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On the AJ conjecture for cables of the
figure eight knot

Anh T. Tran

Abstract. The AJ conjecture relates the A-polynomial and the colored
Jones polynomial of a knot in the 3-sphere. It has been verified for
some classes of knots, including all torus knots, most double twist knots,
(−2, 3, 6n ± 1)-pretzel knots, and most cabled knots over torus knots.
In this paper we study the AJ conjecture for (r, 2)-cables of a knot,
where r is an odd integer. In particular, we show that the (r, 2)-cable
of the figure eight knot satisfies the AJ conjecture if r is an odd integer
satisfying |r| ≥ 9.
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1. Introduction

1.1. The colored Jones function. For a knot K in the 3-sphere and a
positive integer n, let JK(n) ∈ Z[t±1] denote the n-colored Jones polyno-
mial of K with framing zero. The polynomial JK(n) is the quantum link
invariant, as defined by Reshetikhin and Turaev [RT], associated to the Lie
algebra sl2(C), with the color n standing for the irreducible sl2(C)-module
Vn of dimension n. Here we use the functorial normalization, i.e., the one
for which the colored Jones polynomial of the unknot U is

JU (n) = [n] :=
t2n − t−2n

t2 − t−2
.

For example, the colored Jones polynomial of the figure eight knot E is

JE(n) = [n]

n−1∑
k=0

k∏
l=1

(t4n + t−4n − t4l − t−4l).

It is known that JK(1) = 1 and JK(2) is the usual Jones polynomial [Jo].
The colored Jones polynomials of higher colors are more or less the usual
Jones polynomials of parallels of the knot. The color n can be assumed to
take negative integer values by setting JK(−n) = −JK(n). In particular,
we have JK(0) = 0.

The colored Jones polynomials are not random. For a fixed knot K,
Garoufalidis and Le [GaL] proved that the colored Jones function

JK : Z→ Z[t±1]

satisfies a nontrivial linear recurrence relation of the form

d∑
k=0

ak(t, t
2n)JK(n+ k) = 0,

where ak(u, v) ∈ C[u, v] are polynomials with greatest common divisor 1.

1.2. Recurrence relations and q-holonomicity. LetR := C[t±1]. Con-
sider a discrete function f : Z → R, and define the linear operators L and
M acting on such functions by

(Lf)(n) := f(n+ 1), (Mf)(n) := t2nf(n).

It is easy to see that LM = t2ML. The inverse operators L−1,M−1 are
well-defined. We can consider L,M as elements of the quantum torus

T := R〈L±1,M±1〉/(LM − t2ML),

which is a noncommutative ring.
The recurrence ideal of the discrete function f is the left ideal Af in T

that annihilates f :

Af := {P ∈ T | Pf = 0}.
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We say that f is q-holonomic, or f satisfies a nontrivial linear recurrence
relation, if Af 6= 0. For example, for a fixed knot K the colored Jones
function JK is q-holonomic.

1.3. The recurrence polynomial of a q-holonomic function. Suppose
that f : Z→ R is a q-holonomic function. Then Af is a nonzero left ideal of
T . The ring T is not a principal left ideal domain, i.e., not every left ideal of
T is generated by one element. Garoufalidis [Ga] noticed that by adding all

inverses of polynomials in t,M to T we get a principal left ideal domain T̃ ,
and hence from the ideal AK we can define a polynomial invariant. Formally,
we can proceed as follows. LetR(M) be the fractional field of the polynomial

ring R[M ]. Let T̃ be the set of all Laurent polynomials in the variable L
with coefficients in R(M):

T̃ =

{∑
k∈Z

ak(M)Lk | ak(M) ∈ R(M), ak = 0 almost always

}
,

and define the product in T̃ by a(M)Lk · b(M)Ll = a(M)b(t2kM)Lk+l.

Then it is known that every left ideal in T̃ is principal, and T embeds as
a subring of T̃ . The extension Ãf := T̃ Af of Af in T̃ is then generated by
a single polynomial

αf (t,M,L) =
d∑

k=0

αf,k(t,M)Lk,

where the degree in L is assumed to be minimal and all the coefficients
αf,k(t,M) ∈ C[t±1,M ] are assumed to be co-prime. The polynomial αf is
defined up to a polynomial in C[t±1,M ]. We call αf the recurrence polyno-
mial of the discrete function f .

