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From Stinespring dilation to Sz.-Nagy
dilation on the symmetrized bidisc and

operator models

Sourav Pal

Abstract. We provide an explicit normal distinguished boundary di-
lation to a pair of commuting operators (S, P ) having the closed sym-
metrized bidisc Γ as a spectral set. This is called Sz.-Nagy dilation of
(S, P ). The operator pair that dilates (S, P ) is obtained by an appli-
cation of Stinespring dilation of (S, P ) given by Agler and Young. We
further prove that the dilation is minimal and the dilation space is no
bigger than the dilation space of the minimal unitary dilation of the
contraction P . We also describe model space and model operators for
such a pair (S, P ).
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1. Introduction

The closed symmetrized bidisc and its distinguished boundary, denoted by
Γ and bΓ respectively, are defined by

Γ = {(z1 + z2, z1z2) : |z1| ≤ 1, |z2| ≤ 1} ⊆ C2,

bΓ = {(z1 + z2, z1z2) : |z1| = |z2| = 1} ⊆ Γ.
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Clearly, the points of Γ and bΓ are the symmetrization of the points of the

closed bidisc D2
and the torus T2 respectively, where the symmetrization

map is the following:

π : C2 → C2, (z1, z2) 7→ (z1 + z2, z1z2).

Function theory, hyperbolic geometry and operator theory related to the
set Γ have been well studied over past three decades (e.g., [3, 4, 5, 6, 7, 8,
11, 12, 16]).

Definition 1.1. A pair of commuting operators (S, P ), defined on a Hilbert
space H, that has Γ as a spectral set is called a Γ-contraction, i.e., the joint
spectrum σ(S, P ) ⊆ Γ and

‖f(S, P )‖ ≤ sup
(z1,z2)∈Γ

|f(z1, z2)|,

for all rational functions f with poles off Γ.

By virtue of polynomial convexity of Γ, the definition can be made more
precise by omitting the condition on joint spectrum and by replacing rational
functions by polynomials. It is clear from the definition that if (S, P ) is a
Γ-contraction then so is (S∗, P ∗) and ‖S‖ ≤ 2, ‖P‖ ≤ 1.

A commuting d-tuple of operators T = (T1, T2, . . . , Td) for which a partic-
ular subset of Cd is a spectral set, has been studied for a long time and many
important results have been obtained (see [17]). Let W ⊆ Cd be a spectral
set for T = (T1, T2, . . . , Td). A normal bW -dilation of T is a commuting d-
tuple of normal operators N = (N1, . . . , Nd) defined on a larger Hilbert space
K ⊇ H such that the joint spectrum σ(N) ⊆ bW and q(T ) = PHq(N)

∣∣
H, for

any polynomial q in d-variables z1, . . . , zd. A celebrated theorem of Arveson
states that W is a complete spectral set for T if and only if T has a normal
bW -dilation, (Theorem 1.2.2 and its corollary, [10]). Therefore, a necessary
condition for T to have a normal bW -dilation is that W be a spectral set for
T . Sufficiency has been investigated for several domains in several contexts,
and it has been shown to have a positive answer when W = D [18], when

W is an annulus [1], when W = D2 [9] and when W = Γ [3]. Also we have
failure of rational dilation on a triply connected domain in C [2, 14].

The main aim of this paper is to construct an explicit normal bΓ-dilation
to a Γ-contraction (S, P ), which we call Sz.-Nagy dilation of (S, P ). As a
consequence we obtain a concrete functional model for (S, P ). The principal
source of inspiration is the following dilation theorem which will be called
Stinespring dilation of (S, P ).

Theorem 1.2 (Agler and Young, [3]). Let (S, P ) be a pair of commuting
operators on a Hilbert space H such that the joint spectrum σ(S, P ) ⊆ Γ.
The following are equivalent:

(1) (S, P ) is a Γ-contraction.
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(2) ρ(αS, α2P ) ≥ 0, for all α ∈ D, where

ρ(S, P ) = 2(I − P ∗P )− (S − S∗P )− (S∗ − P ∗S).

(3) For every matrix polynomial f in two variables

‖f(S, P )‖ ≤ sup
z∈Γ
‖f(z)‖.

(4) There exist Hilbert spaces H−, H+ and commuting normal operators

S̃, P̃ on K = H− ⊕H ⊕H+ such that the joint spectrum σ(S̃, P̃ ) is

contained in the distinguished boundary of Γ and S̃, P̃ are expressible
by operators matrices of the form

S̃ =

∗ ∗ ∗0 S ∗
0 0 ∗

 , P̃ =

∗ ∗ ∗
0 P ∗
0 0 ∗


with respect to the orthogonal decomposition K = H− ⊕H⊕H+.

The reason of calling it Stinespring dilation is that part (4) of the above
theorem was obtained by an application of Stinespring’s theorem ([17]).

