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On the twistor space of a (co-)CR
quaternionic manifold

Radu Pantilie

Abstract. We characterise, in the setting of the Kodaira–Spencer de-
formation theory, the twistor spaces of (co-)CR quaternionic manifolds.
As an application, we prove that, locally, the leaf space of any nowhere
zero quaternionic vector field on a quaternionic manifold is endowed
with a natural co-CR quaternionic structure.

Also, for any positive integers k and l, with kl even, we obtain the
geometric objects whose twistorial counterparts are complex manifolds
endowed with a conjugation without fixed points and which preserves
an embedded Riemann sphere with normal bundle lO(k).

We apply these results to prove the existence of natural classes of
co-CR quaternionic manifolds.
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Introduction

Twistor Theory is based on a nontrivial, and far from complete, dictionary
between differential geometric and holomorphic objects. For example (see
[5]), it is well-known that (up to a conjugation) any anti-self-dual manifold
corresponds to a three-dimensional complex manifold endowed with a locally
complete family of (embedded) Riemann spheres with normal bundle 2O(1)
(where O(1) is the dual of the tautological bundle over CP 1). More gener-
ally, any quaternionic manifold (introduced in [15]) of dimension 4k corre-
sponds to a complex manifold of dimension 2k + 1 endowed with a locally
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complete family of Riemann spheres with normal bundle 2kO(1). Another
such natural correspondence is given by the three-dimensional Einstein–
Weyl spaces which, locally, correspond to complex surfaces endowed with
locally complete families of Riemann spheres with normal bundle O(2) [5].

All these correspondences involve two steps:

(1) the construction of a twistor space for each of the given differential
geometric structures, and

(2) the characterisation (among the complex manifolds endowed with
a family of compact complex submanifolds) of the obtained twistor
spaces.

In [12], it is shown that step (1) of all of the above mentioned corre-
spondences are particular cases of the construction by which to any co-CR
quaternionic manifold it is associated its twistor space.

In this paper, we provide the corresponding step (2) for a large class of
co-CR quaternionic manifolds, thus showing that in order for a complex
manifold Z to be the twistor space of a co-CR quaternionic manifold it
is sufficient to be endowed with a locally-complete family F of Riemann
spheres which (up to the restrictions imposed by a conjugation; see Theorem
3.1, below, for details) satisfies the following:

(a) For any t ∈ F , its (holomorphic) normal bundle Nt is ‘positive’ and
the exact sequence 0 −→ Tt −→ TZ|t −→ Nt −→ 0 splits.

(b) dimH1(t, T t⊗N∗t) is independent of t ∈ F .

Note that, by [12], condition (a) is, also, necessary for Z to be the twistor
space of a co-CR quaternionic manifold, with F the corresponding family of
twistor lines.

Consequently, up to a complexification, the ‘Veronese webs’ of [2] and the
‘generalized hypercomplex structures’ of [1] are particular classes of co-CR
quaternionic structures. Furthermore, it follows that the ‘bi-Hamiltonian
structures’ corresponding [2] to the former are obtained through a dimen-
sional reduction of a hypercomplex structure.

As an application of Theorem 3.1, we prove (Corollary 3.3) that, locally,
the leaf space of any nowhere zero quaternionic vector field on a quaternionic
manifold is endowed with a natural co-CR quaternionic structure.

We, also, provide (Theorem 2.1) the corresponding step (2) for the dually
flavoured CR quaternionic manifolds, introduced in [11].

Finally, a similar approach leads to (Corollary 4.3) a natural correspon-
dence between the following classes, where k and l are positive integers:

(a) Complex manifolds endowed with a conjugation without fixed points
and which preserves an embedded Riemann sphere with normal bun-
dle lO(k).

(b) Quadruples (M,N, x, ϕ), with x ∈M ⊆ N , N quaternionic, M ⊆ N
generic and of type (k, l) (see Definition 4.2), and ϕ : N → M a
twistorial retraction of the inclusion M ⊆ N .
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We apply these results to prove the existence of natural classes of co-CR
quaternionic manifolds.