When f is the colored Jones function JK of a knot K, we let AK and
αK denote the recurrence ideal AJK and the recurrence polynomial αJK of
JK respectively. We also say that AK and αK are the recurrence ideal and
the recurrence polynomial of the knot K. Since JK(n) ∈ Z[t±1], we can

assume that αK(t,M,L) =
∑d

k=0 αK,k(t,M)Lk where all the coefficients
αK,k ∈ Z[t±1,M ] are co-prime.

1.4. The AJ conjecture. The colored Jones polynomials are powerful in-
variants of knots, but little is known about their relationship with classical
topology invariants like the fundamental group. Inspired by the theory of
noncommutative A-ideals of Frohman, Gelca and Lofaro [FGL, Ge] and
the theory of q-holonomicity of quantum invariants of Garoufalidis and Le
[GaL], Garoufalidis [Ga] formulated the following conjecture that relates the
A-polynomial and the colored Jones polynomial of a knot in the 3-sphere.

Conjecture 1 (AJ conjecture). For every knot K, αK |t=−1 is equal to the
A-polynomial, up to a factor depending on M only.
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The A-polynomial of a knot was introduced by Cooper et al. [CoCGLS];
it describes the SL2(C)-character variety of the knot complement as viewed
from the boundary torus. The A-polynomial carries important information
about the geometry and topology of the knot. For example, it distinguishes
the unknot from other knots [DG, BZ], and the sides of its Newton poly-
gon give rise to incompressible surfaces in the knot complement [CoCGLS].
Here in the definition of the A-polynomial, we also allow the factor L − 1
coming from the abelian component of the character variety of the knot
group. Hence the A-polynomial in this paper is equal to L − 1 times the
A-polynomial defined in [CoCGLS].

The AJ conjecture has been verified for the trefoil knot, the figure eight
knot (by Garoufalidis [Ga]), all torus knots (by Hikami [Hi], Tran [Tr13]),
some classes of two-bridge knots and pretzel knots including most dou-
ble twist knots and (−2, 3, 6n ± 1)-pretzel knots (by Le [Le], Le and Tran
[LeT12]), the knot 74 (by Garoufalidis and Koutschan [GaK]), and most
cabled knots over torus knots (by Ruppe and Zhang [RZ]).

Note that there is a stronger version of the AJ conjecture, formulated by
Sikora [Si], which relates the recurrence ideal and the A-ideal of a knot. The
A-ideal determines the A-polynomial of a knot. This conjecture has been
verified for the trefoil knot (by Sikora [Si]), all torus knots [Tr13] and most
cabled knots over torus knots [Tr14].

1.5. Main result. Suppose K is a knot with framing zero, and r, s are
two integers with c their greatest common divisor. The (r, s)-cable K(r,s)

of K is the link consisting of c parallel copies of the ( rc ,
s
c )-curve on the

torus boundary of a tubular neighborhood of K. Here an ( rc ,
s
c )-curve is a

curve that is homologically equal to r
c times the meridian and s

c times the

longitude on the torus boundary. The cable K(r,s) inherits an orientation
from K, and we assume that each component of K(r,s) has framing zero.
Note that if r and s are co-prime, then K(r,s) is again a knot.

In [LeT10], we studied the volume conjecture [Ka, MuM] for (r, 2)-cables
of a knot and especially (r, 2)-cables of the figure eight knot, where r is an
integer. In this paper we study the AJ conjecture for (r, 2)-cables of a knot,
where r is an odd integer. In particular, we will show the following.

Theorem 1. The (r, 2)-cable of the figure eight knot satisfies the AJ con-
jecture if r is an odd integer satisfying |r| ≥ 9.

1.6. Plan of the paper. In Section 2 we prove some properties of the
colored Jones polynomial of cables of a knot. In Section 3 we study the AJ
conjecture for (r, 2)-cables of the figure eight knot and prove Theorem 1.

1.7. Acknowledgments. I would like to thank Thang T.Q. Le and Xingru
Zhang for helpful discussions. I would also like to thank the referee for
comments and suggestions. Dennis Ruppe [Ru] has independently obtained
a similar result to Theorem 1.
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2. The colored Jones polynomial of cables of a knot

Recall from the introduction that for each positive integer n, there is a
unique irreducible sl2(C)-module Vn of dimension n.