In Theorem 4.3, which is the main result of this paper, we provide such
Hilbert spaces H−, H+ and such operators S̃, P̃ explicitly. Indeed, the dila-
tion space K (= H− ⊕H ⊕H+) can be chosen to be l2(DP )⊕H ⊕ l2(DP ∗)
which is same as the dilation space of the minimal unitary dilation of P and
the operator P̃ can precisely be the minimal unitary dilation of P . Here

DP = RanDP , where DP = (I −P ∗P )
1
2 . In order to construct an operator

for S̃, i.e., to remove the stars from the matrix of S̃, we need a couple of
operators F, F∗ which turned out to be the unique solutions to the operator
equations

S − S∗P = DPXDP , X ∈ L(DP ),(1.1)

S∗ − SP ∗ = DP ∗X∗DP ∗ , X∗ ∈ L(DP ∗),

respectively (Theorem 3.3). Such an operator equation (1.1) was solved in
[11] (Theorem 4.1 in [11]) independently to get a Γ-isometric dilation of a
Γ-contraction (Theorem 4.3 in [11]) but it was not a normal bΓ-dilation. The
unique operators F and F∗ were called the fundamental operators of the Γ-
contractions (S, P ) and (S∗, P ∗) respectively. The fundamental operators of
(S, P ) and (S∗, P ∗) play the key role in the construction of the operator that

works for S̃. Since the dilation space is precisely the space of minimal unitary
dilation of P , the dilation naturally becomes minimal. This is somewhat
surprising because it is a dilation in several variables.

As the title of the paper indicates, we obtain Sz.-Nagy dilation of a Γ-
contraction (S, P ) from its Stinespring dilation in the sense that we obtain
the key ingredient in the dilation, the fundamental operator, as a conse-
quence of Stinespring dilation. Indeed, Theorem 1.2 leads to the following
model for Γ-contractions (Theorem 3.2 in [6]).
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Theorem 1.3 (Agler and Young [6]). Let (S, P ) be a Γ-contraction on a
Hilbert space H. There exists a Hilbert space K containing H and a Γ-co-
isometry (S[, P [) on K and an orthogonal decomposition K1⊕K2 of K such
that:

(i) H is a common invariant subspace of S[ and P [, and

S = S[|H, P = P [|H.

(ii) K1 and K2 reduce both S[ and P [.

(iii) (S[|K1 , P
[|K1) is a Γ-unitary.

(iv) There exists a Hilbert space E and an operator A on E such that

ω(A) ≤ 1 and (S[|K2 , P
[|K2) is unitarily equivalent to (Tψ, Tz) acting

on H2(E), where ψ ∈ L(E) is given by ψ(z) = A∗ +Az̄, z ∈ D̄.

In Section 3, we establish the existence and uniqueness of fundamental
operator F of (S, P ) (Theorem 3.3) by an application of Theorem 1.3. More-
over, we show that the numerical radius of F is not greater than 1.

In Section 5, we describe a functional model for Γ-contractions (Theorem
5.3), which can be treated as a concrete formulation of the model given
as Theorem 1.3 above. We specify the model space and model operators.
Also a model is provided for a pure Γ-isometry (Ŝ, P̂ ) in terms of Toeplitz
operators (Tϕ, Tz) defined on the vectorial Hardy space H2(DP̂ ∗), where the

multiplier function is given as ϕ(z) = F̂ ∗∗ + F̂∗z, F̂∗ being the fundamental

operator of (Ŝ, P̂ ). This model is obtained independently in a simpler way
without an application of the functional model for pure Γ-contractions (see
Theorem 3.1 in [12]). Let us mention that the class of pure Γ-isometries
parallels the class of pure isometries in one variable operator theory.

In Section 2, we recall some preliminary results from the literature of
Γ-contraction and these results will be used in sequel.

2. Preliminary results on Γ-contractions

In the literature of Γ-contraction, [3, 4, 5, 6], there are special classes of
Γ-contractions like Γ-unitaries, Γ-isometries, Γ-co-isometries which are anal-
ogous to unitaries, isometries and co-isometries of single variable operator
theory.

Definition 2.1. A commuting pair (S, P ), defined on a Hilbert space H, is
called a Γ-unitary if S and P are normal operators and σ(S, P ) is contained
in the distinguished boundary bΓ.

Definition 2.2. A commuting pair (S, P ) is called a Γ-isometry if it the
restriction of Γ-unitary to a joint invariant subspace, i.e., a Γ-isometry is a
pair of commuting operators which can be extended to a Γ-unitary.

Definition 2.3. A Γ-co-isometry is the adjoint of a Γ-isometry, i.e., (S, P )
is a Γ-co-isometry if (S∗, P ∗) is a Γ-isometry.
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Definition 2.4. A Γ-isometry (S, P ) is said to be pure if P is a pure isom-
etry. A pure Γ-co-isometry is the adjoint of a pure Γ-isometry.

Definition 2.5. Let (S, P ) be a Γ-contraction on a Hilbert space H. A
commuting pair (T, V ) defined on K is said to be a Γ-isometric (or Γ-unitary)
extension if H ⊆ K, (T, V ) is a Γ-isometry (or a Γ-unitary) and T |H = S,
V |H = P .

We are now going to state some useful results on Γ-contractions without
proofs because the proofs are either routine or could be found out in [3] and
[6].