Acknowledgements. I am grateful to Stefano Marchiafava for very use-
ful and enjoyable discussions. I also gratefully acknowledge partial finan-
cial support from the Romanian National Authority for Scientific Research,
CNCS-UEFISCDI, project no. PN-II-ID-PCE-2011-3-0362.

1. (Co-)CR quaternionic manifolds

In this section we recall, from [11] and [12] to which we refer for further
details, the notions of CR and co-CR quaternionic manifolds.

Let H be the (unital) associative algebra of quaternions; note that, its
automorphism group is SO(3,R) acting trivially on R and canonically on
ImH (= R3).

A linear quaternionic structure on a (real) vector space E is an equivalence
class of morphisms of associative algebras from H to End(E), where two such
morphisms σ1 and σ2 are equivalent if σ2 = σ1◦a, for some a in (the identity
component of) SO(3,R).

Let E be a quaternionic vector space whose structure is given by the mor-
phism σ : H → End(E). Then Z = σ(S2) depends only of the equivalence
class of σ. Moreover, Z determines the linear quaternionic structure of E.
Also, any J ∈ Z is a linear complex structure on E which is called admissible
(for the given linear quaternionic structure).

A linear CR quaternionic structure on a vector space U is a pair (E, ι),
where E is a quaternionic vector space and ι : U → E is an injective linear
map such that, for any admissible linear complex structure J on E, we have
im ι+ J(im ι) = E.

By duality we obtain the notion of linear co-CR quaternionic structure.
Any quaternionic vector space E is isomorphic to Hk, where dimE = 4k,

and the automorphism group of Hk is Sp(1) ·GL(k,H ).
The classification of the (co-)CR quaternionic vector spaces is much less

trivial. It is based on a covariant functor from the category of CR quater-
nionic vector spaces to the category of holomorphic vector bundles over the
Riemann spheres, which we next describe. Let (U,E, ι) be a CR quaternionic
vector space and let Z be the space of admissible linear complex structures
on E. For any J ∈ Z denote EJ = ker(J+i). Then E0,1 =

⋃
J∈Z{J}×EJ is

a holomorphic vector subbundle of Z ×EC (isomorphic to 2kO(−1), where
dimE = 4k and O(−1) is the tautological line bundle on Z = CP 1). Fur-
thermore, ι−1

(
E0,1

)
is a holomorphic vector subbundle of Z × UC which is

called the holomorphic vector bundle of (U,E, ι) [11]. It follows that there
exists a natural bijective correspondence between (isomorphism classes of)
CR quaternionic vector spaces and holomorphic vector bundles, over the
Riemann sphere, whose Birkhoff–Grothendieck decompositions contain only
terms whose Chern numbers are at most −1.
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A quaternionic vector bundle is a real vector bundle E with typical fibre
Hk and structural group Sp(1) · GL(k,H ). If E is a quaternionic vector
bundle then the space Z of admissible linear complex structures on E is
a (locally trivial) fibre bundle with typical fibre S2 and structural group
SO(3,R).

An almost CR quaternionic structure on a manifold M is a pair (E, ι),
where E is a quaternionic vector bundle over M and ι : TM → E is a
vector bundles morphism such that (Ex, ιx) defines a linear CR quaternionic
structure on TxM , for any x ∈M .

By duality we obtain the notion of almost co-CR quaternionic structure.
Let (M,E, ι) be an almost CR quaternionic manifold. Suppose that E is

endowed with a compatible connection ∇ and let π : Z →M be the bundle
of admissible linear complex structures on E. Denote by B the complex
distribution on Z whose fibre, at each J ∈ Z, is the horizontal lift, with
respect to ∇, of ι−1

(
ker(J + i)

)
. Then C = (ker dπ)0,1 ⊕ B is an almost

CR structure on Z. If C is integrable then (E, ι,∇) is a CR quaternionic
structure on M .

A quaternionic manifold is a CR quaternionic manifold (M,E, ι,∇) for
which ι is an isomorphism.