From now on we assume that r is an odd integer. Then the (r, 2)-cable

K(r,2) of a knot K is a knot. The calculation of the colored Jones polynomial
of K(r,2) is standard: we decompose Vn ⊗ Vn into irreducible components

Vn ⊗ Vn =

n⊕
k=1

V2k−1.

Since the R-matrix commutes with the actions of the quantized algebra, it
acts on each component V2k−1 as a scalar µk times the identity. The value
of µk is well-known:

µk = (−1)n−kt−2(n
2−1)t2k(k−1).

Hence from the theory of quantum invariants (see, e.g., [Oh]), we have

JK(r,2)(n) =
n∑
k=1

µrkJK(2k − 1)(1)

= t−2r(n
2−1)

n∑
k=1

(−1)r(n−k)t2rk(k−1)JK(2k − 1).

Note that t in this paper is equal to q1/4 in [LeT10].

Lemma 2.1. We have

JK(r,2)(n+ 1) = −t−2r(2n+1)JK(r,2)(n) + t−2rnJK(2n+ 1).

Proof. From Equation (1) we have

JK(r,2)(n+ 1)

= t−2r(n
2+2n)

n+1∑
k=1

(−1)r(n+1−k)t2rk(k−1)JK(2k − 1)

= t−2rnJK(2n+ 1) + (−1)rt−2r(n
2+2n)

n∑
k=1

(−1)r(n−k)t2rk(k−1)JK(2k − 1)

= t−2rnJK(2n+ 1) + (−1)rt−2r(2n+1)JK(r,2)(n).

The lemma follows, since (−1)r = −1. �

Let JK(n) := JK(2n + 1). Note that q-holonomicity is preserved under
taking subsequences of the form kn + l, see, e.g., [KK]. Since JK is q-
holonomic, we have the following.

Proposition 2.2. For a fixed knot K, the function JK is q-holonomic.

Note that JK(n− 1) + JK(−n) = 0. Recall that AJK and αJK denote the
recurrence ideal and the recurrence polynomial of JK respectively.
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Lemma 2.3. If P (t,M,L) ∈ AJK then P (t, (t2M)−1, L−1) ∈ AJK .

Proof. Suppose that P (t,M,L) =
∑
λk,lM

kLl, where λk,l ∈ R = C[t±1],
annihilates JK . Since JK(n− 1) + JK(−n) = 0 for all integers n, we have

0 = PJK(−n− 1)

=
∑

λk,l t
−2(n+1)kJK(−n− 1 + l)

= −
∑

λk,l t
−2(n+1)kJK(n− l)

= −
∑

λk,l(t
2M)−kL−lJK(n).

Hence P (t, (t2M)−1, L−1)JK = 0. �

For a Laurent polynomial f(t) ∈ R, let d+[f ] and d−[f ] be respectively the
maximal and minimal degree of t in f . The difference br[f ] := d+[f ]−d−[f ]
is called the breadth of f .

Lemma 2.4. Suppose K is a nontrivial alternating knot. Then br[JK(n)]
is a quadratic polynomial in n.

Proof. Since K is a nontrivial alternating knot, [Le, Proposition 2.1] implies
that br[JK(n)] is a quadratic polynomial in n. Since

br[JK(n)] = br[JK(2n+ 1)],

the lemma follows. �

Proposition 2.5. Suppose K is a nontrivial alternating knot. Then the
recurrence polynomial αJK of JK has L-degree > 1.

Proof. Suppose that αJK (t,M,L) = P1(t,M)L+ P0(t,M), where P1, P0 ∈
Z[t±1,M ] are co-prime. Note that the polynomial

αJK (t, (t2M)−1, L−1) = P1(t, t
−2M−1)L−1 + P0(t, t

−2M−1)

is in the recurrence ideal AJK of JK , by Lemma 2.3. Since αJK is the

generator of ÃJK = T̃ AJK in T̃ , there exists γ(t,M) ∈ R(M) such that

γ(t,M)L
(
P1(t, t

−2M−1)L−1 + P0(t, t
−2M−1)

)
= P1(t,M)L+ P0(t,M).

This is equivalent to

P0(t,M) = γ(t,M)P1(t, t
−4M−1),

P1(t,M) = γ(t,M)P0(t, t
−4M−1).