Proposition 2.6. If T1, T2 are commuting contractions then their sym-
metrization (T1 + T2, T1T2) is a Γ-contraction.

Note that, all Γ-contractions do not arise as a symmetrization of two
contractions. The following result characterizes the Γ-contractions which
can be obtained as a symmetrization of two commuting contractions.

Lemma 2.7 ([6]). Let (S, P ) be a Γ-contraction. Then

(S, P ) = (T1 + T2, T1T2)

for a pair of commuting operators T1, T2 if and only if S2− 4P has a square
root that commutes with both S and P .

Here is a set of characterizations for Γ-unitaries.

Theorem 2.8 ([6]). Let (S, P ) be a pair of commuting operators defined on
a Hilbert space H. Then the following are equivalent:

(1) (S, P ) is a Γ-unitary.
(2) There exist commuting unitary operators U1 and U2 on H such that

S = U1 + U2, P = U1U2.

(3) P is unitary, S = S∗P , and r(S) ≤ 2, where r(S) is the spectral
radius of S.

We now present a structure theorem for the class of Γ-isometries.

Theorem 2.9 ([6]). Let S, P be commuting operators on a Hilbert space H.
The following statements are all equivalent:

(1) (S, P ) is a Γ-isometry.
(2) If P has Wold-decomposition with respect to the orthogonal decom-

position H = H1 ⊕ H2 such that P |H1 is unitary and P |H2 is pure
isometry then H1, H2 reduce S also and (S|H1 , P |H1) is a Γ-unitary
and (S|H2 , P |H2) is a pure Γ-isometry.

(3) P is an isometry , S = S∗P and r(S) ≤ 2.
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3. The fundamental operator of a Γ-contraction

Let us recall that the numerical radius of an operator T on a Hilbert space
H is defined by

ω(T ) = sup{|〈Tx, x〉| : ‖x‖H ≤ 1}.
It is well known that

r(T ) ≤ ω(T ) ≤ ‖T‖ and
1

2
‖T‖ ≤ ω(T ) ≤ ‖T‖,(3.1)

where r(T ) is the spectral radius of T . The following is an interesting result
about the numerical radius of an operator and this will be used in this
section.

Lemma 3.1. The numerical radius of an operator X is not greater than 1
if and only if Re βX ≤ I for all complex numbers β of modulus 1.

Proof. It is obvious that ω(X) ≤ 1 implies that Re βX ≤ I for all β ∈ T.
We prove the other way. By hypothesis, 〈Re βXh, h〉 ≤ 1 for all h ∈ H with
‖h‖ ≤ 1 and for all β ∈ T. Note that 〈Re βXh, h〉 = Re β〈Xh, h〉. Write
〈Xh, h〉 = eiϕh |〈Xh, h〉| for some ϕh ∈ R, and then choose β = e−iϕh . Then
we get |〈Xh, h〉| ≤ 1 and this holds for each h ∈ H with ‖h‖ ≤ 1. Hence
done. �

We are going to prove the existence and uniqueness of solution to the
operator equation

S − S∗P = DPXDP , X ∈ L(DP )

by an application of a famous result due to Douglas, Muhly and Pearcy. Let
us again mention here that the same operator equation has been solved in
[11] (Theorem 4.2) independently by using operator Fejer–Riesz Theorem.
Here is the famous result of Douglas, Muhly and Pearcy.

Proposition 3.2 (Douglas, Muhly and Pearcy, [13]). For i = 1, 2, let Ti be
a contraction on a Hilbert space Hi, and let X be an operator mapping H2

into H1. A necessary and sufficient condition that the operator on H1⊕H2

defined by the matrix (
T1 X
0 T2

)
be a contraction is that there exist a contraction C mapping H2 into H1 such
that

X =
√
IH1 − T1T ∗1C

√
IH2 − T ∗2 T2.

Theorem 3.3 (Existence and Uniqueness). For a Γ-contraction (S, P ) de-
fined on H, the operator equation

S − S∗P = DPXDP

has a unique solution F in L(DP ) and ω(F ) ≤ 1.
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Proof. By Theorem 1.3, there is a Γ-co-isometry (T, V ) on a larger Hilbert
space K ⊇ H such that H is a joint invariant subspace of T and V and

S = T |H, P = V |H.

Also K has orthogonal decomposition K = K1 ⊕K2 and

T =

(
T1 0
0 T2

)
, V =

(
V1 0
0 V2

)
on K = K1 ⊕K2

such that (T1, V1) is a Γ-unitary and there is a Hilbert space E and a unitary
U1 : K2 → H2(E) such that

T ∗2 = U∗1TϕU1, V
∗

2 = U∗1TzU1,

where ϕ(z) = A+A∗z for some A ∈ B(E) with numerical radius of A being
not greater than 1. Clearly T2 = U∗1T

∗
ϕU1 and V2 = U∗1T

∗
z U1. Again H2(E)

can be identified with l2(E) and consequently the operator pair (Tϕ, Tz) can
be identified with (Mϕ,Mz), where Mϕ and Mz are defined on l2(E) in the
following way:

Mϕ =


A 0 0 · · ·
A∗ A 0 · · ·
0 A∗ A · · ·
...