Let N be a quaternionic manifold. A submanifold M ⊆ N is generic if
(TN |M , ι) is an almost CR quaternionic structure on M , where

ι : TM → TN |M

is the inclusion; in particular, codimM ≤ 2k − 1, where dimN = 4k. The
terminology is justified by the fact that the set of real vector subspaces
U ⊆ Hk, of fixed codimension l ≤ 2k − 1 and on which Hk induces a
linear CR quaternionic structure, is open in the Grassmannian of real vector
subspaces of codimension l of Hk. Also, M ⊆ N is generic if and only if, for
any admissible local complex structure J on N , we have that M is a generic
CR submanifold of (N, J).

Any hypersurface of a quaternionic manifold is generic, but this does not
hold for higher codimensions as simple examples show (take, for example,
Hk × C in Hk+1).

Any generic submanifold of a quaternionic manifold inherits a natural CR
quaternionic structure. Conversely, any real analytic CR quaternionic struc-
ture is obtained this way from a germ unique embedding into a quaternionic
manifold.

Let (M,E, ρ) be an almost co-CR quaternionic manifold. Suppose that
E is endowed with a compatible connection ∇ and let π : Z → M be
the bundle of admissible linear complex structures on E. Denote by B the
complex distribution on Z whose fibre, at each J ∈ Z, is the horizontal lift,
with respect to ∇, of ρ

(
ker(J + i)

)
. Then C = (ker dπ)0,1 ⊕ B is an almost

co-CR structure on Z; that is, C + C = TCZ. If C is integrable (that is, its
space of sections is closed under the usual bracket) then (E, ι, ρ) is a co-CR
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quaternionic structure on M . Suppose, further, that C ∩ C = (ker dπY )C ,
where πY : Z → Y is a surjective submersion whose restriction to each fibre
of π is injective, and with respect to which C is projectable (note that, the
last condition is automatically satisfied if πY has connected fibres). Then
Y endowed with dπY (C) is a complex manifold, called the twistor space of
(M,E, ρ,∇) ; in particular, πY restricted to each fibre of π is an injective
holomorphic immersion.

2. On the twistor space of a CR quaternionic manifold

Recall [8] that a smooth family of complex manifolds is a surjective sub-
mersion π : Z → M whose domain is endowed with a CR structure D such
that D⊕D = (ker dπ)C. Any member of the family is a fibre t of Z endowed
with the complex structure for which T 0,1t = D|t.

We shall denote by S the generating subsheaf of TCZ/(ker dπ)0,1 formed
of the complex vector fields on Z which are projectable with respect to π
and holomorphic when restricted to the fibres of Z. Note that, the exact
sequence

0 −→ (ker dπ)1,0 −→ S −→ π∗(TCM) −→ 0

is the fundamental sequence [8, (4.1)].

Theorem 2.1. Let π : Z → M be a smooth family of Riemann spheres.
Suppose that Z is endowed with a CR structure C and an involutive diffeo-
morphism τ such that:

(i) C induces the given complex structure on each fibre of Z.
(ii) For each fibre t of Z, we have that (C|t)/T 0,1t is a holomorphic

subbundle of the restriction to t of TCZ/(ker dπ)0,1 such that the
induced quotient of

(
TCZ/C

)
|t through T 1,0t is isomorphic to kO(1),

for some positive integer k.
(iii) τ is anti-CR with respect to C, preserves the fibres of Z and has no

fixed points.

Then there exists a CR quaternionic structure (E, ι,∇) on M whose twistor
space is (Z, C); moreover, (E, ι) is unique (up to isomorphisms) with these
properties.

Proof. We have that Z is a fibre bundle with typical fibre the Riemann
sphere (apply [8, Theorem 6.3]). Furthermore, τ restricted to each fibre
of Z is an involutive conjugation without fixed points and, thus, it is the
antipodal map. Therefore Z is a sphere bundle with structural group SO(3).