Since P0 and P1 are coprime in Z[t±1,M ], it follows from the above equations
that γ(t,M) is a unit element in Z[t±1,M±1], i.e., γ(t,M) = ±tkM l. Hence
P0(t,M) = ±tkM lP1(t, t

−4M−1).
The equation αJKJK = 0 can now be written as

JK(n+ 1) = ± t
2nl+kP1(t, t

−4−2n)

P1(t, t2n)
JK(n).
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This implies that

br[JK(n+ 1)]− br[JK(n)] = br(t2nl+kP1(t, t
−4−2n))− br(P1(t, t

2n).

It is easy to see that for n big enough, br(t2nl+kP1(t, t
−4−2n))−br(P1(t, t

2n))
is a constant independent of n. Hence the breadth of JK(n), for n big enough,
is a linear function on n. This contradicts Lemma 2.4, since K is a nontrivial
alternating knot. �

Let ε be the map reducing t = −1.

Proposition 2.6. For any P ∈ AJK , ε(P ) is divisible by L− 1.

Proof. The proof of Proposition 2.6 is similar to that of [Le, Proposition
2.3], which makes use of the Melvin–Morton conjecture proved by Bar-Natan
and Garoufalidis [BG].

It is known that for any knot K (with framing zero), JK(n)/[n] is a
Laurent polynomial in t4. Moreover, the Melvin–Morton conjecture [MeM]
says that for any z ∈ C∗ we have

lim
n→∞

(
JK(n)

[n]
|t2=z1/n

)
=

1

∆K(z)
,

where ∆K(z) is the Alexander polynomial of K.
For l ∈ Z and z ∈ C \ {0,±1}, we let

ĴK(l, z) := lim
n→∞

(
JK(2n+ 2l + 1)

[2n+ 2l + 1]
|t2=z1/(2n+1)

)
= lim

n→∞

(
t2 − t−2

z − z−1
JK(n+ l) |t2=z1/(2n+1)

)
.

Then

ĴK(0, z) = lim
n→∞

(
JK(2n+ 1)

[2n+ 1]
|t2=z1/(2n+1)

)
=

1

∆K(z)
.

In particular, we have ĴK(0, z) 6= 0.

Claim 1. For any l ∈ Z, we have ĴK(l, z) = ĴK(0, z).

Proof of Claim 1. For any knot K, by [MeM] we have

JK(n)

[n]
|t4=eh =

∞∑
k=0

Pk(n)hk,

where Pk(n) is a polynomial in n of degree at most k:

Pk(n) = Pk,kn
k + Pk,k−1n

k−1 + · · ·+ Pk,1n+ Pk,0.
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Then

ĴK(l, z) = lim
n→∞

(
JK(2n+ 2l + 1)

[2n+ 2l + 1]
|t2=z1/(2n+1)

)

= lim
n→∞

 ∞∑
k=0

k∑
j=0

Pk,j (2n+ 2l + 1)jhk |h= 2 ln z
2n+1

 .

We have

lim
n→∞

(2n+ 2l + 1)j
(

2 ln z

2n+ 1

)k
=

{
0 if j < k

(2 ln z)k if j = k,

which is independent of l. Claim 1 follows. �

We now complete the proof of Proposition 2.6. Suppose P =
∑
λk,lM

kLl,

where λk,l ∈ R. Then
∑
λk,l t

2knJK(n+ l) = 0 for all integers n.
For z ∈ C \ {0,±1}, by Claim 1 we have

0 = lim
n→∞

(∑
λk,l t

2kn t
2 − t−2

z − z−1
JK(n+ l) |t2=z1/(2n+1)

)
=
∑

(λk,l |t2=1)z
k/2 ĴK(l, z)

= (P |t2=1,M=z1/2,L=1)ĴK(0, z).

Since ĴK(0, z) 6= 0, we have P |t2=1,M=z1/2,L=1= 0 for all z ∈ C \ {0,±1}.
This implies that P |t2=1 is divisible by L− 1. Proposition 2.6 follows. �

Proposition 2.7. ε(αJK ) has L-degree 1 if and only if αJK has L-degree 1.

