1 )}

and FP (〈xt〉m−1t=1 ) /∈ p, because p is nonprincipal, there must be some

u ∈ FP (〈xt〉m−1t=1 ) such that u · FP (〈xt〉∞t=m) ∈ p.
We claim that for all x ∈ u · FP (〈xt〉∞t=m), f(x) ≤ f(u). To see this, let

x ∈ u · FP (〈xt〉∞t=m) and pick v ∈ FP (〈xt〉∞t=m) such that x = uv. Then
{u, v, uv} ⊆ FP (〈xt〉∞t=1) ⊆ Di so f(x) = min{f(u), f(v)}.

Choose a sequence 〈yt〉∞t=1 such that FP (〈yt〉∞t=1) ⊆ u · FP (〈xt〉∞t=m) and
FP (〈yt〉∞t=1) ∈ p. Then for all k ∈ N, f(yk) ≤ f(u) so pick k < t such that
f(yk) = f(yt). Then ykyt /∈ Di, a contradiction. �

We pause to note that every very strongly productive ultrafilter is an
idempotent.

Lemma 2.2. Let p be a very strongly productive ultrafilter on T . Then p is
an idempotent.

Proof. Let A ∈ p. We need to show that {y ∈ S : y−1A ∈ p} ∈ p. Pick
〈xt〉∞t=1 as guaranteed by Lemma 2.1 for A. It suffices to show that

FP (〈xt〉∞t=1) ⊆ {y ∈ S : y−1A ∈ p},

so let y ∈ FP (〈xt〉∞t=1) and pick F ∈ Pf (N) such that y =
∏
t∈F xt. Let

m = maxF + 1. Then FP (〈xt〉∞t=m) ∈ p and FP (〈xt〉∞t=m) ⊆ y−1A. �

Definition 2.3. Let 〈xt〉∞t=1 be a sequence in S and let k ∈ N.

R(〈xt〉∞t=k) =

{(∏
t∈F

xt

)
u : u ∈ S \ {ι} , F ∈ [N]<ω, and(a)

(∃s ∈ N)(∃v ∈ S \ {ι})(k ≤ minF , maxF < s , k ≤ s

and uv = xs)

}
.
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L(〈xt〉∞t=k) =

{
v

(∏
t∈F

xt

)
: v ∈ S \ {ι} , F ∈ [N]<ω, and(b)

(∃s ∈ N)(∃u ∈ S \ {ι})(k ≤ s < minF , and uv = xs)

}
.

Note that, with F = ∅ in the definition, we have that

{u ∈ S \ {ι} : (∃s ∈ N)(∃v ∈ S \ {ι})(k ≤ s and uv = xs)} ⊆ R(〈xt〉∞t=k),
{v ∈ S \ {ι} : (∃s ∈ N)(∃u ∈ S \ {ι})(k ≤ s and uv = xs)} ⊆ L(〈xt〉∞t=k).

Lemma 2.4. Let 〈xt〉∞t=1 be a sequence in S \ {ι} and let y, z ∈ S \ {ι} such
that yz ∈ FP (〈xt〉∞t=1). If either y /∈ FP (〈xt〉∞t=1) or z /∈ FP (〈xt〉∞t=1), then
y ∈ R(〈xt〉∞t=1) and z ∈ L(〈xt〉∞t=1).

Proof. Assume that either y /∈ FP (〈xt〉∞t=1) or z /∈ FP (〈xt〉∞t=1). Pick
H ∈ Pf (N) such that yz =

∏
t∈H xt and write H = {n1, n2, . . . , ns} where

n1 < n2 < . . . < ns. Then `(yz) =
∑s

i=1 `(xni).

Case 1. `(y) ≤ `(xn1). If `(y) = `(xn1), then y = xn1 and either s = 1 in
which case z = ι or s > 1 in which case z =

∏s
i=2 xni . Thus `(y) < `(xn1).

Pick v ∈ S \ {ι} such that xn1 = yv. If s = 1, then z = v and if s > 1, then
z = v(

∏s
i=2 xni). Therefore y ∈ R(〈xt〉∞t=1) and z ∈ L(〈xt〉∞t=1).

Note that if s = 1, then Case 1 applies.

Case 2. s > 1 and `(y) ≥
∑s−1

i=1 `(xni). If `(y) =
∑s−1

i=1 `(xni), then y ∈
FP (〈xt〉∞t=1) and z ∈ FP (〈xt〉∞t=1). If `(y) =

∑s
i=1 `(xni), then z = ι. So we

must have that
∑s−1

i=1 `(xni) < `(y) <
∑s

i=1 `(xni). Pick u ∈ S \ {ι} such

that y = (
∏s−1
i=1 xni)u. Then xns = uz so y ∈ R(〈xt〉∞t=1) and z ∈ L(〈xt〉∞t=1).

Case 3. s > 1 and `(xn1) < `(y) <
∑s−1

i=1 `(xni). Then s > 2. Pick
j ∈ {1, 2, . . . , s− 2} such that

j∑
i=1

`(xni) < `(y) ≤
j+1∑
i=1

`(xni).

If `(y) =
∑j+1

i=1 `(xni), then y =
∏j+1
i=1 xni and z =

∏s
i=j+2 xni , so

j∑
i=1

`(xni) < `(y) <

j+1∑
i=1

`(xni).

Pick u, v ∈ S \ {ι} such that y = (
∏j
i=1 xni)u and yv =

∏j+1
i=1 xni . Then

uv = xnj+1 and z = v(
∏s
i=j+2 xni) so y ∈ R(〈xt〉∞t=1) and z ∈ L(〈xt〉∞t=1). �

Lemma 2.5. Let p be a very strongly productive ultrafilter on T . Assume
that q, r ∈ βS \ {ι}, qr = p, and it is not the case that q = r = p. Let
A ∈ p. Then there is a product subsystem 〈xt〉∞t=1 of 〈btct〉∞t=1 such that
FP (〈xt〉∞t=1) ⊆ A and for each k ∈ N, FP (〈xt〉∞t=k) ∈ p, R(〈xt〉∞t=k) ∈ q, and
L(〈xt〉∞t=k) ∈ r.
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Proof. Assume first that q 6= p and pick B ∈ q \ p such that ι /∈ B.
By Lemma 2.1, pick a product subsystem 〈xt〉∞t=1 of 〈btct〉∞t=1 such that
FP (〈xt〉∞t=1) ⊆ A \ B and for all k ∈ N, FP (〈xt〉∞t=k) ∈ p. Let k ∈ N. Then
{y ∈ S : y−1FP (〈xt〉∞t=k) ∈ r} ∈ q.

Suppose that R(〈xt〉∞t=k) /∈ q and pick y ∈ B \ R(〈xt〉∞t=k) such that
y−1FP (〈xt〉∞t=k) ∈ r. Pick v ∈ y−1FP (〈xt〉∞t=k). Then yv =

∏
t∈H xt for

some H ∈ Pf (N) with minH ≥ k. Since y ∈ B, y /∈ FP (〈xt〉∞t=k) so by
Lemma 2.4, y ∈ R(〈xt〉∞t=k), a contradiction.

Now suppose that L(〈xt〉∞t=k) /∈ r. Pick y ∈ B with y−1FP (〈xt〉∞t=k) ∈ r.
Pick z ∈ y−1FP (〈xt〉∞t=k) \ L(〈xt〉∞t=k). Then yz ∈ FP (〈xt〉∞t=k) and y /∈
FP (〈xt〉∞t=k) so by Lemma 2.4, z ∈ L(〈xt〉∞t=k), a contradiction.

Now assume that r 6= p and pick B ∈ r\p such that ι /∈ B. By Lemma 2.1,
pick a product subsystem 〈xt〉∞t=1 of 〈btct〉∞t=1 such that FP (〈xt〉∞t=1) ⊆ A\B
and for all k ∈ N, FP (〈xt〉∞t=k) ∈ p. Let k ∈ N. Then

{y ∈ S \ {ι} : y−1FP (〈xt〉∞t=k) ∈ r} ∈ q.
Suppose that L(〈xt〉∞t=k) /∈ r. Pick y ∈ S \ {ι} with y−1FP (〈xt〉∞t=k) ∈ r

and pick z ∈ B ∩ y−1FP (〈xt〉∞t=k) \ L(〈xt〉∞t=k). Then yz ∈ FP (〈xt〉∞t=k) and
z /∈ FP (〈xt〉∞t=k) so we can again apply Lemma 2.4.