Denote B = C/(ker dπ)0,1 and note that by using the fundamental se-
quence and (ii) we obtain an exact sequence

(2.1) 0 −→ B −→ π∗(TCM) −→ π∗(TCM)/B −→ 0

of complex vector bundles which are holomorphic when restricted to the
fibres of Z. Furthermore, (ii), [14, Proposition 3.3], and [11, §3] imply
that, at each x ∈M , there exists a unique linear CR quaternionic structure
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(Ex, ιx) on TxM whose holomorphic vector bundle is the restriction of B to
π−1(x).

To describe (E, ι) we use (2.1). Firstly, EC is the direct image through π
of π∗(TCM)/B (that is, for any open subset U ⊆M , the space of sections of
EC|U is the space of sections (which are holomorphic when restricted to the
fibres of π) of the restriction to π−1(U) of π∗(TCM)/B ; the fact that EC

is a bundle is given by [9, Theorem 9]). Further, the long exact sequence
of cohomology of (2.1) gives an injective complex linear map α between the
spaces of sections of π∗(TCM) and π∗(TCM)/B, over any open set of the
form π−1(U), where U is an open subset of M . Then ι|U is the restriction of
α to the space of sections of π∗(TCM)|U which intertwine the conjugation
and the antipodal map.

Now, any connection on Z corresponds to a splitting of the fundamental
sequence (cf. [8, Proposition 5.1]), which is invariant under the antipodal
map. Obviously, such splittings exist but we want to obtain

S = H ⊕ (ker dπ)1,0

with B ⊆H . To prove this, note that, instead of the fundamental sequence,
we may use the exact sequence

(2.2) 0 −→ (ker dπ)1,0 −→ TCZ/(ker dπ)0,1 −→ π∗(TCM) −→ 0,

whilst, any splitting of (2.2) whose ‘image’ contains B corresponds to a
splitting of

(2.3) 0 −→ (ker dπ)1,0 −→ TCZ/C −→ π∗(TCM)/B −→ 0.

But the restriction of (2.3) to each fibre t (= CP 1) of Z is

0 −→ O(2) −→
(
TCZ/C

)
|t −→ kO(1) −→ 0.

Together with [9, Theorem 10], this quickly implies that there exists a con-
nection on Z whose complexification contains B, and the proof follows. �

Note that, by [11], the twistor space of any CR quaternionic manifold
satisfies the conditions of Theorem 2.1.

Also, in Theorem 2.1, we have that C is a complex structure on Z if and
only if dimM = 2k. Then (i) and (ii) are equivalent to the fact that any
fibre of Z is a complex submanifold and its (holomorphic) normal bundle is
isomorphic to kO(1) (note that, k is necessarily even). Thus, Theorem 2.1
gives, in particular, the classical characterisation of the twistor space of any
quaternionic manifold.

3. On the twistor space of a co-CR quaternionic manifold

Recall [8] (see [7]) that a family F of compact complex submanifolds of
a complex manifold Z is complex analytic if there exist complex manifolds
P and Q and holomorphic maps πZ : Q → Z, π : Q → P , with π a proper
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surjective submersion, such that F =
{
πZ(π−1(x))

}
x∈P and πZ restricted

to each fibre of π is an injective immersion.

Theorem 3.1. Let Z be a complex manifold endowed with a conjugation τ ,
without fixed points, and a locally complete family F of Riemann spheres.

Then, locally, Z is the twistor space of a co-CR quaternionic manifold,
for which F is the family of twistor lines, if the following conditions are
satisfied:

(i) The Birkhoff–Grothendieck decomposition of the normal bundle Nt,
of any t ∈ F , contains only terms of Chern number at least 1.

(ii) The exact sequence 0 −→ Tt −→ TZ|t −→ Nt −→ 0 splits, for any
t ∈ F , and dimH1(t, T t ⊗ N∗t) is independent of t ∈ F , where Tt
and TZ are the holomorphic tangent bundles of t and Z, respectively.

(iii) τ(F) = F and there exists t0 ∈ F such that τ(t0) = t0.

Proof. Unless otherwise stated, all the objects and maps are assumed com-
plex analytic; in particular, if P is a (complex) manifold then TP denotes
its holomorphic tangent bundle.