Proof. The backward direction is obvious since ε(αJK ) is always divisible
by L− 1, by Proposition 2.6. Suppose that ε(αJK ) = g(M)(L− 1) for some
g(M) ∈ C[M±1] \ {0}. Then

(2) αJK = g(M)(L− 1) + (1 + t)
d∑

k=0

ak(M)Lk,

where ak(M) ∈ R[M±1] and d is the L-degree of αJK .
Since αJK (t, (t2M)−1, L−1) is also in the recurrence ideal of JK ,

αJK (t,M,L) = h(M)αJK (t, (t2M)−1, L−1)Ld

for some h(M) ∈ R(M). Equation (2) then becomes

g(M)(L− 1) + (1 + t)
d∑

k=0

ak(M)Lk

= h(M)g(t−2M−1)(L−1 − 1)Ld + (1 + t)

d∑
k=0

h(M)ak(t
−2M−1)Ld−k.
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Suppose that d > 1. By comparing the coefficients of L0 in both sides of
the above equation, we get −g(M)+(1+t)a0(M) = (1+t)h(M)ad(t

−2M−1).
This is equivalent to

(3) g(M) = (1 + t)
(
a0(M)− h(M)ad(t

−2M−1)
)
.

Since g(M) is a Laurent polynomial in M with coefficients in C, Equation
(3) implies that g(M) = 0. This is a contradiction. Hence d = 1. �

3. Proof of Theorem 1

Let E be the figure eight knot. By [Ha] we have

(4) JE(n) = [n]
n−1∑
k=0

k∏
l=1

(t4n + t−4n − t4l − t−4l).

Recall that E(r,2) is the (r, 2)-cable of E and JE(n) = JE(2n + 1). By
Lemma 2.1, we have

(5) M r(L+ t−2rM−2r)JE(r,2) = JE .

For nonzero f, g ∈ C[M±1, L], we write f
M
= g if the quotient f/g does

not depend on L. Proving Theorem 1 is then equivalent to proving that

ε(αE(r,2))
M
= AE(r,2) , where

AE(r,2)

= (L− 1)
{
L2 − ((M8 +M−8 −M4 −M−4 − 2)2 − 2)L+ 1

}
(L+M−2r)

is the A-polynomial of E(r,2) cf. [NZ].

The proof of ε(αE(r,2))
M
= AE(r,2) is divided into 4 steps.

3.1. Degree formulas for the colored Jones polynomials. The fol-
lowing lemma will be used later in the proof of Theorem 1.

Lemma 3.1. For n > 0 we have

d+[JE(n)] = 4n2 − 2n− 2,

d−[JE(n)] = −4n2 + 2n+ 2,

d+[JE(r,2)(n)] =

{
16n2 − (2r + 20)n+ 2r + 4 if r ≥ −7

−2rn2 + 2r if r ≤ −9,

d−[JE(r,2)(n)] =

{
−2rn2 + 2r if r ≥ 9

−16n2 − (2r − 20)n+ 2r − 4 if r ≤ 7.

Proof. The first two formulas follow directly from Equation (4). We now
prove the formula for d+[JE(r,2)(n)]. The one for d−[JE(r,2)(n)] is proved
similarly.
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From Equation (1), we have

d+[JE(r,2)(n)] = −2r(n2 − 1) + max
1≤k≤n

{2rk(k − 1) + d+[JE(2k − 1)]}

= −2r(n2 − 1) + max
1≤k≤n

{(2r + 16)k2 − (2r + 20)k + 4}.

Let f(k) := (2r + 16)k2 − (2r + 20)k + 4, where 1 ≤ k ≤ n. If r ≥ −7,
f(k) attains its maximum at k = n. If r ≤ −9, f(k) attains its maximum
at k = 1. The lemma follows. �

3.2. An inhomogeneous recurrence relation for JE. Let

P1(t,M) := t−2M2 − t2M−2,
P−1(t,M) := t2M2 − t−2M−2,
P0(t,M) := (M2 −M−2)(−M4 −M−4 +M2 +M−2 + t4 + t−4).

From [ChM, Proposition 4.4] (see also [GaS]) we have

(6) (P1L+ P−1L
−1 + P0)JE ∈ R[M±1].

Let

Q1(t,M) := P1(t,M)P1(t, t
2M)P0(t, t

−2M),

Q−1(t,M) := P−1(t,M)P−1(t, t
−2M)P0(t, t

2M),

Q0(t,M) := P1(t,M)P−1(t, t
2M)P0(t, t

−2M)

+ P−1(t,M)P1(t, t
−2M)P0(t, t

2M)

− P0(t,M)P0(t, t
2M)P0(t, t

−2M).

Proposition 3.2. We have{
Q1(t, t

2M2)L+Q−1(t, t
2M2)L−1 +Q0(t, t

2M2)
}
JE ∈ R[M±1].