Finally suppose R(〈xt〉∞t=k) /∈ q. Pick y ∈ S \ (R(〈xt〉∞t=k) ∪ {ι}) with
y−1FP (〈xt〉∞t=k) ∈ r; pick z ∈ B ∩ y−1FP (〈xt〉∞t=k). Then yz ∈ FP (〈xt〉∞t=k)
and z /∈ FP (〈xt〉∞t=k) so we can again apply Lemma 2.4. �

Lemma 2.6. Let p ∈ βS with FP (〈btct〉∞t=1) ∈ p. Assume that q, r ∈ βS\{ι}
and qr = p. Then there is some n ∈ N such that Sbn /∈ q.
Proof. Suppose that for all n ∈ N, Sbn ∈ q. Let

A = {x ∈ S : x−1FP (〈btct〉∞t=1) ∈ r} .
Then A ∈ q so pick w ∈ Sb ∩ A. Then there is some n ∈ N such that
either w = bn or w = uabn for some u ∈ S and some a ∈ D \ {b}. Pick
z ∈ Sbn+1 ∩ A. Then there is some m > n such that either z = bm or
c = vdbm for some v ∈ S and some d ∈ D \ {b}.

Pick
y ∈ w−1FP (〈btct〉∞t=1) ∩ z−1FP (〈btct〉∞t=1).

Since wy ∈ FP (〈btct〉∞t=1) there is some l ≥ n such that y = bl−ncl or y
begins bl−nclb. Since zy ∈ FP (〈btct〉∞t=1) there is some s ≥ m such that
y = bs−mcs or y begins bs−mcsb. This is impossible, since m > n. �

Note that if s ∈ N and bscs occurs in some z ∈ S, then so does btct for all
t ∈ {1, 2, . . . , s}. We omit the routine proof of the following lemma which
allows us to conclude more from the occurrence of bcsb.

Lemma 2.7. Let 〈xt〉∞t=1 be a product subsystem of 〈btct〉∞t=1 and for each
n ∈ N, let Hn ∈ Pf (N) such that xn =

∏
t∈Hn b

tct. Let s, k ∈ N, let
z ∈ L(〈xt〉∞t=k), and assume that either z ends with bcs or bcsb occurs in z.
Then s ∈ Hn for some n ≥ k.
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Lemma 2.8. Let p be a very strongly productive ultrafilter on T . Assume
that q, r ∈ S∗, qr = p, and it is not the case that q = r = p. If Sb ∈ q, then
there is some n ∈ N such that q = pbn.

Proof. Suppose not. By Lemma 2.6 we may choose the largest l ∈ N such
that Sbl ∈ q. Then Sbl = {bl} ∪

⋃
d∈D Sdb

l, q /∈ S, and Sbl+1 /∈ q so there

is some d ∈ D \ {b} such that Sdbl ∈ q. Since Sc ∈ p, we have that p 6= q.
Pick A ∈ q such that A ∩ {p, pb, pb2, . . . , pbl} = ∅. Let

B = S \ (A ∪Ab−1 ∪Ab−2 ∪ . . . ∪Ab−l) .
Then B ∈ p so pick by Lemma 2.5 a product subsystem 〈xt〉∞t=1 of 〈btct〉∞t=1

such that for each k ∈ N,

FP (〈xt〉∞t=k) ∈ p, R(〈xt〉∞t=k) ∈ q, and L(〈xt〉∞t=k) ∈ r.
For each n ∈ N, pick Hn ∈ Pf (N) such that xn =

∏
t∈Hn b

tct. Since 〈xt〉∞t=1

is a product subsystem of 〈btct〉∞t=1 and R(〈xt〉∞t=1) ∈ q, We must have d = c
and thus Scbl ∈ q. Since FP (〈xt〉∞t=l+1) ∈ p,

{w ∈ S : w−1FP (〈xt〉∞t=l+1) ∈ r} ∈ q .

Pick w ∈ R(〈xt〉∞t=l+1) ∩A ∩ Scbl such that w−1FP (〈xt〉∞t=l+1) ∈ r.
There are some F ∈ [N]<ω and j ∈ N with minF ≥ l + 1, maxF < j

(and, if F = ∅, then j ≥ l + 1), and v ∈ S such that w = (
∏
t∈F xt) · u and

u · v = xj . Since w ∈ Scbl, we must have that u ends in cbl. (If the length of
u were at most l, then we would have u = bt for some t ∈ {1, 2, . . . , l} and
thus that

∏
s∈F xs = wb−t ∈ Ab−t, a contradiction.)

Since uv = xj =
∏
i∈Hj b

ici and u ends in cbl, there exist L ∈ Pf (N),

s ∈ N, and (possibly empty) M ∈ [N]<ω such that maxL < s < minM ,
Hj = L ∪ {s} ∪M , u = (

∏
i∈L b

ici) · bl, and v = bs−lcl ·
∏
i∈M bici. (Note

that j > l so s > l.)
Since L(〈xt〉∞t=j+1) ∈ r, pick z ∈ w−1FP (〈xt〉∞t=l+1) ∩ L(〈xt〉∞t=j+1). Then

wz ∈ FP (〈xt〉∞t=l+1) and w = (
∏
t∈F xt) · (

∏
i∈L b

ici) · bl. Also

wz =
∏
t∈K

xt =
∏
t∈K

∏
i∈Ht

bici

for some K ∈ Pf (N) with minK > l. Since L 6= ∅, pick i ∈ L. Then bicib
occurs in w and i ∈ Hj so j ∈ K. Also

xj =

(∏
i∈L

bici

)
· blbs−lcs ·

∏
i∈M

bici

= w · bs−lcs ·
∏
i∈M

bici

so z begins bs−lcs. So either z ends as bs−lcs (if M = ∅) or bcsb occurs in z.
In either case, by Lemma 2.7, s ∈ Hn for some n ≥ j + 1. But s ∈ Hj , a
contradiction. �
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Theorem 2.9. Let p be a very strongly productive ultrafilter on T . Assume
that q, r ∈ S∗, qr = p, and it is not the case that q = r = p. If Sb ∈ q, then
there is some n ∈ N such that q = pbn and r = b−np.

Proof. By Lemma 2.8, pick n ∈ N with q = pbn. Suppose r 6= b−np. Then
p 6= bnr so pick A ∈ p such that A /∈ bnr. Pick a product subsystem 〈xt〉∞t=1

of 〈btct〉∞t=1 with FP (〈xt〉∞t=1) ∈ p and FP (〈xt〉∞t=1) ⊆ A. Then

{w ∈ S : w−1FP (〈xt〉∞t=1) ∈ r} ∩ FP (〈xt〉∞t=1)b
n ∈ q

so pick w ∈ FP (〈xt〉∞t=1)b
n with w−1FP (〈xt〉∞t=1) ∈ r. Since b−n(S \A) ∈ r,

pick y ∈ w−1FP (〈xt〉∞t=1) ∩ b−n(S \ A). Pick F and H in Pf (N) such that
w = (

∏
t∈F xt) · bn and wy =

∏
t∈H xt. Then

∏
t∈H xt = (

∏
t∈F xt) · bn · y

so F is an initial segment of H and
∏
t∈H\F xt = bn · y and thus

y ∈ b−nFP (〈xt〉∞t=1) ⊆ b−nA,

a contradiction. �

By a very similar sequence of lemmas, one can prove the following theo-
rem.

Theorem 2.10. Let p be a very strongly productive ultrafilter on T . Assume
that q, r ∈ S∗, qr = p, and it is not the case that q = r = p. If cS ∈ r, then
there is some n ∈ N such that q = pc−n and r = cnp.

Theorem 2.11. Let p be a very strongly productive ultrafilter on T . Assume
that q, r ∈ βS, qr = p, and it is not the case that q = r = p. Then either
Sb ∈ q or cS ∈ r. If q ∈ S then there is some n ∈ N such that q = bn. If
r ∈ S, then there is some n ∈ N such that r = cn.

Proof. Suppose first that q ∈ S and let n be the length of q. Pick by Lem-
ma 2.1 a product subsystem 〈xt〉∞t=1 of 〈btct〉∞t=1 such that FP (〈xt〉∞t=n) ∈ p.
In particular FP (〈btct〉∞t=n) ∈ p = qr so q−1FP (〈btct〉∞t=n) ∈ r. Pick w ∈
q−1FP (〈btct〉∞t=n). Then qw ∈ FP (〈btct〉∞t=n) and thus the leftmost n letters
of qw are all equal to b.