...
...

. . .

 , Mz =


0 0 0 · · ·
I 0 0 · · ·
0 I 0 · · ·
...

...
...

. . .

 .
Therefore we can say that there is a unitary U : K2 → l2(E) such that
T2 = U∗M∗ϕU, and V2 = U∗M∗zU . Now

T2 − T ∗2 V2 = U∗


A A∗ 0 · · ·
0 A A∗ · · ·
0 0 A · · ·
...

...
...

. . .

U

− U∗


A∗ 0 0 . . .
A A∗ 0 · · ·
0 A A∗ · · ·
...

...
...

. . .




0 I 0 · · ·
0 0 I · · ·
0 0 0 · · ·
...

...
...

. . .

U

= U∗


A A∗ 0 · · ·
0 A A∗ · · ·
0 0 A · · ·
...

...
...

. . .

U − U∗


0 A∗ 0 · · ·
0 A A∗ · · ·
0 0 A · · ·
...

...
...

. . .

U

= U∗


A 0 0 · · ·
0 0 0 · · ·
0 0 0 · · ·
...

...
...

. . .

U.
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Also

D2
V2 = I − V ∗2 V2 = U∗(I −MzM

∗
z )U = U∗


I 0 0 · · ·
0 0 0 · · ·
0 0 0 · · ·
...

...
...

. . .

U.
It is merely said that D2

V2
= DV2 and therefore if we set

X = U∗


A∗ 0 0 . . .
0 0 0 . . .
0 0 0 . . .
...

...
...

. . .

U
then X ∈ L(DV2) and T2 − T ∗2 V2 = DV2XDV2 . Since (T1, V1) is a Γ-unitary,
Theorem 2.8 guarantees that T1 = T ∗1 V1. Therefore,

T − T ∗V =

[
T1 − T ∗1 V1 0

0 T2 − T ∗2 V2

]
=

[
0 0
0 T2 − T ∗2 V2

]
.

Also

D2
V =

[
IK1 − V ∗1 V1 0

0 IK2 − V ∗2 V2

]
=

[
0 0
0 IK2 − V ∗2 V2

]
.

Therefore, DV = DV2 and X satisfies the relation T−T ∗V = DVXDV . Also

‖T − T ∗V ‖ = ‖DVXDV ‖ ≤ ‖X‖ ≤ 2, by relation (3.1) as ω(X) ≤ 1.

Now consider the matrix

J =

[
V ∗

T − T ∗V
2

0 V

]
defined on K ⊕K. Since

T − T ∗V
2

= DV
X

2
DV = (I − V ∗V )

1
2
X

2
(I − V ∗V )

1
2 ,

where
T − T ∗V

2
and

X

2
are contractions, by Proposition 3.2, the matrix J

is a contraction. Again let us consider another matrix JH defined on H⊕H
by

JH =

PHV ∗|H PH

(
T − T ∗V

2

)
|H

0 PHV |H

 .
Since (T, V ) is Γ-co-isometric extension of (S, P ), we have that

JH =

[
P ∗

S − S∗P
2

0 P

]
.

For [
h1

h2

]
∈ H ⊕H,
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we have that∥∥∥∥JH [h1

h2

]∥∥∥∥2

=

∥∥∥∥∥∥
PHV ∗h1 + PH

(
T − T ∗V

2

)
h2

PHV h2

∥∥∥∥∥∥
2

=

∥∥∥∥PH(V ∗h1 +
T − T ∗V

2
h2

)∥∥∥∥2

+ ‖PHV h2‖2

≤
∥∥∥∥V ∗h1 +

T − T ∗V
2

h2

∥∥∥∥2

+ ‖V h2‖2, since PH is a projection

≤
∥∥∥∥[h1

h2

]∥∥∥∥2

, since J is a contraction.

Therefore, JH is a contraction. Applying Proposition 3.2 again we get an

operator F ∈ L(H) such that
F

2
is a contraction and that

S − S∗P
2

= DP
F

2
DP .

Obviously the domain of F can be specified to be DP ⊆ H. Hence

S − S∗P = DPFDP

where F ∈ L(DP ) and the existence of the fundamental operator of (S, P )
is guaranteed.

For uniqueness let there be two such solutions F and F1. Then

DP F̃DP = 0, where F̃ = F − F1 ∈ L(DP ).

Then
〈F̃DPh,DPh

′〉 = 〈DP F̃DPh, h
′〉 = 0

which shows that F̃ = 0 and hence F = F1.
To show that the numerical radius of F is not greater than 1, note that

ρ(αS, α2P ) ≥ 0, for all α ∈ D, by Theorem 1.2 and the inequality can be
extended by continuity to all points in D. Therefore, in particular for β ∈ T,
we have

D2
P ≥ Re β(S − S∗P ) = Re β(DPFDP )

which implies that
DP (IDP

− Re βF )DP ≥ 0.

Therefore,

〈(IDP
− Re (βF ))DPh,DPh〉 = 〈DP (IDP

− Re (βF ))DPh, h〉 ≥ 0

and consequently we obtain

Re βF ≤ IDP
, for all β ∈ T.