Proof. We first note that

Q1(t,M)L2 +Q−1(t,M)L−2 +Q0(t,M)

= P1(t,M)P1(t, t
2M)P0(t, t

−2M)L2

+ P−1(t,M)P−1(t, t
−2M)P0(t, t

2M)L−2

+ P1(t,M)P−1(t, t
2M)P0(t, t

−2M)

+ P−1(t,M)P1(t, t
−2M)P0(t, t

2M)

− P0(t,M)P0(t, t
2M)P0(t, t

−2M)

=
{
P1(t,M)P0(t, t

−2M)L+ P−1(t,M)P0(t, t
2M)L−1

− P0(t, t
2M)P0(t, t

−2M)
}

×
{
P1(t,M)L+ P−1(t,M)L−1 + P0(t,M)

}
.

By Equation (6) we have (P1L+ P−1L
−1 + P0)JE ∈ R[M±1]. Hence

(7) (Q1L
2 +Q−1L

−2 +Q0)JE ∈ R[M±1].
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We have (MkL2lJE)(2n+ 1) = ((t2M2)kLlJE)(n). It follows that

(P (t,M)L2lJE)(2n+ 1) = (P (t, t2M2)LlJE)(n)

for any P (t,M) ∈ R[M±1]. Hence Equation (7) implies that{
Q1(t, t

2M2)L+Q−1(t, t
2M2)L−1 +Q0(t, t

2M2)
}
JE ∈ R[M±1].

This proves Proposition 3.2. �

3.3. A recurrence relation for JE(r,2). Let

Q(t,M,L) := Q1(t, t
2M2)L+Q−1(t, t

2M2)L−1 +Q0(t, t
2M2).

By Proposition 3.2, we have QJE ∈ R[M±1]. Equation (5) then implies that

(8) QM r(L+ t−2rM−2r)JE(r,2) ∈ R[M±1].

Let Q′(t,M) := LQ(t,M)M r(L+t−2rM−2r). From Equation (8) we have
Q′JE(r,2) ∈ R[M±1].

Let R := Q′JE(r,2) ∈ R[M±1]. We claim that R 6= 0, which means that
Q′JE(r,2) = R is an inhomogeneous recurrence relation for JE(r,2) . Indeed,
assume that R = 0. Then Q′ annihilates the colored Jones function JE(r,2) .
By [Le, Proposition 2.3], ε(Q′) is divisible by L − 1. However this cannot
occur, since

ε(Q′)
M
=
{
L2 −

(
(M8 +M−8 −M4 −M−4 − 2)2 − 2

)
L+ 1

}
(L+M−2r)

is not divisible by L− 1. Hence R 6= 0 in R[M±1].
Write R(t,M) = (1 + t)mR′(t,M), where m ≥ 0 and R′(−1,M) 6= 0 in

C[M±1]. Let

S(t,M,L) := (R′(t,M)L−R′(t, t2M))Q′(t,M).

Since Q′JE(r,2) = (1 + t)mR′ ∈ R[M±1] is an inhomogeneous recurrence
relation for JE(r,2) , we have the following.

Proposition 3.3. The polynomial S ∈ T annihilates the colored Jones
function JE(r,2) and has L-degree 4.

3.4. Completing the proof of Theorem 1. Note that S has L-degree

4 and ε(S)
M
= AE(r,2) . Hence to complete the proof of Theorem 1, we only

need to show that if |r| ≥ 9 then S is equal to the recurrence polynomial

αE(r,2) in T̃ , up to a rational function in R(M). This is achieved by showing
that there does not exist a nonzero polynomial P ∈ R[M±1][L] of degree
≤ 3 that annihilates the colored Jones function JE(r,2) . We will make use of
the degree formulas in Subsection 3.1.

From now on we assume that r is an odd integer satisfying |r| ≥ 9.
Suppose that P = P3L

3+P2L
2+P1L+P0, where Pk ∈ R[M±1], annihilates

JE(r,2) . We want to show that Pk = 0 for 0 ≤ k ≤ 3.
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Indeed, by applying Lemma 2.1 we have

0 = P3JE(r,2)(n+ 3) + P2JE(r,2)(n+ 2) + P1JE(r,2)(n+ 1) + P0JE(r,2)(n)

=
(
−t−2r(6n+9)P3 + t−2r(4n+4)P2 − t−2r(2n+1)P1 + P0

)
JE(r,2)(n)

+
(
t−2r(5n+8)P3 − t−2r(3n+3)P2 + t−2rnP1

)
JE(2n+ 1)

+
(
−t−2r(3n+6)P3 + t−2r(n+1)P2

)
JE(2n+ 3) + t−2r(n+2)P3JE(2n+ 5)

= P ′3JE(r,2)(n) + P ′2JE(2n+ 5) + P ′1JE(2n+ 3) + P ′0JE(2n+ 1).