The proof for the case r ∈ S is very similar. (At the appropriate point in
the argument, pick w such that r ∈ w−1FP (〈btct〉∞t=n). Then the rightmost
n letters of wr are all equal to c.)

Now assume that q and r are in S∗ and suppose that Sb /∈ q and cS /∈ r.
Pick some a ∈ D \ {b} and some d ∈ D \ {c} such that Sa ∈ q and dS ∈ r.

By Lemma 2.5 pick a product subsystem 〈xt〉∞t=1 of 〈btct〉∞t=1 such that
for each k ∈ N, FP (〈xt〉∞t=k) ∈ p, R(〈xt〉∞t=k) ∈ q, and L(〈xt〉∞t=k) ∈ r.
For each n ∈ N, pick Hn ∈ Pf (N) such that xn =

∏
t∈Hn b

tct. Pick w ∈
Sa∩R(〈xt〉∞t=1) such that w−1FP (〈xt〉∞t=1) ∈ r. Pick F ∈ [N]<ω, j ∈ N, and
u, v ∈ S \ {ι} such that maxF < j, w = (

∏
t∈F xt) · u, and

uv = xj =
∏
t∈Hj

btct.
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Since a 6= b and the rightmost letter of w is the rightmost letter of u, we
have a = c. Pick s ∈ Hj such that∑

{2t : t ∈ Hj and t < s} < `(u) ≤
∑
{2t : t ∈ Hj and t ≤ s},

where `(u) is the length of u. Then the rightmost letter of u occurs in
bscs. We have K1,K2 ∈ [N]<ω and s such that K1 ∪ {s} ∪ K2 = Hj ,
maxK1 < s < minK2, u = (

∏
t∈K1

btct) · bsci, and v = cs−i ·
∏
t∈K2

btct for
some i ∈ {1, 2, . . . , s}.

Pick y ∈ w−1FP (〈xt〉∞t=1) ∩ dS ∩ L(〈xt〉∞t=j+1). Since wy ∈ FP (〈xt〉∞t=1),
the leftmost letter of y is b or c, and d 6= c, we have that d = b. Pick h
and z in S \ {ι}, N ∈ [N]<ω, and k < minN with k ≥ j + 1 such that
y = z ·

∏
t∈N xt and hz = xk =

∏
t∈Hk b

tct. Pick f ∈ Hk such that∑
{2t : t ∈ Hk and t < f} < `(z) ≤

∑
{2t : t ∈ Hk and t ≤ f} .

Since the leftmost letter of z is the leftmost letter of y which is b, we have
M1,M2 ∈ [N]<ω and g such thatM1∪{g}∪M2 = Hk, maxM1 < g < minM2,
h = (

∏
t∈M1

btct) ·bg−α, and z = bαcg ·
∏
t∈M2

btct for some α ∈ {1, 2, . . . , g}.
Pick L ∈ Pf (N) such that wy =

∏
t∈L xt. Then∏

t∈L
xt =

(∏
t∈F

xt

)
·

(∏
t∈K1

btct

)
· bscibαcg ·

( ∏
t∈M2

btct

)
·

(∏
t∈N

xt

)
so ∏

t∈L\(F∪N)

xt =

(∏
t∈K1

btct

)
· bscibαcg ·

( ∏
t∈M2

btct

)
.

Since K1 ⊆ Hj , s ∈ Hj , g ∈ Hk, M2 ⊆ Hk, and j < k, we must have
L \ (F ∪ N) = {j, k}, i = s, α = g, xj = (

∏
t∈K1

btct) · bscs, and xk =

bgcg · (
∏
t∈M2

btct). But then Hj = K1 ∪ {s} so K2 = ∅ and, since i = s,
v = ι, a contradiction. �

Corollary 2.12. Let p be a very strongly productive ultrafilter on T . Assume
that q, r ∈ βS, qr = p, and it is not the case that q = r = p. Then one of
the following statements holds.

(1) There is some n ∈ N such that q = bn and r = b−np;
(2) there is some n ∈ N such that q = pbn and r = b−np;
(3) there is some n ∈ N such that q = pc−n and r = cn; or
(4) there is some n ∈ N such that q = pc−n and r = cnp.

Proof. If q and r are in S∗, the conclusion follows from Theorems 2.9, 2.10,
and 2.11. If q and r were both in S, then qr would be in S.

Assume that q ∈ S and r ∈ S∗. Then by Theorem 2.11, pick n ∈ N such
that q = bn. Then bnr = p so, computing in βG, where G is the free group
on the alphabet D, we have that r = b−np. Similarly, if r ∈ S, then there is
some n ∈ N such that r = cn and q = pc−n. �
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3. The free group on a countable alphabet

Throughout this section we will let S and G be respectively the free
semigroup with identity and the free group on the generators 〈at〉∞t=1. We

will let T =
⋂∞
m=1 FP (〈at〉∞t=m). We will show that, assuming Martin’s

Axiom, there is an idempotent p ∈ S∗ with the property that if q, r ∈ βG
and qr = p, then there is some w ∈ G such that (1) q = w and r = w−1p,
(2) q = pw and r = w−1p, or (3) q = pw and r = w−1.

Members of G are the members of the free semigroup with identity on
the alphabet {an : n ∈ N} ∪ {a−1n : n ∈ N} which do not have adjacent
occurrences of an and a−1n for any n. We denote concatenation by _. Thus,
for example, if u = a2a

−1
3 a−12 and v = a2a4, then uv = a2a

−1
3

_a4.

Definition 3.1. Let w ∈ G \ {ι}.
(a) Aw = {x ∈ G : x begins with w}.
(b) Bw = {x ∈ G : x ends with w−1}.

When we write “let l be a letter”, we mean that

l ∈ {an : n ∈ N} ∪ {a−1n : n ∈ N}.

Lemma 3.2. Let q, r ∈ G∗ and assume that qr ∈ T . Let l be a letter. If
Al ∈ r, then Bl ∈ q.

Proof. Assume first that l = a−1s for some s ∈ N and suppose that Bl /∈ q.
Pick x ∈ G\Bl such that x−1FP (〈at〉∞t=1) ∈ r. Pick y ∈ x−1FP (〈at〉∞t=1)∩Al.
Since x does not end in as, a

−1
s occurs in xy, a contradiction.

Now assume that l = as for some s ∈ N and suppose that Bl /∈ q. Pick
x ∈ G\Bl such that x−1FP (〈at〉∞t=s+1) ∈ r. Pick y ∈ x−1FP (〈at〉∞t=s+1)∩Al.
Then as occurs in xy, a contradiction. �

Lemma 3.3. Let q, r ∈ G∗ and assume that qr ∈ T . If either S /∈ q or
S /∈ r, then there is a letter l such that Al ∈ r.

Proof. Assume first that S /∈ q. Pick x ∈ G \ S with x−1FP (〈at〉∞t=1) ∈ r.
Pick u ∈ G, v ∈ S, and t ∈ N such that x = u_a−1t

_v. Assume first
that v = ι. We claim Aat ∈ r. Suppose instead that Aat /∈ r and pick
y ∈ x−1FP (〈ai〉∞i=1) \ Aat . Then a−1t occurs in xy, a contradiction. Now
assume that v ∈ S and let as be the rightmost letter of v. Then as above
we see that Aa−1

s
∈ r.

The case that S ∈ q and S /∈ r is handled in a similar fashion. �

Lemma 3.4. Let q, r ∈ G∗ and assume that qr ∈ T . If either S /∈ q or
S /∈ r, then there is a letter l such that Al ∈ r and Bl ∈ q.

Proof. Lemmas 3.2 and 3.3. �

Lemma 3.5. Let k ∈ N, let r ∈ G∗, let w = l1l2 · · · lk where each li is a
letter, and assume that Aw ∈ r. Then Al−1

k
/∈ w−1r.
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Proof. We proceed by induction on k. For k = 1, let l be a letter and
suppose that Al ∈ r and Al−1 ∈ l−1r. Then lAl−1 ∈ r. Pick x ∈ Al ∩ lAl−1 .
Since x ∈ lAl−1 we have x = l(l−1_w) where w does not begin with l so
x = w /∈ Al, a contradiction.

Now assume that k > 1 and the lemma is valid for k − 1. Suppose that
Al−1

k
∈ w−1r Let w′ = l2l3 · · · lk and r′ = l−11 r. We claim that Aw′ ∈ r′ and

Al−1
k
∈ (w′)−1r′, contradicting the induction hypothesis.

