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Discrete Duhamel product, restriction of
weighted shift operators and related

problems

Mubariz T. Karaev, Suna Saltan and Tevfik Kunt

Abstract. By applying the discrete Duhamel product method we cal-
culate the spectral multiplicity of the direct sum of some operators. In
particular, we prove that µ(T |Xi⊕A) = 1 +µ(A) and µ(S⊕A) = 2 for
the restriction of the weighted shift operator T |Xi, shift operator S and
some appropriate operators A on the Banach spaces.
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1. Introduction and preliminaries

Recall that the classical Duhamel product of two analytic functions f(z) =∑
n≥0

f̂(n)zn and g (z) =
∑
n≥0

ĝ (n) zn in Hol(D) is defined by

(f ~ g)(z) =
d

dz

z∫
0

f(z − t)g(t)dt =

z∫
0

f ′ (z − t) g(t)dt+ f(0)g(z)(1)

=

∞∑
n=0

∞∑
m=0

n!m!

(n+m)!
f̂ (n) ĝ (m) zn+m,

where D := {z ∈ C : |z| < 1} is the unit disc of the complex plane C (see for
instance, Wigley [11, 12]). Beginning from these pioneering works of Wigley,
subsequently many interesting and important problems of analysis, operator
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theory and Banach algebras theory were investigated namely by applying
the method of Duhamel products, see for example, [3, 6, 7, 10, 11, 12].

Here we will consider a generalization of the usual Duhamel product (1),
named as discrete Duhamel product, and use it to the study of spectral
multiplicity of direct sums of some operators.

Recall that a subspace E ⊂ X is called a cyclic subspace of an operator
A ∈ L (X) (Banach algebra of all bounded linear operators on X) if

span {AnE : n = 0, 1, 2, . . . } = X,

where span stands for the closed linear hull. A vector x ∈ X is called cyclic
(x ∈ Cyc(A)) if

span {Anx : n = 0, 1, 2, . . . } = X.

The spectral multiplicity µ(A) of the operator A is

µ(A) := inf {dimE : span {AnE : n ≥ 0} = X} ,
a nonnegative integer or∞. A is a cyclic operator (i.e., there exists a vector
x ∈ X such that x ∈ Cyc(A)) if and only if µ(A) = 1. For example, it follows
from the Weierstrass approximation theorem that µ(V ) = µ(Mx) = 1 for
the classical Volterra integration operator V and multiplication operator Mx

defined in the space C [0, 1] by

V f(x) =

x∫
0

f(t)dt,

Mxf(x) = xf(x),

respectively. Also, by the classical Beurling theorem [1] in the Hardy space
H2 = H2 (D) over the unit disc D, µ(S) = µ(S∗) = 1, where S : H2 → H2 is
the classical unilateral shift operator in H2 defined by Sf(z) = zf(z), and
S∗ is the backward shift operator on H2 defined by

S∗f(z) :=
f(z)− f(0)

z
.

(S∗ is the simple co-analytic Toeplitz operator Tz̄ defined by

Tz̄f(z) = P+z̄f(z),

where P+ : L2 (∂D)→ H2 is the classical Riesz orthogonal projector.) How-
ever, it is well-known that µ(Sn) = n for any finite integer n, and µ(SE) =∞
for the shift operator SE acting in the vector valued Hardy space H2 (E)
with infinity dimensional Hilbert space E.

Note that as the norm, spectral radius, numerical radius, spectrum and
numerical range of operator, the spectral multiplicity is also an important
invariant of an operator. For this it is sufficient to remember, for example,
the spectral theorem for normal operators on the Hilbert space (see, for
example, Rudin [8]). Of course, the concept of cyclic subspace is very im-
portant in relation with the outstanding problem of existence of a nontrivial
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invariant subspace. Namely, it is easy to see that an operator A : X → X has
no nontrivial invariant subspace if and only if x ∈ Cyc(A) for any nonzero
vector x ∈ X. Note that a subspace E ⊂ X is an invariant subspace for an
operator A, if AE ⊂ E, that is, Ax ∈ E for every x ∈ E.