Thus, by Lemma 3.1, the numerical radius of F is not greater than 1. �

Remark 3.4. The fundamental operator of a Γ-isometry or a Γ-unitary
(S, P ) is the zero operator because S = S∗P in this case.
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The following result is obvious and a proof to this can be found in [12].

Proposition 3.5. Let (S, P ) and (S1, P1) be two Γ-contractions on a Hilbert
space H and let F and F1 be their fundamental operators respectively. If
(S, P ) and (S1, P1) are unitarily equivalent then so are F and F1.

4. Geometric construction of normal dilation

In this section, we present an explicit construction of a normal bΓ-dilation,
i.e., a Γ-unitary dilation of a Γ-contraction. In the literature, the Γ-unitary
and Γ-isometric dilation of a Γ-contraction are defined in the following way:

Definition 4.1. Let (S, P ) be a Γ-contraction on a Hilbert space H. A pair
of commuting operators (T,U) defined on a Hilbert space K ⊇ H is said to
be a Γ-unitary dilation of (S, P ) if (T,U) is a Γ-unitary and

PH(TmUn)|H = SmPn, n = 0, 1, 2, . . . .

Moreover, the dilation will be called minimal if

K = span{TmUnh : h ∈ H, m, n = 0,±1,±2, . . . },
where T−m, U−n for positive integers m,n are defined as T ∗m and U∗n

respectively. A Γ-isometric dilation of a Γ-contraction is defined in a similar
way where the word Γ-unitary is replaced by Γ-isometry. But when we talk
about minimality of such a Γ-isometric dilation, the powers of the dilation
operators will run over nonnegative integers only.

In the dilation theory of a single contraction ([18]), it is a notable fact
that if V is the minimal isometric dilation of a contraction T , then V ∗ is
a co-isometric extension of P . The other way is also true, i.e., if V is a
co-isometric extension of T , then V ∗ is an isometric dilation of T ∗. Here we
shall see that an analogue holds for a Γ-contraction.

Proposition 4.2. Let (T, V ) on K ⊇ H be a Γ-isometric dilation of a Γ-
contraction (S, P ). If (T, V ) is minimal, then (T ∗, V ∗) is a Γ-co-isometric
extension of (S∗, P ∗). Conversely, if (T ∗, V ∗) is a Γ-co-isometric extension
of (S∗, P ∗) then (T, V ) is a Γ-isometric dilation of (S, P ).

Proof. We first prove that SPH = PHT and PPH = PHV , where

PH : K → H
is orthogonal projection onto H. Clearly

K = span{TmV nh : h ∈ H and m,n ∈ N ∪ {0}}.
Now for h ∈ H we have that

SPH(TmV nh) = S(SmPnh) = Sm+1Pnh

= PH(Tm+1V nh) = PHT (TmV nh).

Thus we have that SPH = PHT and similarly we can prove that

PPH = PHV.



FROM STINESPRING DILATION TO SZ.-NAGY DILATION ON Γ 655

Also for h ∈ H and k ∈ K we have that

〈S∗h, k〉 = 〈PHS∗h, k〉 = 〈S∗h, PHk〉 = 〈h, SPHk〉 = 〈h, PHTk〉
= 〈T ∗h, k〉.

Hence S∗ = T ∗|H. Similarly P ∗ = V ∗|H. The converse part is obvious. �

Now we present the geometric construction of Sz.-Nagy dilation of a Γ-
contraction.

Theorem 4.3. Let (S, P ) be a Γ-contraction defined on a Hilbert space H.
Let F and F∗ be the fundamental operators of (S, P ) and its adjoint (S∗, P ∗)
respectively. Let

K0 = · · · ⊕ DP ⊕DP ⊕DP ⊕H⊕DP ∗ ⊕DP ∗ ⊕DP ∗ ⊕ · · ·
= l2(DP )⊕H⊕ l2(DP ∗).

Consider the operator pair (T0, U0) defined on K0 by

T0(. . . , h−2, h−1, h0︸︷︷︸, h1, h2, . . . )

= (. . . , Fh−2 + F ∗h−1, Fh−1 + F ∗DPh0 − F ∗P ∗h1,

Sh0 +DP ∗F∗h1︸ ︷︷ ︸, F ∗∗ h1 + F∗h2, F
∗
∗ h2 + F∗h3, . . . )

· U0(· · · , h−2, h−1, h0︸︷︷︸, h1, h2, . . . )

= (. . . , h−2, h−1, DPh0 − P ∗h1, Ph0 +DP ∗h1︸ ︷︷ ︸, h2, h3 . . . ),

where the 0-th position of a vector in K0 has been indicated by an under
brace. Then (T0, U0) is a minimal Γ-unitary dilation of (S, P ).

Proof. The matrices of T0 with respect to the orthogonal decompositions
l2(DP )⊕H⊕ l2(DP ∗) and · · ·⊕DP ⊕DP ⊕DP ⊕H⊕DP ∗⊕DP ∗⊕DP ∗⊕· · ·
of K0 and the matrix of U0 with respect to the decomposition

· · · ⊕ DP ⊕DP ⊕DP ⊕H⊕DP ∗ ⊕DP ∗ ⊕DP ∗ ⊕ · · ·

are the following:

T0 =

 A1 A2 A3

0 S A4

0 0 A5


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=



. . .
...