Now Aw ∈ r so l−11 Aw ∈ r′. We claim that l−11 Aw ⊆ Aw′ so let x ∈ l−11 Aw.
Then l1x = l1l2 · · · lk_u for some u ∈ G so l1x ∈ Al1 . If l1x = l1

_x, then
x = l2l3 · · · lk_u ∈ Aw′ as desired. So suppose l1x 6= l1

_x. Then x = l−11
_v

for some v ∈ G \Al1 and thus l1x = v /∈ Al1 , a contradiction.
Finally, (w′)−1r′ = (w′)−1l−11 r = (l1w

′)−1r = w−1r so Al−1
k
∈ (w′)−1r′ as

claimed. �

Lemma 3.6. Let q, r ∈ G∗ and assume that qr ∈ T and either S /∈ q or
S /∈ r. Then one of the following must hold:

(1) There is some w ∈ G such that w−1r ∈ βS and qw ∈ βS.
(2) There exists a sequence 〈lt〉∞t=1 of letters such that lt+1 6= l−1t for each

t and for each k, if wk = l1l2 · · · lk, then Awk ∈ r and Bwk ∈ q.
Proof. Assume that (1) fails. By Lemma 3.4 we have some letter l1 such
that Al1 ∈ r and Bl1 ∈ q. Let k ∈ N and assume that l1, l2, . . . , lk have been
chosen. Let wk = l1l2 · · · lk. Then Awk ∈ r and Bwk ∈ q. Let r′ = w−1k r and
q′ = qwk. Since (1) fails, either S /∈ r′ or S /∈ q′ so by Lemma 3.4, pick a
letter lk+1 such that Alk+1

∈ r′ and Blk+1
∈ q′. By Lemma 3.5, lk+1 6= l−1k .

We claim that Awk+1
∈ r and Bwk+1

∈ q. Since Alk+1
∈ r′ = w−1k r and

Blk+1
∈ q′ = qwk we have that wkAlk+1

∈ r and Blk+1
w−1k ∈ q. Since lk+1 6=

l−1k we have immediately that wkAlk+1
⊆ Awk+1

and Blk+1
w−1k ⊆ Bwk+1

. �

We find it hard to believe that case (2) of the following theorem could
hold, but we cannot prove that it does not.

Theorem 3.7. Let p be a very strongly productive ultrafilter on S, let q, r ∈
G∗, and assume that qr = p and either S /∈ q or S /∈ r. Then one of the
following must hold:

(1) There is some w ∈ G such that r = wp and q = pw−1.
(2) There exists a sequence 〈lt〉∞t=1 of letters such that:

(a) lt+1 6= l−1t for each t and for each k, if wk = l1l2 · · · lk, then
Awk ∈ r and Bwk ∈ q.

(b) There exists k ∈ N such that 〈lt〉∞t=k is a subsequence of 〈at〉∞t=1.

Proof. We have that either conclusion (1) or conclusion (2) of Lemma 3.6
holds. Assume first that conclusion (1) of Lemma 3.6 holds. By [11, Theo-
rem 3.10] w−1r = qw = p.

Now assume that conclusion (2) of Lemma 3.6 holds. Let C = FP (〈at〉∞t=1)
and pick x ∈ G such that x−1C ∈ r. Let k = `(x)+1 and let m > k be given.
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Let wm = l1l2 · · · lm and pick y ∈ Awm ∩ x−1C. Then y = wm
_v for some

v ∈ G \ Al−1
m

. In the computation of xy at most k − 1 letters of wm cancel

so there exist u ∈ G and s ∈ {1, 2, . . . , k} such that xy = u_lsls+1 · · · lm_v.
Also xy =

∏
t∈F at for some F ∈ Pf (N). Thus we have that for each

i ∈ {0, 1, . . . ,m− s}, ls+i = ati for some t0 < t1 < . . . < tm−s. �

Lemma 3.8. Let p be a very strongly productive ultrafilter on S, let q, r ∈ G∗
such that qr = p, and assume that 〈lt〉∞t=1 and k are as in conclusion (2) of
Theorem 3.7. Then FP (〈lt〉∞t=k) ∈ p.

Proof. Suppose instead D = FP (〈at〉∞t=1) \ FP (〈lt〉∞t=k) ∈ p. Pick an in-
creasing sequence 〈γ(t)〉∞t=k in N such that for each t ≥ k, lt = aγ(t). Pick
a product subsystem 〈xt〉∞t=1 of 〈at〉∞t=1 such that E = FP (〈xt〉∞t=1) ⊆ D
and E ∈ p. For each n ∈ N, pick Hn ∈ Pf (N) such that xn =

∏
t∈Hn at.

Pick z ∈ Bwk such that z−1E ∈ r. Pick α ≥ k and u ∈ G such that

z = u_l−1α l−1α−1 · · · l
−1
1 and u does not end with l−1α+1. (Note that u = ι is

possible.)
Pick the first δ ∈ N such that γ(α+ 1) ≤ maxHδ. Pick the largest ν ∈ N

such that γ(ν) ≤ maxHδ. Pick the first τ ∈ N such that γ(ν+1) ≤ maxHτ .
Pick the largest η ∈ N such that γ(η) ≤ maxHτ . Pick m ∈ N such that
γ(m) > maxHτ . Then α+ 1 ≤ ν < η < m.

Pick y ∈ z−1E ∩Awm . Then y = l1l2 · · · lm_v for some v ∈ G which does
not begin with l−1m . Then

(∗) zy = u_lα+1lα+2 · · · lm_v.

Since zy ∈ E, pick F ∈ Pf (N) such that zy =
∏
n∈F xn. Pick n1 and n2 in

F such that γ(α+ 1) ∈ Hn1 and γ(ν + 1) ∈ Hn2 . Then γ(α+ 1) ≤ maxHn1

and γ(α + 1) ≥ minHn1 > maxHn1−1 so n1 = δ. Similarly, n2 = τ . Let
K = {n ∈ F : n < δ} and L = {n ∈ F : n > τ}. Then

(∗∗) zy =
∏
n∈K

xn ·
∏
t∈Hδ

at ·
∏
t∈Hτ

at ·
∏
n∈L

xn.

(Recall that we take
∏
n∈∅ xn = ι.)

Comparing (∗) and (∗∗) we see that

u_lα+1lα+2 · · · lν =
∏
n∈K

xn ·
∏
t∈Hδ

at

so that
∏
t∈Hτ at = lν+1lν+2 · · · lη and thus xτ =

∏
t∈Hτ aτ ∈ FP (〈lt〉∞t=k), a

contradiction. �

Definition 3.9. Let p ∈ βS. Then p is sparse if and only if for each A ∈ p
there exist 〈xt〉∞t=1 in S and an infinite set D ⊆ N such that N\D is infinite,
FP (〈xt〉∞t=1) ⊆ A, and FP (〈xn〉n∈D) ∈ p.

We will conclude this section with a proof that Martin’s Axiom implies
that sparse very strongly productive ultrafilters on S exist.
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Theorem 3.10. Let p be a sparse very strongly productive ultrafilter on S
and let q, r ∈ G∗ such that qr = p. Then there exists w ∈ G such that
r = wp and q = pw−1.

Proof. Suppose not. Then we may pick 〈lt〉∞t=1 and k as guaranteed by
conclusion (2) of Theorem 3.7. By Lemma 3.8, FP (〈lt〉∞t=k) ∈ p. Pick
infinite D ⊆ N and 〈xt〉∞t=1 in S such that N \D is infinite, FP (〈xt〉∞t=1) ⊆
FP (〈lt〉∞t=k), and E = FP (〈xn〉n∈D) ∈ p. For each n ∈ N pick Hn ∈ Pf (N)
such that xn =

∏
t∈Hn lt. Note that for each n, maxHn < minHn+1 because

xnxn+1 =
∏
t∈Hn lt ·

∏
t∈Hn+1

lt and xnxn+1 ∈ FP (〈lt〉∞t=k).
Pick z ∈ Bwk such that z−1E ∈ r. Pick α ≥ k and u ∈ G such that

z = u_l−1α l−1α−1 · · · l
−1
1 and u does not end with l−1α+1.