Let A⊕B denote the direct sum of operators A ∈ L (X) and B ∈ L (Y ),
(A⊕B) (x⊕ y) = Ax ⊕ By, x ⊕ y ∈ X ⊕ Y . It is known that (see, for
example, Halmos [2])

µ(A⊕B) ≤ µ(A) + µ(B)

for any operator A⊕ B ∈ L (X ⊕ Y ). Here we will investigate the equality
µ(A⊕B) = µ(A)+µ(B) for some operators A and B (For basic facts on the
spectral multiplicity of direct sums of operators we recommend the papers
[4], [5] and references therein).

Let X be a Banach space with Schauder basis (en)n≥0. Let (λn)n≥0 ⊂ C
be a bounded sequence of nonzero numbers λn. We set wn := λ0λ1 . . . λn−1,
w0 := 1,

Xi := span (ek : k = i, i+ 1, . . . ) , i = 0, 1, 2, . . . ,

for any two vectors x =
∞∑
n=i

xnen and y =
∞∑
n=i

ynen in Xi (i = 0, 1, 2, . . . ).

Then discrete Duhamel product (sometimes it is also called generalized
Duhamel product, see for instance [3] and references therein, and also Karaev
and Gürdal [6]) is defined by,

(2) x~̃
i
y :=

∞∑
n=i

∞∑
m=i

wn+m−i
wnwm

xnynen+m−i.

It is easy to see that the classical Duhamel product ~ (see formula (1))
corresponds to i = 0 and λn := 1

n+1 , n ≥ 0, in (2). It is also easy to verify

that the product ~̃
i

is commutative and associative.

Let T be the weighted shift operator acting in X by the formula

Ten = λnen+1, n = 0, 1, 2, . . . .

It can be easily shown that all subspaces Xi (i ≥ 0) are closed T -invariant
subspace (i.e., TXi ⊂ Xi, i ≥ 0). Therefore the restricted weighted shift
operators T |Xi, i ≥ 0, are well-defined operators on the subspace Xi, i ≥ 0.

In this paper, we will develop a method of the paper [9] (see the proof of
Theorem 1 there) and investigate the spectral multiplicity of the operators
T |Xi⊕A, i ≥ 0; here ⊕ stands for the direct sum of operators on the direct
sum of Banach spaces. Our results also improve some results in [9] and [3].
Before giving the results of the paper, let us give some necessary definitions,
notations and preliminaries.
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The generalized Borel transform Bw from X onto the space of formal
series over the field of complex numbers C is defined as follows

Bw

( ∞∑
n=0

xnen

)
:=

∞∑
n=0

1

wn
xnen,

where wn = λ0λ1 . . . λn−1, n ≥ 0. The inverse generalized Borel transform
is defined by

B−1
w

( ∞∑
n=0

xnen

)
:=

∞∑
n=0

wnxnen.

Clearly, the classical Borel transform from Hol (D) (the space of all analytic
functions on the unit disc D) onto the space of formal power series C [[Z]]
over the field of complex numbers C corresponds to the case λn = 1

n+1 ,
n ≥ 0.

Recall that the class `pA (wn) , wn ≥ 0, n ≤ 0, p ≥ 1 is defined by

`pA (wn) :=

f ∈ Hol (D) : ‖f‖`pA(wn) :=

( ∞∑
n=0

∣∣∣f̂ (n)
∣∣∣pwp

n

)1/p

< +∞

 ,

where f̂ (n) := f (n)(0)
n! is the nth Taylor coefficient of the analytic function

f (z) =
∞∑
n≥0

f̂ (n) zn on D. Note that:

(a) Every bounded linear operator C on a Banach space X admits the
functional calculus from the class `1A (‖Cn‖). Indeed, we can put

f (C)
def
=

∞∑
n≥0

f̂ (n)Cn for every function f ∈ `1A (‖Cn‖), because in

this case

‖f (C)‖ =

∥∥∥∥∥
∞∑
n=0

f̂ (n)Cn

∥∥∥∥∥ ≤
∞∑
n=0

∣∣∣f̂ (n)
∣∣∣ ‖Cn‖ = ‖f‖`1A(‖Cn‖) ,

for every f ∈ `1A (‖Cn‖).
(b) Every operator C ∈ L (X) (the Banach algebra of all bounded linear

operators on X), satisfying the condition
∞∑
n=0
‖Cn‖q < +∞, admits

the functional calculus from the class

`pA := `pA (D) =

{
f ∈ Hol (D) : ‖f‖p

kpA
=
∞∑
n=0

∣∣∣f̂ (n)
∣∣∣p < +∞

}
,

where 1
p + 1

q = 1, p ≥ 1. Indeed,

‖f (C)‖L(X) =

∥∥∥∥∥
∞∑
n=0

f̂ (n)Cn

∥∥∥∥∥
L(X)

≤
∞∑
n=0

∣∣∣f̂ (n)
∣∣∣ ‖Cn‖L(X)
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≤

( ∞∑
n=0

∣∣∣f̂ (n)
∣∣∣p)1/p( ∞∑

n=0

‖Cn‖qL(X)

)1/q

= ‖f‖`pA M (C, q) ,

where M (C, q) > 0 is a constant.

Let us define also the following (closed) subspace of the space `pA (D) :

`pA,i :=

{ ∞∑
n=0

f̂ (n) zn ∈ `pA : f̂ (k) = 0, k = 0, 1, 2, . . . , i− 1

}
, i = 1, 2, . . . .

2. The results

The following two lemmas can be proved by similar arguments used in
the proofs of Theorem 1 in [9], Theorem 2 of [6] and Theorem 16 in [5], and
therefore we omit their proofs.

Lemma 1. Let X be a Banach space with a Schauder basis (en)n≥0 , x, y be

two elements in Xi = span {en : n = i, i+ 1, . . . } , i ≥ 0. Let Ten = λnen+1,
λn 6= 0, n ≥ 0, be the weighted shift operator with bounded weights sequence
(λn)n≥0 continuously acting in X. Then we have:

x~̃
i
y =

∑
n,m≥i

xnym
wn+m−i
wnwm

en+m−i(3)

= (Bwx) (T |Xi) y = (Bwg) (T |Xi)x,

where T |Xi is a restricted weighted shift operator and

(4) (Bwx) (T |Xi) y
def
=

∞∑
n=i

1

wn
xn (T |Xi)

n y.

Lemma 2. Let X be a Banach space with a Schauder basis (en)n≥0 con-
tinuously embedded in `p for some p ≥ 1. Let Ten = λnen+1, n ≥ 0,
be the weighted shift operator continuously acting in X. We put wn =
λ0λ1 . . . λn−1, w0 := 1. Suppose that for any integer i ≥ 1 there exists
an integer N ≥ i such that∑

n,m≥N

∣∣∣∣wn+m−i
wnwm

∣∣∣∣q < +∞ for p > 1

and ∑
n,m≥N

∣∣∣∣wn+m−i
wnwm

∣∣∣∣ < +∞ for p = 1,

where 1
p+ 1

q = 1. Suppose also that ‖en+m−i‖ ≤Mi ‖en‖ ‖em‖ for all n,m ≥ i
and some Mi > 0. Then we have:
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(a)

(5)

∥∥∥∥x~̃
i
y

∥∥∥∥
Xi

≤ Ci ‖x‖Xi
‖y‖Xi

for all x, y ∈ Xi and some constant Ci > 0, i.e.,

(
Xi, ~̃

i

)
is a unital

Banach algebra with the unit element wiei.
(b) An element x ∈ Xi is ~̃

i
-invertible if and only if xi 6= 0.