By (i), [7], and [8, Theorem 6.3], (which is known to hold in the complex
analytic setting, as well) the family F is given by a map

πZ : Q→ Z,

where π : Q → P is a locally trivial fibre bundle with typical fibre CP 1.
Also, for any x ∈ P , there exists a natural isomorphism TxP = H0(tx, Ntx),
where tx = πZ(π−1(x)). Furthermore, from (i) it follows quickly that πZ
is a submersion which, by passing to an open subset of Z, can be assumed
surjective.

Let B = ker dπZ . From the isomorphism between π∗(TP ) and the quo-
tient of TQ through ker dπ, we obtain

(3.1) 0 −→ ker dπ −→ TQ/B −→ π∗(TP )/B −→ 0

which, for any x ∈ P , restricts to

(3.2) 0 −→ Ttx −→ TZ|tx −→ Ntx −→ 0,

and, consequently, gives

(3.3) 0 −→ B|tx −→ tx × TxP → Ntx −→ 0,

where we have identified tx = π−1(x).
Condition (iii) gives that by passing, if necessary, to an open neighborhood

of each point of P corresponding to a τ -invariant member of F , we may
suppose P be the complexification of a real-analytic submanifold M .

Now, similarly to the proof of Theorem 2.1, we obtain that M is endowed
with an almost co-CR quaternionic structure for which Q|M is the bundle of
admissible linear complex structures. Furthermore, any connection on Q|M
whose complexification contains B|Q|M corresponds to a τ -invariant splitting
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of the restriction to Q|M of (3.1) which by (ii) and [9, Theorem 10] exists,
and the proof follows. �

Remark 3.2. Theorem 3.1 can be slightly extended, as follows.

(1) If in (i) of Theorem 3.1 we further assume that the Chern numbers
are contained by {1, 2, 3} then condition (ii) becomes superfluous.

(2) The conclusion of Theorem 3.1 still holds if we assume that Z con-
tains a Riemann sphere t preserved by τ , which satisfies (ii), and (i),
where for the latter the Chern numbers are contained by {k, k+ 1},
for some positive integer k (this is an immediate consequence of [7],
[8, Theorems 6.3, 7.4], and Theorem 3.1).

Remark 3.2 shows, in particular, that Theorem 3.1 is a natural generaliza-
tion of classical results (see [5], [6] and the references therein) on quaternionic
and anti-self-dual manifolds, and three-dimensional Einstein–Weyl spaces.

It is well known that, locally, the leaf space of a nowhere zero conformal
vector field, on an anti-self-dual manifold, is a (three-dimensional) Einstein–
Weyl space (see [13] and the references therein). In higher dimensions, we
have the following result.

Corollary 3.3. Locally, the leaf space of any nowhere zero quaternionic
vector field on a quaternionic manifold is a co-CR quaternionic manifold.

Proof. Let V be a nowhere zero quaternionic vector field on a quaternionic
manifold M whose orbits are the fibres of a submersion ϕ : M → N . Then V

lifts to a holomorphic vector field Ṽ on the twistor space ZM of M (use, for
example, [6]). Assume, for simplicity, that the one-dimensional holomorphic

foliation generated by Ṽ is simple; that is, it is given by the fibers of a
holomorphic submersion Φ from ZM onto some complex manifold ZN .

Then Φ maps the twistor lines on ZM onto a complex analytic family of
Riemann spheres on ZN each of which has normal bundle 2kO(1) ⊕ O(2),
where dimM = 4(k + 1). Furthermore, this family is parametrised by a
complexification of N ; consequently, it is locally complete (apply [7]).

By Remark 3.2(1), we have that ZN is the twistor space of a co-CR
quaternionic structure on N . �

Note that, in the proof of Corollary 3.3, the induced twistorial structure
(of the co-CR quaternionic structure) on N is unique with the property
that ϕ be a twistorial map (see [13] and [10] for the definition of twistorial
structures and maps).