Pick the first δ ∈ N such that α+ 1 ≤ maxHδ and let ν = maxHδ. Pick
the first τ > δ such that τ /∈ D and let m = maxHτ . Pick y ∈ z−1E ∩Awm .
Then zy = u_lα+1lα+2 · · · lm_v where v ∈ G and v does not begin with l−1m .
Since zy ∈ E, pick F ∈ Pf (D) such that zy =

∏
n∈F xn. Since lα+1 occurs

in zy, we may pick n ∈ F such that α+ 1 ∈ Hn. Then α+ 1 ≤ maxHn and
α + 1 ≥ minHn > maxHn−1 so δ = n. Let K = {n ∈ F : n < δ}. Then∏
n∈K xn ·

∏
t∈Hδ lt = u_lα+1lα+2 · · · lν . Now τ > δ and m = maxHτ so

Hτ ⊆ ν + 1, ν + 2, . . . ,m. Pick s ∈ Hτ . Since τ /∈ D, ls does not occur in∏
n∈F xn = zy, a contradiction. �

Corollary 3.11. Let p be a sparse very strongly productive ultrafilter on S
and let q, r ∈ βG such that qr = p. Then there exists w ∈ G such that:

(1) r = wp and q = pw−1;
(2) r = w and q = pw−1; or
(3) r = wp and q = w−1.

Proof. If q, r ∈ G∗, then conclusion (1) holds by Theorem 3.10. If r ∈ G,
let w = r. Then since wq = p, q = w−1p. If q ∈ G, let w = q−1. �

Except for a question asked at the end, the rest of this section consists of
a proof that Martin’s Axiom implies the existence of a sparse very strongly
productive ultrafilter on S (and thus that Martin’s Axiom implies the exis-
tence of idempotents in βS that can only be written trivially as products of
elements of βG). See [10, pages 53-61] or [8, Chapter 12] for an introduction
to Martin’s Axiom.

We actually produce a sparse ordered union ultrafilter on the semigroup
(F ,∪), where F = Pf (N).

Definition 3.12. Let Θ be an ultrafilter on F . Then Θ is sparse if and
only if for each A ∈ Θ, there exist a sequence 〈Xn〉∞n=1 of members of F
such that maxXn < minXn+1 for each n and an infinite subset D of N such
that FU(〈Xn〉∞n=1) ⊆ A, N \D is infinite, and FU(〈Xn〉n∈D) ∈ Θ.

Definition 3.13.

(a) I = {〈Xn〉∞n=1 : for each n ∈ N, Xn ∈ F and maxXn < minXn+1}.
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(b) For m, k ∈ N, Bm,k = FU(〈{2kn}〉∞n=m+1).

Note that if (m1, k1), (m2, k2) ∈ N × N, m1 ≤ m2, and k1 ≤ k2, then
Bm2,k2 ⊆ Bm1,k1 .

Definition 3.14. (Π, f) is a sparse ordered union pair if and only if the
following hold:

(1) Π is a nonempty set of infinite subsets of F .
(2) f : Pf (Π)→ I.
(3) For all ∆ ∈ Pf (Π), if f(∆) = 〈Xn〉∞n=1, then:

(a) FU(〈Xn〉∞n=1) ⊆
⋂

∆.
(b) For all m ∈ N, FU(〈X2n〉∞n=m) ∈ Π.

Lemma 3.15. Let Π = {Bm,k : (m, k) ∈ N× N}. For F ∈ Pf (N× N), let

µ(F ) = max
{
m : (∃k)

(
(m, k) ∈ F

)}
,

κ(F ) = max
{
k : (∃m)

(
(m, k) ∈ F

)}
.

Define f : Pf (Π) → I as follows. Given ∆ ∈ Pf (Π), let F be the subset of
N× N such that ∆ = {Bm,k : (m, k) ∈ F} and let

f(∆) = 〈{2κ(F )(2µ(F ) + n)}〉∞n=1 .

Then (Π, f) is a sparse ordered union pair.

Proof. Conditions (1) and (2) of the definition are immediate. For (3),
let ∆ ∈ Pf (Π) be given and let F be the subset of N × N such that ∆ =

{Bm,k : (m, k) ∈ F}. For n ∈ N, let Xn = {2κ(F )(2µ(F ) + n)}. Then

FU(〈Xn〉∞n=1) = FU(〈{2κ(F )n}〉∞n=2µ(F )+1) = B2µ(F ),κ(F ). For (m, k) ∈ F ,

B2µ(F ),κ(F ) ⊆ Bm,k so FU(〈Xn〉∞n=1) ⊆ Bm,k as required for (3a).
Also

FU(〈X2n〉∞n=1) = FU(〈{2κ(F )(2µ(F ) + 2n)}〉∞n=1)

= FU(〈{2κ(F )+1(µ(F ) + n)}〉∞n=1)

= Bµ(F ),κ(F )+1. �

We now introduce the partially ordered set with which we will apply
Martin’s Axiom.

Given X ∈ F and G ⊆ F , by −X + G we mean {Y ∈ F : X ∪ Y ∈ G}.

Definition 3.16. Let Π be a nonempty set of infinite subsets of F . Define

Q(Π) = {(G,∆) : G ∈ Pf (F) , ∆ ∈ Pf (Π) and whenever X and Y are

distinct elements of G, either maxX < minY

or maxY < minX}.

We define a partial ordering on Q(Π) as follows. for (G,∆), (G′∆′) ∈ Q(Π),
we set (G′,∆′) ≤ (G,∆) if the following conditions hold:

(a) G ⊆ G′.
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(b) ∆ ⊆ ∆′.
(c) (∀Y ∈ G′ \ G)(∀X ∈ G)(maxX < minY ).
(d) G′ \ G ⊆

⋂
∆.

(e) There exists g : G′ \ G → ∆′ such that:
(i) (∀X ∈ G′ \ G)

(
g(X) ⊆

⋂
∆ ∩ (−X +

⋂
∆)
)
.

(ii) (∀X,Y ∈ G′ \ G)
(

maxX < minY ⇒ Y ∈ g(X) and

g(Y ) ⊆ g(X) ∩ (−Y + g(X)
))
.

Note that for applications of Martin’s Axiom, partial orders need not be
antisymmetric. However, the relation on Q(Π) is trivially antisymmetric.

Lemma 3.17. Let Π be a nonempty set of infinite subsets of F . Then Q(Π)
is a nonempty partially ordered set.

Proof. Pick A ∈ Π and pick F ∈ F . Then ({F}, {A}) ∈ Q(Π) so Q(Π) 6= ∅.
Trivially ≤ is reflexive. (For (e), ∅ : ∅ → ∆ = ∆′ is as required.)

To verify transitivity, let (G,∆), (G′,∆′), (G′′,∆′′) ∈ Q(Π) with

(G′′,∆′′) ≤ (G′,∆′) ≤ (G,∆).

Trivially G ⊆ G′′ and ∆ ⊆ ∆′′. To verify (c), let Y ∈ G′′ \ G and let
X ∈ G. If Y ∈ G′, then maxX < minY since Y ∈ G′ \ G. If Y /∈ G′, then
maxX < minY since X ∈ G′.

To verify (d), let X ∈ G′′ \ G. If X ∈ G′, then X ∈
⋂

∆ since X ∈ G′ \ G.
If X /∈ G′, then X ∈ G′′ \ G′ so X ∈

⋂
∆′ ⊆

⋂
∆.

To verify (e), let g1 : G′ \ G → ∆′ and g2 : G′′ \ G′ → ∆′′ be as guaranteed
by the facts that (G′,∆′) ≤ (G,∆) and (G′′,∆′′) ≤ (G′,∆′). Let g = g1 ∪ g2.
Then g : G′′ \ G → ∆′. To verifiy (ei), let X ∈ G′′ \ G. If X ∈ G′, then
g(X) = g1(X) ⊆

⋂
∆ ∩ (−X +

⋂
∆). If X /∈ G′, then

g(X) = g2(X) ⊆
⋂

∆′ ∩
(
−X +

⋂
∆′
)
⊆
⋂

∆ ∩
(
−X +

⋂
∆
)
.

To verify (eii), let X,Y ∈ G′′\G with maxX < minY . If {X,Y } ⊆ G′′\G′
or {X,Y } ⊆ G′ \ G, the conclusion is immediate. By (c) the only other
possibility is that X ∈ G′ \ G and Y ∈ G′′ \ G′. Then g(X) = g1(X) ∈ ∆′ so⋂

∆′ ⊆ g(X) and thus

g(Y ) ⊆
⋂

∆′ ∩
(
−Y +

⋂
∆′
)
⊆ g(X) ∩

(
− Y + g(X)

)
. �

Definition 3.18. Let Π be a nonempty set of infinite subsets of F , let
V ∈ Π, and let n ∈ N.