The main result of the present paper is the following.

Theorem 1. Let X be a Banach space with a Schauder basis (en)n≥0 which
is embedded in `p for some integer p ≥ 1. Let T, Ten = λnen+1, n ≥ 0, be
the weighted shift operator with bounded weight sequence (λn)n≥0, such that
T is continuous in X. We put wn := λ0λn1 . . . λn−1, w0 := 1. Suppose that
for any integer i ≥ 1 there exists an integer N ≥ i such that

(6)
∑

n,m≥N

∣∣∣∣wn+m−i
wnwm

∣∣∣∣q < +∞ for p > 1

and

(7)
∑

n,m≥N

∣∣∣∣wn+m−i
wnwm

∣∣∣∣ < +∞ for p = 1,

where 1
p+ 1

q = 1. Suppose also that ‖en+m−i‖ ≤Mi ‖en‖ ‖em‖ for all n,m ≥ i
and some Mi > 0. Let Q : Y → Y be an operator on a Banach space Y such

that
∞∑
k=1

(
‖Qk‖
|wk|

)q

< +∞. Then

µ(T |Xi ⊕Q) ≤ µ(T |Xi) + µ(Q) = 1 + µ(Q).

Proof. First, note that the restricted operator T |Xi is cyclic for every i ≥ 1,
and therefore µ(T |Xi) = 1 for every i ≥ 1. On the other hand, since

1 + µ(Q) ≥ µ(T |Xi ⊕Q) ≥ max {1, µ(Q)} ,
it is clear that if µ(Q) = +∞, then µ(T |Xi ⊕ Q) = 1 + µ(Q). So, we
will assume that µ(Q) = n < +∞. For the proof, suppose in contrary that
µ(T |Xi⊕Q) 6= n+1, that is µ(T |Xi⊕Q) < n+1 or µ(T |Xi⊕Q) = µ(Q) = n.
Then by the definition of the spectral multiplicity there exists n-dimensional
cyclic subspace for the operator T |Xi ⊕Q. Let{

x(1) ⊕ y(1), x(2) ⊕ y(2), . . . , x(n) ⊕ y(n)
}

be a cyclic tuple of vectors for the operator T |Xi ⊕Q. Then{
x(1), x(2), . . . , x(n)

}
is a cyclic tuple for the operator T |Xi.
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By considering Lemma 2, it follows from the conditions (6), (7) that(
Xi, ~̃

i

)
is a Banach algebra. Consequently, for every x ∈ Xi the ”discrete

Duhamel operator” Dx, Dxy := x~̃
i
y, y ∈ Xi, is continuous in Xi and ,

‖Dx‖ ≤ Ci ‖x‖Xi
(see inequality (5)). On the other hand, formula (2) shows

that

(8) (T |Xi)
m y = wi+mei+m~̃

i
y, m ≥ 0,

and therefore

span {(T |Xi)
m y : m ≥ 0} = closDy span {wi+mei+m : m ≥ 0} ,

which implies that y ∈ Cyc (T |Xi) if and only if DyXi = Xi. It is not

difficult to prove that DyXi = Xi if and only if yi 6= 0, that is y is an

invertible element of the Banach algebra

(
Xi, ~̃

i

)
, which is equivalent to the

invertibility of the corresponding discrete Duhamel operator Dy. Thus, the

cyclicity of the tuple
{
x(1), x(2), . . . , x(n)

}
implies that there exists a number

i0 ∈ {1, . . . , n} such that x
(i0)
i 6= 0. We assume without loss of generality that

i0 = 1, that is x
(1)
i 6= 0. Under this condition, as already mentioned above,

x(1) is invertible in

(
Xi, ~̃

i

)
(see the assertion (b) in Lemma 2). Therefore,

there exists a unique element z(1) ∈
(
Xi, ~̃

i

)
such that z(1)~̃

i
x(1) = wiei.