It is easy to see that Pk = 0 for 0 ≤ k ≤ 3 if and only if P ′k = 0 for 0 ≤ k ≤ 3.
Let g(n) = P ′2JE(2n+ 5) + P ′1JE(2n+ 3) + P ′0JE(2n+ 1). Then

(9) P ′3JE(r,2)(n) + g(n) = 0.

We first show that P ′3 = 0. Indeed, assume that P ′3 6= 0 in R[M±1]. If
r ≥ 9 then, by Lemma 3.1, we have

d−[P ′3JE(r,2)(n)] = d−[JE(r,2)(n)] +O(n) = −2rn2 +O(n).

Similarly, we have d−[P ′kJE(2n+ 2k + 1)] = −16n2 +O(n) if P ′k 6= 0, where
k = 0, 1, 2. It follows that, for n big enough,

d−[P ′3JE(r,2)(n)]

< min{d−[P ′2JE(2n+ 5)], d−[P ′1JE(2n+ 3)], d−[P ′0JE(2n+ 1)]}
≤ d−[g(n)].

Hence d−[P ′3JE(r,2)(n)] < d−[g(n)]. This contradicts Equation (9).
If r ≤ −9 then, by similar arguments as above, we have

d+[P ′3JE(r,2)(n)]

> max{d+[P ′2JE(2n+ 5)], d+[P ′1JE(2n+ 3)], d+[P ′0JE(2n+ 1)]}
≥ d+[g(n)].

for n big enough. This also contradicts Equation (9). Hence P ′3 = 0.
Since g(n) = 0, we have (P ′2L

2 +P ′1L+P ′0)JE = 0. This means that JE is
annihilated by P ′ := P ′2L

2 +P ′1L+P ′0. We claim that P ′ = 0 in R[M±1][L].
Indeed, assume that P ′ 6= 0. Since P ′ annihilates JE , it is divisible by the
recurrence polynomial αJE in T̃ . It follows that αJE , and hence ε(αJE ), has
L-degree ≤ 2.

Since E is a nontrivial alternating knot, Propositions 2.5, 2.6 and 2.7
imply that ε(αJE ) is divisible by L − 1 and has L-degree ≥ 2. Hence we
conclude that ε(αJE ) is divisible by L− 1 and has L-degree exactly 2.

By Proposition 3.2, we have QJE ∈ R[M±1]. Let Q′′ := QJE . Then Q′′ 6=
0 (otherwise, Q annihilates JE . However, this contradicts Proposition 2.6

since ε(Q)
M
= L2−

(
(M8 +M−8 −M4 −M−4 − 2)2 − 2

)
L+1 is not divisible

by L − 1). This means that QJE = Q′′ ∈ R[M±1] is an inhomogeneous
recurrence relation for JE
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Write Q′′(t,M) = (1 + t)mQ′′′(t,M), where m ≥ 0 and Q′′′(−1,M) 6= 0
in C[M±1]. Then (Q′′′(t,M)L − Q′′′(t, t2M))Q annihilates JE and hence

is divisible by αJE in T̃ . Consequently, (L − 1)ε(Q) is divisible by ε(αJE )

in C(M)[L]. This means
ε(αJE )

L−1 divides ε(Q) in C(M)[L]. However this

cannot occur, since
ε(αJE )

L−1 has L-degree exactly 1 and ε(Q) is an irreducible

polynomial in C[M±1, L] of L-degree 2.
Hence P ′ = 0, which means that P ′k = 0 for 0 ≤ k ≤ 2. Consequently,

Pk = 0 for 0 ≤ k ≤ 3. This completes the proof of Theorem 1.
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[LeT10] Lê, Thang T. Q.; Tran, Anh T. On the volume conjecture for
cables of knots. J. Knot Theory Ramifications 19 (2010), no. 12,
1673–1691. MR2755495 (2012d:57024), Zbl 1229.57019, arXiv:0907.0172,
doi: 10.1142/S0218216510008534.
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