(1) D(V) = {(G,∆) ∈ Q(Π) : V ∈ ∆}.
(2) E(n) = {(G,∆) ∈ Q(Π) : (∃F ∈ G)(n < minF )}.

Recall that in applications of Martin’s Axiom, “dense” means “cofinal
downward”.

Lemma 3.19. Let Π be a nonempty set of infinite subsets of F and let
V ∈ Π. Then D(V) is dense in Q(Π).
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Proof. If (G,∆) ∈ Q(Π), then

(G,∆ ∪ {V}) ∈ Q(Π) and (G,∆ ∪ {V}) ≤ (G,∆). �

Lemma 3.20. Let Π be a nonempty set of infinite subsets of F and let
n ∈ N. If there is some f such that (Π, f) is a sparse ordered union pair,
then E(n) is dense in Q(Π).

Proof. Pick f such that (Π, f) is a sparse ordered union pair. Let (G,∆) ∈
Q(Π) and let f(∆) = 〈Xt〉∞t=1. Pick t ∈ N such that minX2t > n and
minX2t > max

⋃
G. Let B = FU(〈X2m〉∞m=t+1). Then B ∈ Π and

(G ∪ {X2t},∆ ∪ {B}) ∈ Q(Π) ∩ E(n) .

We claim that (G ∪ {X2t},∆ ∪ {B}) ≤ (G,∆). Requirements (a), (b),
and (c) are immediate. Since X2t ⊆ FU(〈Xj〉∞j=1) ⊆

⋂
∆, we have that (d)

holds. To verify (e), define g(X2t) = B. Then B ⊆ FU(〈Xj〉∞j=1) ⊆
⋂

∆. To

see that B ⊆ (−X2t∩
⋂

∆) let Y ∈ B. Then X2t∪Y ⊆ FU(〈Xj〉∞j=1) ⊆
⋂

∆

so (ei) holds. And (eii) is vacuous. �

Lemma 3.21. Let Π be a nonempty set of infinite subsets of F .

(1) If (G,∆) and (G′,∆′) are incompatible, then G 6= G′. Consequently,
Q(Π) is a c.c.c. partial order.

(2) If (G′,∆′) ≤ (G,∆), then FU(G′ \ G) ⊆
⋂

∆.

Proof. (1) If G = G′, then (G,∆ ∪∆′) ≤ (G,∆) and (G,∆ ∪∆′) ≤ (G′,∆′).
(2) If G′ \ G = {X}, then FU(G′ \ G) = {X} ⊆

⋂
∆ by requirement (d)

of Definition 3.16. Now assume that n > 1 and G′ \ G = {X1, X2, . . . , Xn}
where, for each t ∈ {1, 2, . . . , n−1}, maxXt < minXt+1. Pick g : G′\G → ∆′

as guaranteed by (e) of Definition 3.16. We show by induction on |T | that
if ∅ 6= T ⊆ {2, 3, . . . , n} and minT = t, then

⋃
i∈T Xi ∈ g(Xt−1). Assume

first that |T | = 1. Then Xt−1, Xt ∈ G′ \ G so by (eii), Xt ∈ g(Xt−1).
Now assume that |T | > 1, let U = T \ {t} and let u = minU . Then⋃
i∈U Xi ∈ g(Xu−1). If u − 1 = t, this says that

⋃
i∈U Xi ∈ g(Xt). If

u − 1 > t, then maxXt < minXu−1 so by (eii), g(Xu−1) ⊆ Xt. Thus in
either case

⋃
i∈U Xi ∈ g(Xt). Thus by (eii),

⋃
i∈U Xi ∈ −Xt + g(Xt−1) so⋃

i∈T Xi ∈ g(Xt−1) as required.
Now let L ⊆ {1, 2, . . . , n} with minL = l. Assume first that l > 1. Then⋃
i∈L Xi ∈ g(Xi−1) ⊆ g(X1) ⊆

⋂
∆. Now assume that l = 1. If L = {1} we

have by (d) that Xl ∈
⋂

∆, so assume that |L| > 1. Let T = L \ {1} and
let t = minT . Then

⋃
i∈T Xi ∈ g(Xt−1) ⊆ g(X1) ⊆ −X1 +

⋂
∆ by (ei) so⋃

i∈L Xi ⊆
⋂

∆. �

Lemma 3.22. Let ω ≤ κ < c and assume MA(κ). Let (Π, f) be a sparse
ordered union pair with |Π| = κ and let C ⊆ F . There is a sparse ordered
union pair (Ψ, g) such that:

(1) Π ⊆ Ψ.
(2) f ⊆ g.
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(3) C ∈ Ψ or F \ C ∈ Ψ.
(4) |Ψ| = κ.

Proof. By Lemmas 3.17 and 3.21(1), Q(Π) is a c.c.c. partial order. By
Lemmas 3.19 and 3.20, {D(V) : V ∈ Π} ∪ {E(n) : n ∈ N} is a set of κ dense
subsets of Q(Π). Pick by MA(κ) a filter G in Q(Π) such that G∩D(V) 6= ∅
for each V ∈ Π and G ∩ E(n) 6= ∅ for each n ∈ N.

Since G ∩ E(n) 6= ∅ for each n ∈ N we may choose a sequence 〈Ft〉∞t=1 in
F such that for each t ∈ N, maxFt < minFt+1 and there is some (G,∆) ∈ G
such that Ft ∈ G.

Pick by [8, Corollary 5.17] D ∈ {C,F \C} and a union subsystem 〈Xt〉∞t=1

of 〈Ft〉∞t=1 such that FU(〈Xt〉∞t=1) ⊆ D. Let Ψ = Π∪{D}∪{FU(〈X2kt〉∞t=m) :
k,m ∈ N}. Then conclusions (1), (3), and (4) hold. We claim that it suffices
to show that

(∗)
(
∀∆ ∈ Pf (Ψ) \ Pf (Π)

)
(∃k,m ∈ N)

(
FU(〈X2kt〉∞t=m) ⊆

⋂
∆
)
.

Assume we have done this. For ∆ ∈ Pf (Ψ), if ∆ ⊆ Π, let g(∆) = f(∆).
Otherwise, pick k and m as guaranteed by (∗) and let g(∆) = 〈X2kt〉∞t=m.
Then conclusion (2) holds. We need to show that (Ψ, g) is a sparse ordered
union pair. Requirements (1) and (2) of Definition 3.14 hold. To verify (3),
let ∆ ∈ Pf (Ψ). If ∆ ⊆ Π, then g(∆) = f(∆) so (3a) and (3b) hold. So
assume that ∆ \ Π 6= ∅ and pick k and m as guaranteed by (∗). For t ∈ N,
let Yt = X2k(2m+t). Then

FU(〈Yt〉∞t=1) = FU(〈X2k(2m+t)〉∞t=1) ⊆ FU(〈X2kt〉∞t=m) ⊆
⋂

∆

and, for l ∈ N,

FU(〈Y2t〉∞t=l) = FU(〈X2k(2m+2t)〉∞t=l) = FU(〈X2k+1(m+t)〉∞t=l)
= FU(〈X2k+1n〉∞n=m+l) ∈ Ψ.

So we set out to establish (∗). Let ∆ ∈ Pf (Ψ) \ Pf (Π). We may assume
that ∆ ∩ Π 6= ∅. We have that ∆ \ Π ⊆ {D} ∪ {FU(〈X2kt〉∞t=m) : k,m ∈ N}
so pick k, u ∈ N such that FU(〈X2kt〉∞t=u) ⊆

⋂
(∆ \Π). For each V ∈ ∆∩Π,

pick (GV ,∆V) ∈ G ∩D(V). Pick (G′,∆′) ∈ G such that (G′,∆′) ≤ (GV ,∆V)
for each V ∈ ∆ ∩Π.