Since

(
z(1)~̃

i
x(1)

)
i

= z
(1)
i x

(1)
i , it follows that z

(1)
i 6= 0. Let us consider the

following matrix:

M :=



z(1) 0 0 . . . 0

−x(2)~̃
i
z(1) wiei 0 . . . 0

−x(3)~̃
i
z(1) 0 wiei . . . 0

...
...

...
. . .

...

−x(n)~̃
i
z(1) 0 0 . . . wiei


.

Then, by using formulas (3) and (4) in Lemma 1 and formula (8), we have:

(BwM) (T |Xi)


x(1)

x(2)

x(3)

...

x(n)


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=



(
Bwz

(1)
)

(T |Xi) 0 0 . . . 0(
Bw

(
−x(2)~̃

i
z(1)

))
(T |Xi) IXi 0 . . . 0(

Bw

(
−x(3)~̃

i
z(1)

))
(T |Xi) 0 IXi . . . 0

...
...

...
. . .

...(
Bw

(
−x(n)~̃

i
z(1)

))
(T |Xi) 0 0 . . . IXi


.


x(1)

x(2)

x(3)

...

x(n)



=



(
Bwz

(1)
)

(T |Xi)x
(1)(

Bw

(
−x(2)~̃

i
z(1)

))
(T |Xi)x

(1) + x(2)(
Bw

(
−x(3)~̃

i
z(1)

))
(T |Xi)x

(1) + x(3)

...(
Bw

(
−x(n)~̃

i
z(1)

))
(T |Xi)x

(1) + x(n)



=



x(1)~̃
i
z(1)

x(1)~̃
i

(
−x(2)~̃

i
z(1)

)
+ x(2)

x(1)~̃
i

(
−x(3)~̃

i
z(1)

)
+ x(3)

...

x(1)~̃
i

(
−x(n)~̃

i
z(1)

)
+ x(n)



=



wiei

−x(2)~̃
i

(
x(1)~̃

i
z(1)

)
+ x(2)

−x(3)~̃
i

(
x(1)~̃

i
z(1)

)
+ x(3)

...

−x(n)~̃
i

(
x(1)~̃

i
z(1)

)
+ x(n)



=



wiei
−x(2)~̃

i
wiei + x(2)

−x(3)~̃
i
wiei + x(3)

...

−x(n)~̃
i
wiei + x(n)


=


wiei

−x(2) + x(2)

−x(3) + x(3)

...

−x(n) + x(n)

 =


wiei

0
0
...
0

 .
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So

(BwM) (T |Xi)


x(1)

x(2)

x(3)

...

x(n)

 =


wiei

0
0
...
0

 .

Since

BwM =



Bwz
(1) 0 0 . . . 0

Bw

(
−x(2)~̃

i
z(1)

)
ei 0 . . . 0

Bw

(
−x(3)~̃

i
z(1)

)
0 ei . . . 0

...
...

...
. . .

...

Bw

(
−x(n)~̃

i
z(1)

)
0 0 . . . ei


,

we have

~̃
i
− det (BwM) = Bwz

(1)~̃
i
ei~̃

i
. . . ~̃

i
ei =

1

wn−1
i

Bwz
(1),

and hence (
~̃
i
− det (BwM)

)
i

=
1

wn−1
i

1

wi
z

(1)
i =

1

wn
i

z(1) 6= 0

(because z(1) is ~̃
i
-invertible element; see above). This implies that the

operators (BwM) (T |Xi) and (BwM) (Q) are invertible in the spaces

Xn := X ∗X ∗ · · · ∗X︸ ︷︷ ︸
n

and

Y n := Y ∗ Y ∗ · · · ∗ Y︸ ︷︷ ︸
n

,

respectively. Therefore, by Karaev’s result (about this result see in reference
of [5]), we have that{

((BwM) (T |Xi)x)j ⊕ ((BwM) (Q) y)j : j = 1, 2, . . . , n
}

is a cyclic tuple for the operator T |Xi⊕Q. So, we have a new cyclic tuple of
the form {wiei ⊕ ȳ1, 0⊕ ȳ2, . . . , 0⊕ ȳn}, and therefore for every y ∈ Y there
exists a family of vector-polynomials {Pm,j}nj=1 such that

(9) lim
m→∞

Pm,1 (T |Xi)wiei = 0 in Xi

and

(10) lim
m→∞

n∑
j=i

Pm,j (Q) ȳj = y in Y.