On the other hand, unlike the complex setting, the quaternionic distri-
bution generated by a quaternionic vector field is not necessarily integrable.
Indeed, if not, then any homogeneous quaternionic manifold would be locally
isomorphic with the quaternionic projective space — a contradiction.
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4. Another natural twistorial correspondence

Recall (see [3, p. 172] and note that the definitions extend easily to the
complex analytic category) that two complex curves c1 and c2 on a complex
manifold Z have a contact of order k at a point x ∈ c1 ∩ c2 if for any
holomorphic function f defined on some open neighborhood of x in Z we
have that f |c1 vanishes up to the k-th order at x if and only if f |c2 vanishes
up to the k-th order at x. Then a k-jet of (complex) curves on Z at x
is an equivalence class of curves on Z which have a contact of order k at
x. Further, the set Yk(Z) of all k-jets of curves at all the points of Z
is, in a natural way, a complex manifold of dimension kl + l + 1, where
dimC Z = l + 1. Moreover, the canonical map from Yk(Z) onto Z is the
projection of a locally trivial fibre space; in particular, Y0(Z) = Z, whilst
Y1(Z) is the projectivisation of the holomorphic tangent bundle of Z.

Theorem 4.1. Let Z be a complex manifold endowed with a conjugation
without fixed points and which preserves an embedded Riemann sphere t ⊆ Z
whose normal bundle is lO(k + 1), with k and l positive integers.

Then there exists a quaternionic manifold, of dimension 2l(k+ 1), whose
twistor space is an open subset of Yk(Z), endowed with the conjugation in-
duced by τ , and for which the canonical lift of t to Yk(Z) is a twistor line.

Proof. The conjugation on Z induces a conjugation on the normal bundle
of the embedded Riemann sphere, covering the antipodal map. Hence, if k
is even then, also, l must be even (see [14]).

Then, as in the proof of Theorem 3.1, we obtain on Z a locally complete
family F of Riemann spheres given by holomorphic maps πZ : Q → Z and
π : Q→ P , where the former can be assumed a surjective submersion, whilst
the latter is a locally trivial fibre bundle with typical fibre CP 1. Also, by
passing to an open subset, if necessary, P is the complexification of a real
analytic manifold M .

Now, if we suitably blow up k+1 times Z at any point z ∈ u, of any u ∈ F ,
we obtain a complex manifold Zu,z endowed with an embedded Riemann
sphere with trivial normal bundle (of rank l). Hence, this is contained in an
l-dimensional locally complete family Fu,z of Riemann spheres, embedded
in Zu,z, all of which are obtained as proper transforms of members of F .
Furthermore, v ∈ F transforms to a member of Fu,z if and only if u and v
have a contact of order k at z.

Therefore πZ factors into a holomorphic submersion with l-dimensional
fibres from Q to Yk(Z) followed by the projection from Yk(Z) onto Z. More-
over, the normal bundle of the canonical lift to Yk(Z) of any member of F is
isomorphic to l(k+ 1)O(1). This shows that an open subset of Yk(Z) is the
twistor space of a quaternionic manifold N . Moreover, the projection from
Yk(Z) onto Z corresponds to a twistorial retraction of the inclusion M ⊆ N
whose differential at each point is given by the cohomology sequence of the
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exact sequence 0 −→ klO −→ l(k + 1)O(1) −→ lO(k + 1) −→ 0 ; in par-
ticular, M is a generic submanifold of N (note that, the induced almost
CR quaternionic structure on M can be also obtained by using the proof
of Theorem 2.1, with Z replaced by Q|M endowed with the CR structure
induced from Q). �

We say (compare [3]) that two embeddings ϕ : P → Q and ψ : P → R
define the same embedding germ if there exist open neighbourhoods U and
V of ϕ(P ) and ψ(P ), respectively, and a diffeomorphism ξ : U → V such
that ψ = ξ ◦ ϕ ; certainly, if Q and R are endowed with some geometric
structure then we require ξ to preserve it.

Definition 4.2. Let (M,E, ι) be an almost CR quaternionic manifold and
let k and l be positive integers. We say that (M,E, ι) is of type (k, l) if, for
any x ∈M , the holomorphic vector bundle of (TxM,Ex, ιx) is lO(−k).