Let s = max(
⋃
G)+1. We claim that FU(〈Ft〉∞t=s) ⊆

⋂
(∆∩Π). This will

complete the proof for then we let m = max{s, u}. Since 〈Xt〉∞t=1 is a union
subsystem of 〈Ft〉∞t=1 we have FU(〈X2kt〉∞t=m) ⊆ FU(〈Ft〉∞t=s) ⊆

⋂
(∆ ∩ Π)

and FU(〈X2kt〉∞t=m) ⊆ FU(〈X2kt〉∞t=u) ⊆
⋂

(∆ \Π).
So let H ∈ Pf (N) with minH ≥ s be given. For t ∈ H, pick (Gt,∆t) ∈ G

such that Ft ∈ Gt. Pick (G′′,∆′′) ∈ G such that (G′′,∆′′) ≤ (G′,∆′) and
(G′′,∆′′) ≤ (Gt,∆t) for each t ∈ H. Then for each t ∈ H, Ft ∈ G′′ and,
since minFt ≥ t > max

⋃
G′, we have Ft /∈ G′. By Lemma 3.21(2), we have⋃

t∈H Ft ∈ FU(G′′ \ G′) ⊆
⋂

∆′ and
⋂

∆′ ⊆
⋂

(∆ ∩ Π) since (G′,∆′) ≤
(GV ,∆V) for each V ∈ ∆ ∩Π. �
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Theorem 3.23. Let (Π, f) be a sparse ordered union pair with ω ≤ |Π| < c

and assume Martin’s Axiom. There is a sparse ordered union ultrafilter Θ
with Π ⊆ Θ.

Proof. Well order P(F) as 〈Cσ〉σ<c with C0 ∈ Π. Let σ < c and assume
that we have chosen 〈Ψδ〉δ<σ and 〈gδ〉δ<σ such that for each δ < σ:

(1) (Ψδ, gδ) is a sparse ordered union pair.
(2) If τ < δ, then Ψδ ⊆ Ψτ and gδ ⊆ gτ .
(3) Cδ ∈ Ψδ or F \ Cδ ∈ Ψδ.
(4) |Ψδ| ≤ max{|Π|, |δ|}.

These hypotheses hold at δ = 0, (2) vacuously. Let Ψ′σ =
⋃
δ<σ Ψδ and

g′σ =
⋃
δ<σ gδ. It is routine to verify that (Ψ′σ, g

′
σ) is a sparse ordered union

pair. Also |Ψ′σ| ≤ max{|Π|, |σ|}. (If σ ≤ |Π|, then |Ψ′σ| ≤
∑

δ<σ |Π| = |Π|.
If σ > |Π|, then |Ψ′σ| ≤

∑
δ<σ |σ| = |σ|.)

Pick by Lemma 3.22 a sparse ordered union pair (Ψσ, gσ) such that Ψ′σ ⊆
Ψσ, g′σ ⊆ gσ, |Ψσ| = |Ψ′σ|, and either Cσ ∈ Ψσ or F \ Cσ ∈ Ψσ. Hypotheses
(1) through (4) all hold.

The construction being complete, let Θ =
⋃
σ<c Ψσ. If (Ξ, h) is a sparse

ordered union pair, then by Definition 3.14(3a), Ξ has the finite intersection
property. Therefore by induction hypotheses (1) and (3), we have that Θ
is an ultrafilter on F . To see that Θ is a sparse ordered union ultrafilter,
let A ∈ Θ. Pick σ < c such that A ∈ Ψσ, let ∆ = {A}, and let 〈Xn〉∞n=1 =
gσ(∆). Then FU(〈Xn〉∞n=1) ⊆ A and FU(〈X2n〉∞n=1 ∈ Ψσ ⊆ Θ. �

Corollary 3.24. Assume Martin’s Axiom. There exists a sparse ordered
union ultrafilter on F .

Proof. Lemma 3.15 and Theorem 3.23. �

Recall that in this section we are taking S to be the free semigroup with
identity on the generators 〈at〉∞t=1.

Corollary 3.25. Assume Martin’s Axiom. There exists a sparse very
strongly productive ultrafilter on S.

Proof. By Corollary 3.24, pick a sparse ordered union ultrafilter Θ. Let
p = {C ⊆ S : (∃A ∈ Θ)({

∏
n∈B an : B ∈ A} ⊆ C)}. By [11, Theorem 3.3],

p is a very strongly productive ultrafilter. To see that p is sparse, let C ∈ p.
By Definition 3.9, we need to show that there are a sequence 〈xt〉∞t=1 in S
and an infinite set D ⊆ N such that N \D is infinite, FP (〈xt〉∞t=1) ⊆ C, and
FP (〈xt〉t∈D) ∈ p.

Pick A ∈ Θ such that {
∏
n∈B an : B ∈ A} ⊆ C. By Definition 3.12

we may pick a sequence 〈Xn〉∞n=1 of members of F such that maxXn <
minXn+1 for each n and an infinite subset D of N such that N \ D is
infinite, FU(〈Xn〉∞n=1) ⊆ A, and FU(〈Xn〉n∈D) ∈ Θ. For each n ∈ N,
let xn =

∏
t∈Xn at. Since maxXn < minXn+1 for each n, we have that

if H ∈ Pf (N) and K =
⋃
n∈H Xn, then

∏
n∈H xn =

∏
t∈K at. Therefore

〈xn〉∞n=1 is as required. �
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Recall from the introduction that there are many situations in which it is
known that all strongly summable ultrafilters are sparse.

Question 3.26. Let S be the free semigroup on countably many generators.
Are all very strongly productive ultrafilters on S sparse?

4. More idempotents which are products only trivially

Let S be the free semigroup on the generators 〈at〉∞t=1 and let F = Pf (N).
Denote by ] the operation on βF extending the operation ∪ on F making
(βF ,]) a right topological semigroup with F contained in its topological
center. (Normally we use the same symbol to denote the extended operation.
But in this case, if Θ,Ψ ∈ βF , then Θ ∪ Ψ already means something.) We
show in this section that Martin’s Axiom implies that there is an idempotent
p in βS which is not very strongly productive, in fact is not even strongly
productive, and p can only be written trivially as a product. We also show
that the existence of a union ultrafilter implies that there is an idempotent
p in (βN, ·) which can only be written trivially as a product and that there
is an idempotent Θ in (βF ,]) so that, if Ψ and Ξ are in βF and Ψ]Ξ = Θ,
then Ψ = Ξ = Θ.

We begin by showing in Theorem 4.2 that if p is a strongly productive
ultrafilter on S and FP (〈at〉∞t=1) ∈ p, then in fact p is very strongly produc-
tive.

Lemma 4.1. Let S be the free semigroup on the generators 〈at〉∞t=1 and let
〈xt〉∞t=1 be a sequence in S. If FP (〈xt〉∞t=1) ⊆ FP (〈at〉∞t=1), then 〈xt〉∞t=1 is a
product subsystem of 〈at〉∞t=1.

Proof. For each n ∈ N pick Hn ∈ Pf (N) such that xn =
∏
t∈Hn at. We

claim that for each n, maxHn < minHn+1. Otherwise

xn · xn+1 =
∏
t∈Hn

at ·
∏

t∈Hn+1

at /∈ FP (〈at〉∞t=1). �

Theorem 4.2. Let S be the free semigroup on the generators 〈at〉∞t=1 and let
p be a strongly productive ultrafilter on S such that FP (〈at〉∞t=1) ∈ p. Then
p is a very strongly productive ultrafilter.

Proof. Let A ∈ p. Pick a sequence 〈xt〉∞t=1 such that

FP (〈xt〉∞t=1) ⊆ A ∩ FP (〈at〉∞t=1) and FP (〈xt〉∞t=1) ∈ p .
By Lemma 4.1, 〈xt〉∞t=1 is a product subsystem of 〈at〉∞t=1. �

When we say that a sequence 〈xt〉∞t=1 satisfies uniqueness of finite prod-
ucts, we mean that whenever F,H ∈ Pf (N) and

∏
t∈F xt =

∏
t∈H xt, one

must have that F = H.
The subsemigroup H of (βN,+) is defined by H =

⋂∞
n=1 2nN. This semi-

group contains all of the idempotents of (βN,+) and much of the remaining
known algebraic structure of (βN,+). See [8, Section 6.1]. The proof of the
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following lemma is only a slight variation of the proof of [8, Theorem 6.27]
so we omit it.

Lemma 4.3. Let S be any semigroup, let 〈xt〉∞t=1 be a sequence in S sat-

isfying uniqueness of finite products, and let T =
⋂∞
n=1 FP (〈xt〉∞t=n). De-

fine ϕ : N → S by, for H ∈ Pf (N), ϕ(
∑

t∈H 2t−1) =
∏
t∈H xt and let

ϕ̃ : βN→ βS be the continuous extension of ϕ. The restriction of ϕ̃ to H is
an isomorphism and a homeomorphism onto T .