840 MUBARIZ T. KARAEV, SUNA SALTAN AND TEVFIK KUNT

We set

qm,1 := B−1
w Pm,1 =

∑
k≥0

wk (Pm,1)k ek.

It is clear that Pm,1 (T |Xi)wiei =
∑
k≥0

wk (Pm,1)k ek = qm,1, and by consid-

ering this in (9) we obtain that lim
m→∞

qm,1 = 0 in X. Now by considering the

condition
∞∑
k=i

(∥∥Qk
∥∥

|wk|

)q

=: C < +∞,

we have

‖Pm,1 (Q)‖L(Y ) =

∥∥∥∥∥∥
∑
k≥0

(Pm,1)kQ
k

∥∥∥∥∥∥
L(Y )

≤
∑
k≥0

∣∣(Pm,1)k
∣∣ ∥∥∥Qk

∥∥∥
L(Y )

=
∑
k≥0

|wk|
∣∣(Pm,1)k

∣∣ 1

|wk|

∥∥∥Qk
∥∥∥
L(Y )

≤

∑
k≥0

∣∣wk (Pm,1)k
∣∣p 1

p
∑

k≥0

(∥∥Qk
∥∥
L(Y )

|wk|

)q
 1

q

= C ‖qm,1‖`p .

Since X ⊂ `p, we have ‖qm,1‖`p ≤ C̃ ‖qm,1‖X and thus

‖qm,1 (Q)‖L(Y ) ≤ CC̃ ‖qm,1‖X .

On the other hand, since qm,1 → 0 (m→∞) in X, we obtain from this
inequality that qm,1 (Q) ⇒ 0, and therefore lim

m→∞
qm,1 (Q) ȳ1 = 0. Hence, it

follows from (10) that

lim
m→∞

∑
j=2

Pm,j (Q) ȳj = y.

Since y ∈ Y is arbitrary, this equality means that {ȳ2, ȳ3, . . . , ȳn} ∈ Cyc (Q),
which implies that µ(Q) ≤ n−1 (because card {ȳ2, ȳ3, . . . , ȳn} = n−1). But,
this contradicts to µ(Q) = n. The theorem is proven. �

The following is an immediate corollary of Theorem 1.

Corollary 1. Let V , V f (z) =
z∫
0

f (t) dt, be a Volterra integration operator

on the space `pA (D), 1 ≤ p < ∞, and let Q be a bounded operator on a
separable Banach space Y satisfying

∞∑
k=1

(
k!
∥∥∥Qk

∥∥∥)q < +∞, for p > 1,
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and ∥∥∥Qk
∥∥∥ = O

(
1

k!

)
, for p = 1;

here 1
p + 1

q = 1. Then µ(V ⊕Q) = 1 + µ (Q).

For the proof, it is sufficient to put in Theorem 1, X = `pA, λn = 1
n+1

(n ≥ 0), en = zn (n ≥ 0) , i = 0, and to modify the proof of the theorem in
case p = 1.

Let S be the shift operator on `pA = `pA (D) defined by Sf (z) = zf (z).
Our next result calculates µ(S + C) for some C ∈ L (X).

Theorem 2. Let S be a shift operator on `pA, 1 < p < ∞, and C be a
cyclic bounded linear operator on a separable Banach space X such that
∞∑
k=0

∥∥Ck
∥∥q < +∞, where 1

p + 1
q = 1. Then µ(S ⊕ C) = 2.