...
...

...
...

...
...

...
· · · F F ∗ 0 0 0 0 0 · · ·
· · · 0 F F ∗ 0 0 0 0 · · ·
· · · 0 0 F F ∗DP −F ∗P ∗ 0 0 · · ·
· · · 0 0 0 S DP ∗F∗ 0 0 · · ·
· · · 0 0 0 0 F ∗∗ F∗ 0 · · ·
· · · 0 0 0 0 0 F ∗∗ F∗ · · ·
· · · 0 0 0 0 0 0 F ∗∗ · · ·
...

...
...

...
...

...
...

...
. . .


,(4.1)

(4.2) U0 =



. . .
...

...
...

...
...

...
...

...
· · · 0 I 0 0 0 0 0 · · ·
· · · 0 0 I 0 0 0 0 · · ·
· · · 0 0 0 DP −P ∗ 0 0 · · ·
· · · 0 0 0 P DP ∗ 0 0 · · ·
· · · 0 0 0 0 0 I 0 · · ·
· · · 0 0 0 0 0 0 I · · ·
· · · 0 0 0 0 0 0 0 · · ·
...

...
...

...
...

...
...

...
. . .


.

The dilation space K0 is obviously the minimal unitary dilation space
of the contraction P and clearly the operator U0 is the minimal unitary
dilation of P . The space H can be embedded inside K0 by the canonical
map h 7→ (. . . , 0, 0, h︸︷︷︸, 0, 0, . . . ). The adjoints of T0 and U0 are defined in

the following way:

T ∗0 (. . . , h−2, h−1, h0︸︷︷︸, h1, h2, . . . )

= (. . . , Fh−3 + F ∗h−2, Fh−2 + F ∗h−1, DPFh−1 + S∗h0︸ ︷︷ ︸,
− PFh−1 + F ∗∗DP ∗h0 + F∗h1, F

∗
∗ h1 + F∗h2, . . . ),

U∗0 (. . . , h−2, h−1, h0︸︷︷︸, h1, h2, . . . )

= (. . . , h−3, h−2, DPh−1 + P ∗h0︸ ︷︷ ︸,−Ph1, DP ∗h0, h1 . . . ).

To prove (T0, U0) to be a minimal Γ-unitary dilation of (S, P ) we have to
show the following:

(i) (T0, U0) is a Γ-unitary.
(ii) (T0, U0) dilates (S, P ).
(iii) The dilation (T0, U0) is minimal.
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For proving (T0, U0) to be a Γ-unitary one needs to verify, by virtue of
Theorem 2.8(3), the following:

T0U0 = U0T0, T0 = T ∗0U0 and r(T0) ≤ 2.

Now

T0U0(. . . , h−2, h−1, h0︸︷︷︸, h1, h2, . . . )

= T0(. . . , h−2, h−1, DPh0 − P ∗h1, Ph0 +DP ∗h1︸ ︷︷ ︸, h2, h3 . . . )

= (. . . , Fh−1 + F ∗DPh0 − F ∗P ∗h1,

(FDP + F ∗DPP )h0 + (−FP ∗ + F ∗DPDP ∗)h1 − F ∗P ∗h2,

SPh0 + SDP ∗h1 +DP ∗F∗h2︸ ︷︷ ︸, F ∗∗ h2 + F∗h3, F
∗
∗ h3 + F∗h4, . . . ).

Also

U0T0(. . . , h−2, h−1, h0︸︷︷︸, h1, h2, . . . )

= U0(. . . , Fh−2 + F ∗h−1, Fh−1 + F ∗DPh0 − F ∗P ∗h1,

Sh0 +DP ∗F∗h1︸ ︷︷ ︸, F ∗∗ h1 + F∗h2, F
∗
∗ h2 + F∗h3, . . . )

= (. . . , Fh−1 + F ∗DPh0 − F ∗P ∗h1, DPSh0 + (DPDP ∗F∗ − P ∗F ∗∗ )h1

− P ∗F∗h2, PSh0 + (PDP ∗F∗ +DP ∗F ∗∗ )h1 +DP ∗F∗h2︸ ︷︷ ︸,
F ∗∗ h2 + F∗h3, F

∗
∗ h3 + F∗h4, . . . ).

In order to prove T0U0 = U0T0 we have to prove the following things:

(a1) DPS = FDP + F ∗DPP .
(a2) DPDP ∗F∗ − P ∗F ∗∗ = −FP ∗ + F ∗DPDP ∗ .
(a3) SDP ∗ = DP ∗F ∗∗ + PDP ∗F∗.
(a4) F ∗P ∗ = P ∗F∗.

(a1). Let J = FDP + F ∗DPP −DPS. Then J is an operator from H to
DP . Since F is the solution of S − S∗P = DPXDP we have that

DPJ = DPFDP +DPF
∗DPP −D2

PS

= (S − S∗P ) + (S∗ − P ∗S)P + (I − P ∗P )S

= 0.