Lemma 4.4. Define ψ : F → N by, for F ∈ F , ψ(F ) =
∑

t∈F 2t−1 and let

ψ̃ : βF → βN be its continuous extension. If Θ is a union ultrafilter on F ,

then ψ̃(Θ) is a strongly summable ultrafilter on N.

Proof. This is the easy half of [2, Theorem 1]. �

Lemma 4.5. Let S be the free semigroup on the generators 〈at〉∞t=1, define
ϕ : N → S and ψ : F → N by, for F ∈ F , ϕ(

∑
t∈F 2t−1) =

∏
t∈F at and

ψ(F ) =
∑

t∈F 2t−1. Let ϕ̃ : βN → βS and ψ̃ : βF → βN be the continuous

extensions of ϕ and ψ. Let Θ ∈ βF and let p = ϕ̃
(
ψ̃(Θ)

)
. If p is a very

strongly productive ultrafilter, then Θ is an ordered union ultrafilter.

Proof. Define τ : F → S by, for F ∈ F , τ(F ) =
∏
t∈F at. Let τ̃ : βF → βS

be its continuous extension. Then τ = ϕ ◦ ψ so p = τ̃(Θ).
To see that Θ is an ordered union ultrafilter, let W ∈ Θ. Then τ [W] ∈ p.

Pick a product subsystem 〈xt〉∞t=1 of 〈at〉∞t=1 such that FP (〈xt〉∞t=1) ⊆ τ [W]
and FP (〈xt〉∞t=1) ∈ p. Pick a sequence 〈Hn〉∞n=1 in Pf (N) such that for each
n, xn =

∏
t∈Hn at and maxHn < minHn+1. For each n, pick Fn ∈ W

such that xn = τ(Fn). Then
∏
t∈Fn at = xn =

∏
t∈Hn at, so Fn = Hn.

We have τ−1[FP (〈xt〉∞t=1)] ∈ Θ, τ−1[FP (〈xt〉∞t=1)] ⊆ τ−1
[
τ [W]

]
= W, and

τ−1[FP (〈xt〉∞t=1)] = FU(〈Fn〉∞n=1). �

Lemma 4.6. Let S be the free semigroup on the generators 〈at〉∞t=1 and let

T =
⋂∞
n=1 FP (〈at〉∞t=n). If r, s ∈ βS and rs ∈ T , then r ∈ T and s ∈ T .

Proof. Let n ∈ N. We will show that FP (〈at〉∞t=n) ∈ r and FP (〈at〉∞t=n) ∈ s.
Since FP (〈at〉∞t=n) ∈ rs, we have B = {x ∈ S : x−1FP (〈at〉∞t=n) ∈ s} ∈ r.
We claim B ⊆ FP (〈at〉∞t=n), so let x ∈ B and pick y ∈ x−1FP (〈at〉∞t=n).
Then xy =

∏
t∈H at for some H ∈ Pf (N) such that minH ≥ n. Therefore

x ∈ FP (〈at〉∞t=n) and y ∈ FP (〈at〉∞t=n). Thus B ⊆ FP (〈at〉∞t=n) and,
since y was an arbitrary member of x−1FP (〈at〉∞t=n), x−1FP (〈at〉∞t=n) ⊆
FP (〈at〉∞t=n). �

All previously known examples of elements of βS which could not be
written nontrivially as a product were very strongly productive.

Theorem 4.7. Let S be the free semigroup on the generators 〈at〉∞t=1 and
assume Martin’s Axiom. There exists an idempotent p ∈ βS such that:

(1) If r, s ∈ βS and rs = p, then r = s = p.
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(2) p is not strongly productive.

Proof. By [2, Theorem 5] pick a union ultrafilter Θ on F such that Θ is

not an ordered union ultrafilter. Let ψ, ϕ, ψ̃, and ϕ̃ be as in Lemma 4.5.

Let T =
⋂∞
n=1 FP (〈at〉∞t=n) and let q = ψ̃(Θ). By Lemma 4.4, q is strongly

summable.
Now (N,+) can be embedded in the circle group so by [7, Corollary 4.3],

if x, y ∈ N∗ and x+ y = q, then x, y ∈ Z + q. Consequently, if x, y ∈ H and
x+ y = q, then x, y ∈ (Z + q) ∩H = {q}.

Let p = ϕ̃(q). By Lemma 4.3, p is an idempotent and p ∈ T . Assume
that r, s ∈ βS and rs = p. By Lemma 4.6, r ∈ T and s ∈ T so by Lemma
4.3 pick x, y ∈ H such that r = ϕ̃(x) and s = ϕ̃(y). Then ϕ̃(x+ y) = rs = p
so x+ y = q. Therefore x = y = q and thus r = s = p.

Finally suppose that p is strongly productive. By Theorem 4.2 p is very
strongly productive so by Lemma 4.5, Θ is an ordered union ultrafilter, a
contradiction. �

The following corollary is an immediate consequence of the proof of The-
orem 4.7.

Corollary 4.8. Let ϕ, and ϕ̃ be as in Lemma 4.5 and assume Martin’s
Axiom. There is a strongly summable ultrafilter q on N such that ϕ̃(q) is
not strongly productive.

We conclude the paper with some results which are consequences of the
existence of union ultrafilters. This is certainly a weaker assumption than
Martin’s Axiom since it is known that the existence of union ultrafilters
follows from the axiom known as P (c). (See the discussion in [2, Page 97].)
It is not known whether this is a weaker assumption than the existence of
ordered union ultrafilters.

Theorem 4.9. Let S be any semigroup, let 〈xt〉∞t=1 be a sequence in S sat-

isfying uniqueness of finite products, and let T =
⋂∞
n=1 FP (〈xt〉∞t=n). Define

ϕ and ϕ̃ as in Lemma 4.3. If whenever r, s ∈ βS and rs ∈ T , one must
have r ∈ T and s ∈ T , then for any strongly summable ultrafilter q on N, if
r, s ∈ βS and ϕ̃(q) = rs, then r = s = ϕ̃(q).

Proof. Pick r, s ∈ βS such that ϕ̃(q) = rs. Then r, s ∈ T so by Lemma 4.3,
pick x, y ∈ H such that ϕ̃(x) = r and ϕ̃(y) = s. Then x + y = q so by [7,
Corollary 4.3], x, y ∈ H∩(Z+q) = {q}. Thus x = y = q so r = s = ϕ̃(q). �

Corollary 4.10. Assume there exists a union ultrafilter on F . There is an
idempotent p in (βN, ·) such that if r, s ∈ βN and rs = p, then r = s = p.

Proof. By Lemma 4.4, pick a strongly summable ultrafilter q on N. Let
〈xt〉∞t=1 be a sequence of distinct primes and define T =

⋂∞
n=1 FP (〈xt〉∞t=n).

By Theorem 4.9 it suffices to show that if r, s ∈ βN and rs ∈ T , then
r ∈ T and s ∈ T . This follows easily from the fact that if n, y, z ∈ N and
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yz ∈ FP (〈xt〉∞t=n), then all prime factors of y and of z are in {xt : t ≥ n}
and neither y nor z has a repeated prime factor. �

Corollary 4.11. Assume there exists a union ultrafilter on F . There is an
idempotent Θ in βF such that if Ψ,Ξ ∈ βF and Ψ]Ξ = Θ, then Ψ = Ξ = Θ.

Proof. By Lemma 4.4, pick a strongly summable ultrafilter q on N. For
each n ∈ N, let Xn = {n}. Then, given n ∈ N,

FU(〈Xt〉∞t=n) = {H ∈ F : minH ≥ n} .
Note that 〈Xn〉∞n=1 satisfies uniqueness of finite unions. Define ϕ : N → F
by, for H ∈ F , ϕ(

∑
t∈H 2t−1) = H and let T =

⋂∞
n=1 FU(〈Xt〉∞t=n).

By Theorem 4.9 it suffices to show that if Ψ,Ξ ∈ βF and Ψ ] Ξ ∈ T ,
then Ψ ∈ T and Ξ ∈ T . To this end, let n ∈ N \ {1}. We need to show
that {H ∈ F : minH ≥ n} ∈ Ψ and {H ∈ F : minH ≥ n} ∈ Ξ. Now
{H ∈ F : minH < n} is an ideal of (F ,∪) so by [8, Corollary 4.18],

{H ∈ F : minH < n} is an ideal of (βF ,]) so if either

{H ∈ F : minH ≥ n} /∈ Ψ or {H ∈ F : minH ≥ n} /∈ Ξ ,

we would have {H ∈ F : minH ≥ n} /∈ Ψ ] Ξ. �
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