Proof. As we have proved in Section 1,

(11) ‖f (C)‖L(X) ≤M (C, q) ‖f‖`pA

for all f ∈ `pA, whereM (C, q) :=

( ∞∑
k=0

∥∥Ck
∥∥q) 1

q

, which means that C admits

the functional calculus in the class `pA. Since µ(S) = 1 and µ(C) = 1, it
is clear that 1 ≤ µ(S ⊕ C) ≤ µ(S) + µ(C) = 2. Suppose in contrary that
µ(S ⊕C) = 1. Then the operator S ⊕C has a cyclic vector f ⊕ x ∈ `pA⊕X,
which implies that there exists polynomials pn such that

lim
n→∞

pn (S ⊕ C) (f ⊕ x) = 1 + 0 in `pA ⊕X,

or
lim
n→∞

(pn (S)⊕ pn (C)) (f ⊕ x) = 1⊕ 0.

Whence

(12) lim
n→∞

pn (z) f (z) = 1 in `pA

and

(13) lim
n→∞

pn (C)x = 0 in X.

It is obvious that pnf − 1 ∈ `pA. Let pn (z) f (z) − 1 =
∞∑
k=0

an,kz
k. Then by

considering inequality (11) and (12), we have

‖(pnf − 1) (C)‖L(X) ≤M (C, q) ‖pnf − 1‖`pA → 0 (as n→∞) ,

which means that pn (C) f (C)⇒ IX (as n→∞). In particular,

lim
n→∞

pn (C) f (C)x = x in X.

On the other hand, it follows from (13) that

0 = lim
n→∞

f (C) pn (C)x = lim
n→∞

pn (C) f (C)x = x,
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or x = 0, which is impossible, because x is a cyclic vector of the operator
C. This proves the theorem. �

Let us denote

`p,nA :=
{
f ∈ `pA (D) : f (n) ∈ `pA

}
=

{
f ∈ `pA (D) : f (z) =

∞∑
k=0

f̂ (k) zk and

∞∑
k=n

(
k (k − 1) . . . (k − n+ 1)

∣∣∣f̂ (k)
∣∣∣)p < +∞

}
.

Theorem 3. Let S be a shift operator on the space `p,nA , where p ≥ 1, and
C be a cyclic operator on the separable Banach space X satisfying

(14)

∞∑
k=n

( ∥∥Ck
∥∥

k (k − 1) . . . (k − n+ 1)

)q

< +∞,

where 1
p + 1

q = 1. Then µ(S ⊕ C) = 2.

Proof. By using (14), we have for every f ∈ `p,nA that

‖f (C)‖ =

∥∥∥∥∥
∞∑
k=0

f̂ (k)Ck

∥∥∥∥∥ ≤
∞∑
k=0

∣∣∣f̂ (k)
∣∣∣ ∥∥∥Ck

∥∥∥
=
∣∣∣f̂ (0)

∣∣∣+
∣∣∣f̂ (1)

∣∣∣ ‖C‖+ · · ·+
∣∣∣f̂ (n− 1)

∣∣∣ ∥∥Cn−1
∥∥+

+
∞∑
k=n

k (k − 1) . . . (k − n+ 1)
∣∣∣f̂ (k)

∣∣∣ ∥∥Ck
∥∥

k (k − 1) . . . (k − n+ 1)

≤M1 (C, n) ‖f‖`p,nA
+

( ∞∑
k=n

(
k (k − 1) . . . (k − n+ 1)

∣∣∣f̂ (k)
∣∣∣)p) 1

p

·

·

( ∞∑
k=n

( ∥∥Ck
∥∥

k (k − 1) . . . (k − n+ 1)

)q) 1
q

= M2 (C, n) ‖f‖`p,nA
,

where M1 (C, n), M2 (C, n) > 0 are some numbers. Thus

(15) ‖f (C)‖ ≤M2 (C, n) ‖f‖`p,nA

for all f ∈ `p,nA . Note that µ(S) = 1. Now in order to complete the proof of
the theorem, it remains only to use inequality (15) and the arguments for
the proof of Theorem 2. �
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[10] Saltan Suna; Özel, Yasemin. Maximal ideal space of some Banach algebras and
related problems. Banach J. Math. Anal. 8 (2014), no. 2, 16–29. MR3189535, Zbl
06285259, doi: 10.15352/bjma/1396640048.