Clearly 〈Jh,DPh1〉 = 〈DPJh, h1〉 = 0 for all h, h1 ∈ H and hence J = 0
which proves (a1).

(a2). It is enough to show that FP ∗ − P ∗F ∗∗ = F ∗DPDP ∗ −DPDP ∗F∗,
where each side is defined from DP ∗ to DP .

DP (FP ∗ − P ∗F ∗∗ )DP ∗

= (DPFDP )P ∗ − P ∗(DP ∗F ∗∗DP ∗), using the relation PDP = DP ∗P

= (S − S∗P )P ∗ − P ∗(S∗ − SP ∗)∗

= SP ∗ − S∗PP ∗ − P ∗S + P ∗PS
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= (S∗ − P ∗S)(I − PP ∗)− (I − P ∗P )(S∗ − SP ∗)
= (S∗ − P ∗S)D2

P ∗ −D2
P (S∗ − SP ∗)

= (DPF
∗DP )D2

P ∗ −D2
P (DP ∗F∗DP ∗).

For a proof of PDP = DP ∗P one can see Chapter I of [18]. Hence (a2) is
proved.

(a3). Setting J1 = DP ∗F ∗∗ +PDP ∗F∗−SDP ∗ which maps DP ∗ into H and
using the same argument as in the proof of (a1), we can obtain J1DP ∗ = 0
which proves (a3).

(a4). This follows from the fact that PF = F ∗∗P |DP
.

Proof of PF = F ∗∗P |DP
. For DPh ∈ DP and DP ∗h′ ∈ DP ∗ , we have that

〈PFDPh,DP ∗h′〉 = 〈DP ∗PFDPh, h
′〉

= 〈PDPFDPh, h
′〉

= 〈P (S − S∗P )h, h′〉
= 〈(S − PS∗)Ph, h′〉
= 〈DP ∗F∗

∗DP ∗Ph, h′〉, (since S∗ − SP ∗ = DP ∗F∗DP ∗)

= 〈F∗∗PDPh,DP ∗h′〉. �

Therefore T0U0 = U0T0.
We now show that T0 = T ∗0U0. We have that

T ∗0U0(. . . , h−2, h−1, h0︸︷︷︸, h1, h2, . . . )

= T ∗0 (. . . , h−2, h−1, DPh0 − P ∗h1, Ph0 +DP ∗h1︸ ︷︷ ︸, h2, h3 . . . )

= (. . . , Fh−2 + F ∗h−1, Fh−1 + F ∗DPh0 − F ∗P ∗h1,

(DPFDP + S∗P )h0 + (−DPFP
∗ + S∗DP ∗)h1︸ ︷︷ ︸,

(−PFDP + F ∗∗DP ∗P )h0 + (PFP ∗ + F ∗∗D
2
P ∗)h1 + F∗h2,

F ∗∗ h2 + F∗h3, . . . ).

Since F is the fundamental operator of (S, P ) we have S = S∗P +DPFDP .
Therefore, in order to prove T0 = T ∗0U0, we need to show the following three
steps:

(b1) DP ∗F∗ = S∗DP ∗ −DPFP
∗.

(b2) PFDP = F ∗∗DP ∗P .
(b3) PFP ∗ + F ∗∗D

2
P ∗ = F ∗∗ .

For proving (b1) let us set G = DP ∗F∗ +DPFP
∗ − S∗DP ∗ . Obviously G

maps DP ∗ into H and

GDP ∗ = DP ∗F∗DP ∗ +DPFP
∗DP ∗ − S∗D2

P ∗

= (S∗ − SP ∗) + (S − S∗P )P ∗ − S∗(I − PP ∗), by P ∗DP ∗ = DPP
∗

= 0,
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which proves (b1). The other two parts, (b2) and (b3), follow from the facts
that PDP = DP ∗P and PF = F ∗∗P |DP

.
In the matrix of T0, A1 on l2(DP ) is same as the multiplication operator

MF+F ∗z on l2(DP ). For z = eiθ ∈ T we have that

‖F + F ∗z‖ = ‖F + eiθF ∗‖

= ‖e−iθ/2F + eiθ/2F ∗‖

= sup
‖x‖≤1

|〈(e−iθ/2F + eiθ/2F ∗)x, x〉|

(since e−iθ/2F + eiθ/2F ∗ is self-adjoint)

≤ ω(F ) + ω(F ∗)

≤ 2, (since ω(F ) ≤ 1).

So by the Maximum Modulus Principle, ‖F +F ∗z‖ ≤ 2 for all z ∈ D. Thus,
‖A1‖ = ‖MF+F ∗z‖ = ‖F +F ∗z‖ ≤ 2. Similarly we can show that ‖A5‖ ≤ 2.
Also ‖S‖ ≤ 2, because (S, P ) is a Γ-contraction. Again by Lemma 1 of [15]
we have that σ(T0) ⊆ σ(A1) ∪ σ(S) ∪ σ(A5). Therefore, r(T0) ≤ 2. Hence
(T0, U0) is a Γ-unitary.