Note that, if N is quaternionic and M ⊆ N is generic of type (k, l) then
dimM = l(k+ 1) and dimN = 2kl ; in particular, if dimN = 2(dimM − 1)
then the type of M is determined by its dimension.

Corollary 4.3. There exists a natural correspondence between the following
classes, where k and l are positive integers:

(i) complex manifolds endowed with a conjugation without fixed points
and which preserves an embedded Riemann sphere with normal bun-
dle lO(k);

(ii) quadruples (M,N, x, ϕ), with x ∈M ⊆ N , N quaternionic, M ⊆ N
generic and of type (k, l), and ϕ : N →M a twistorial retraction of
the inclusion M ⊆ N .

Moreover, the correspondence is bijective if we pass to embedding germs.

Proof. How to pass from objects as in (i) to objects as in (ii) it is shown in
the proof of Theorem 4.1.

Conversely, given a quadruple (M,N, x, ϕ) as in (ii) let Z(N) be the
twistor space of N . Then ϕ corresponds to a holomorphic submersion Φ from
Z(N) onto some complex manifold Z such that the family of twistor lines
on Z(N) is mapped by Φ into a family of Riemann spheres embedded into
Z. Consequently, each member of this family has normal bundle isomorphic
to lO(k). Furthermore, as ϕ is a retraction of the inclusion M ⊆ N , at
least locally, the parameter space of this family is a complexification of M
and therefore Z is also endowed with a conjugation τ . Now, let t ⊆ Z be
the image through Φ of the twistor line corresponding to x. Then (Z, τ, t)
satisfies condition (i). �

If in Theorem 4.1, we have k = l = 1, and if in Corollary 4.3, we have
k = l + 1 = 2, then we obtain results of [5].
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Example 4.4. Let n be a nonnegative even number and let Sn be the
projectivisation of O⊕O(n). Then the conjugations of O and O(n) induce
a conjugation τ of Sn covering the antipodal map.

Any meromorphic section of O(n) corresponds, up to a constant nonzero
factor, to a divisor on CP 1 (with m poles and n+m zeros, for some natural
number m). Furthermore, if the divisor is invariant under the antipodal map
then the corresponding meromorphic section will intertwine the antipodal
map and the conjugation of O(n). Let s be such a meromorphic section of
O(n) with m poles (necessarily, m is even). Then the closure t of the image
of the section of Sn induced by (1, s) is preserved by τ . Also, the Chern
number of its normal bundle is equal to n + 2m (see [4, p. 519]). Thus,
(Sn, τ, t) satisfies (i) of Corollary 4.3, with k = n+ 2m and l = 1.

If n = 0, in Example 4.4, then m can, also, be any odd natural number,
by suitably changing the conjugation:

Example 4.5. Let σ be the conjugation on S0 = CP 1 × CP 1 given by the
antipodal map, acting on each factor, and let Ym be the space of (2m− 1)-
jets of maps from CP 1 to itself, where m is an odd natural number. On
denoting by α and β the source and target projections, respectively, from
Ym onto CP 1 then (α, β) : Ym → CP 1 × CP 1 is the projection of a locally
trivial fibre space with typical fibre the vector space of polynomials, in one
(complex) variable, of degree at most 2m− 1 and with zero constant term;
in particular, dimC Ym = 2m+ 1 (cf. [3]).

On associating to each jet [ϕ] ∈ Ym, at (x, y) ∈ CP 1×CP 1, the (2m−1)-
jet of curves on CP 1 × CP 1, at (x, y), given by the graph of ϕ, we see
that Ym is an open subset of the space of (2m− 1)-jets of curves on CP 1 ×
CP 1. Therefore Ym is the twistor space of a quaternionic manifold Nm of
dimension 4m. Note that, the twistor lines on Ym are images of sections
s of α such that β ◦ s : CP 1 → CP 1 has degree m. Furthermore, the
corresponding generic submanifold Mm ⊆ Nm, of (ii) of Corollary 4.3, is
just the space of holomorphic maps of degree m, from CP 1 to itself, which
commute with the antipodal map.