[11] Wigley, Neil M. The Duhamel product of analytic functions. Duke Math. J. 41
(1974), 211–217. MR0335830 (49 #608), Zbl 0283.30036, doi: 10.1215/S0012-7094-
74-04123-4.

[12] Wigley, Neil M. A Banach algebra structure for Hp. Canad. Math. Bull. 18 (1975),
no. 4, 597–603. MR0397413 (53 #1272), Zbl 0324.46051, doi: 10.4153/CMB-1975-106-
4

(Mubariz T. Karaev) Department of Mathematics, College of Science, King Saud
University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
mgarayev@ksu.edu.sa

(Suna Saltan) Suleyman Demirel University, Department of Mathematics, 32260,
Isparta, Turkey
sunasaltan@sdu.edu.tr

(Tevfik Kunt) Suleyman Demirel University, Department of Mathematics, 32260,
Isparta, Turkey
tevfik.kunt@gmail.com

This paper is available via http://nyjm.albany.edu/j/2014/20-42.html.

http://www.ams.org/mathscinet-getitem?mr=0027954
http://zbmath.org/?q=an:0033.37701
http://dx.doi.org/10.1007/BF02395019
http://www.ams.org/mathscinet-getitem?mr=0675952
http://zbmath.org/?q=an:0496.47001
http://dx.doi.org/10.1007/978-1-4615-9976-0
http://www.ams.org/mathscinet-getitem?mr=2164560
http://zbmath.org/?q=an:1224.46100
http://dx.doi.org/10.1007/s11202-005-0046-6
http://www.ams.org/mathscinet-getitem?mr=2195241
http://zbmath.org/?q=an:1100.47030
http://dx.doi.org/10.4064/cm104-1-7
http://www.ams.org/mathscinet-getitem?mr=2863810
http://zbmath.org/?q=an:1261.47047
http://dx.doi.org/10.1007/s10474-011-0128-9
http://www.ams.org/mathscinet-getitem?mr=2798803
http://zbmath.org/?q=an:1283.47040
http://dx.doi.org/10.7153/oam-05-11
http://www.ams.org/mathscinet-getitem?mr=2832675
http://zbmath.org/?q=an:1232.46049
http://zbmath.org/?q=an:1232.46049
http://dx.doi.org/10.1002/mana.200910129
http://www.ams.org/mathscinet-getitem?mr=1157815
http://zbmath.org/?q=an:0867.46001
http://www.ams.org/mathscinet-getitem?mr=2821381
http://zbmath.org/?q=an:1248.47012
http://dx.doi.org/10.1080/17476933.2010.487207
http://www.ams.org/mathscinet-getitem?mr=3189535
http://zbmath.org/?q=an:06285259
http://zbmath.org/?q=an:06285259
http://dx.doi.org/10.15352/bjma/1396640048
http://www.ams.org/mathscinet-getitem?mr=0335830
http://zbmath.org/?q=an:0283.30036
http://dx.doi.org/10.1215/S0012-7094-74-04123-4
http://dx.doi.org/10.1215/S0012-7094-74-04123-4
http://www.ams.org/mathscinet-getitem?mr=0397413
http://zbmath.org/?q=an:0324.46051
http://dx.doi.org/10.4153/CMB-1975-106-4
http://dx.doi.org/10.4153/CMB-1975-106-4
mailto:mgarayev@ksu.edu.sa
mailto:sunasaltan@sdu.edu.tr
mailto:tevfik.kunt@gmail.com
http://nyjm.albany.edu/j/2014/20-42.html

	1. Introduction and preliminaries
	2. The results
	References