Note that, for all the generic submanifolds of (ii) of Corollary 4.3, given
by Examples 4.4 and 4.5, condition (ii) of Theorem 3.1 is automatically
satisfied such that the corresponding rational ruled surfaces are the twistor
spaces of co-CR quaternionic manifolds; in fact, hyper co-CR manifolds (see
[12] for the definition of the latter). Therefore suitable products of these
manifolds provide examples covering all possible k and l in Corollary 4.3.

Example 4.6. Let n ∈ N \ {0} and let Rn+3 ⊆ Rn+4 be embedded as a
vector subspace; denote by ` ⊆ Rn+4 the orthogonal complement of Rn+3,
oriented so that the isomorphism Rn+4 = `⊕Rn+3 be orientation preserving.

Let M be the Grassmannian of three-dimensional oriented subspaces of
Rn+3, and let N be the Grassmannian of four-dimensional oriented sub-
spaces of Rn+4 which are not contained by Rn+3. It is well known that
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N is a quaternionic manifold (it is an open subset of a Wolf space). Also,
M is both a CR quaternionic and a co-CR quaternionic manifold [12]. We
embedd M ⊆ N by p 7→ ` ⊕ p, and define its retraction ϕ : N → M ,
q 7→ q∩Rn+3, where q∩Rn+3 is oriented so that the orthogonal decomposi-

tion q = `q⊕
(
q∩Rn+3

)
be orientation preserving, where `q = q∩

(
q∩Rn+3

)⊥
,

oriented so that its positive unit vector is characterised by the fact that its
scalar product with the positive unit vector of ` be positive. To show that
ϕ is twistorial, let Cn+4 be the complexification of Rn+4. Then Z(M) ⊆
CPn+2 is the hyperquadric of isotropic directions in Cn+3, whilst Z(N) is
the space of two-dimensional isotropic (complex) vector subspaces of Cn+4

which are not contained by Cn+3. Then ϕ corresponds to the holomorphic
map Φ : Z(N)→ Z(M), q 7→ q ∩ Cn+3.

Accordingly, the normal bundle of a twistor sphere in Z(M) is nO(2).
Finally, note that M is a CR quaternionic submanifold, but not a co-CR

quaternionic submanifold of N .

References

[1] Bielawski, Roger. Manifolds with an SU(2)-action on the tangent bundle. Trans.
Amer. Math. Soc. 358 (2006), no. 9, 3997–4019. MR2219007 (2007c:53061), Zbl
1110.53022, arXiv:math/0309301, doi: 10.1090/S0002-9947-05-03782-7.

[2] Gelfand, Israel M.; Zakharevich, Ilya. Webs, Veronese curves, and bi-
Hamiltonian systems. J. Funct. Anal. 99 (1991), no. 1, 150–178. MR1120919
(93d:58070), Zbl 0739.58021, doi: 10.1016/0022-1236(91)90057-C.

[3] Golubitsky, M.; Guillemin, V. Stable mappings and their singularities. Graduate
Texts in Mathematics, 14. Springer-Verlag, New York-Heidelberg, 1973. x+209 pp.
MR0341518 (49 #6269), Zbl 0294.58004, doi: 10.1007/978-1-4615-7904-5.

[4] Griffiths, Phillip; Harris, Joseph. Principles of algebraic geometry. Reprint
of the 1978 original. Wiley Classics Library. John Wiley & Sons, Inc., New York,
1994. xiv+813 pp. ISBN: 0-471-05059-8. MR1288523 (95d:14001), Zbl 0836.14001,
doi: 10.1002/9781118032527.

[5] Hitchin, N. J. Complex manifolds and Einstein’s equations. Twistor geome-
try and nonlinear systems (Primorsko, 1980), 73–99, Lecture Notes in Math.,
970. Springer, Berlin-New York, 1982. MR0699802 (84i:32041), Zbl 0507.53025,
doi: 10.1007/BFb0066025.
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