It is evident from the matrices of T0 and U0 that PH(Tm0 Un0 )|H = SmPn

for all nonnegative integers m,n which proves that (T0, U0) dilates (S, P ).
The minimality of the Γ-unitary dilation (T0, U0) follows from the fact that
K0 and U0 are respectively the minimal unitary dilation space and minimal
unitary dilation of P . Hence the proof is complete. �

An explicit Γ-isometric dilation of a Γ-contraction was provided in [11]
(see Theorem 4.3 in [11]). Here we show that the Γ-isometric dilation can
easily be obtained as the restriction of the Γ-unitary dilation described in
the previous theorem.

Corollary 4.4. Let N0 ⊆ K0 be defined as N0 = H ⊕ l2(DP ). Then N0 is

a common invariant subspace of T0, U0 and (T [, V [) = (T0|N0 , U0|N0) is a
minimal Γ-isometric dilation of (S, P ).

Proof. It is evident from the matrix form of T0 and U0 (from the previous
theorem) that N0 = H ⊕ l2(DP )=H ⊕ DP ⊕ DP ⊕ · · · is a common invari-
ant subspace of T0 and U0. Therefore by the definition of Γ-isometry, the
restriction of (T0, U0) to the common invariant subspace N0, i.e, (T [, V [) is

a Γ-isometry. The matrices of T [ and V [ with respect to the decomposition
H⊕DP ⊕DP ⊕ · · · of N0 are the following:

T [ =


S 0 0 0 · · ·

F ∗DP F 0 0 · · ·
0 F ∗ F 0 · · ·
0 0 F ∗ F · · ·
...

...
...

...
. . .

 , V [ =


P 0 0 0 · · ·
DP 0 0 0 · · ·
0 I 0 0 · · ·
0 0 I 0 · · ·
...

...
...

...
. . .

 .
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It is obvious from the matrices of T [ and V [ that the adjoint of (T [, V [) is a

Γ-co-isometric extension of (S∗, P ∗). Therefore by Proposition 4.2, (T [, V [)
is a Γ-isometric dilation of (S, P ). The minimality of this Γ-isometric dilation

follows from the fact that N0 and V [ are respectively the minimal isometric
dilation space and minimal isometric dilation of P . Hence the proof is
complete. �

Remark 4.5. The minimal Γ-unitary dilation (T0, U0) described in Theo-
rem 4.3 is the minimal Γ-unitary extension of minimal Γ-isometric dilation
(T [, V [) given in Corollary 4.4. The reason is that if there is any Γ-unitary

extension (T,U) of (T [, V [) then U is a unitary extension of V [ and U0 is

the minimal unitary extension of V [.

5. Functional models

Wold-decomposition breaks an isometry into two parts namely a unitary
and a pure isometry. A pure isometry V is unitarily equivalent to the Toe-
plitz operator Tz on H2(DV ∗). We have an analogous Wold-decomposition
for Γ-isometries in terms of a Γ-unitary and a pure Γ-isometry (Theorem
2.9(2)). Again Theorem 2.8 tells us that every Γ-unitary is nothing but
the symmetrization of a pair of commuting unitaries. Therefore a standard
model for pure Γ-isometries gives a complete picture of a Γ-isometry. In
[12], a functional model for pure Γ-contractions has been described. When
in particular we are concerned about pure Γ-isometries, it requires a much
simpler effort to establish the model.

Theorem 5.1. Let (Ŝ, P̂ ) be a commuting pair of operators on a Hilbert

space H. If (Ŝ, P̂ ) is a pure Γ-isometry then there is a unitary operator
U : H → H2(DP̂ ∗) such that

Ŝ = U∗TϕU, and P̂ = U∗TzU, where ϕ(z) = F̂ ∗∗ + F̂∗z.

Here F̂∗ is the fundamental operator of (Ŝ∗, P̂ ∗). Conversely, every such
pair (TA+A∗z, Tz) on H2(E) for some Hilbert space E with ω(A) ≤ 1 is a
pure Γ-isometry.

Proof. First let us suppose that (Ŝ, P̂ ) is a pure Γ-isometry. Then P̂ is a
pure isometry and can be identified with Tz on H2(DP̂ ∗). Therefore, there

is a unitary U from H onto H2(DP̂ ∗) such that P̂ = U∗TzU . Since Ŝ is a

commutant of P̂ , there exists ϕ ∈ H∞(L(DP̂ ∗)) such that T = U∗TϕU . As
(Tϕ, Tz) is a Γ-isometry, by the relation Tϕ = T ∗ϕTz (see Theorem 2.9), we
have that

ϕ(z) = A+A∗z, for some A ∈ L(DV ∗).

Also ‖Tϕ‖ = ‖ϕ‖∞ ≤ 2. Therefore, for any real θ,

‖A+A∗eiθ‖ = ‖Ae−iθ/2 +A∗eiθ/2‖ = ‖2Re(e−iθ/2A)‖ ≤ 2.
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Therefore, ω(A) ≤ 1 by Lemma 3.1. It is evident from the proof of The-
orem 3.3 that if (TA+A∗z, Tz) is a Γ-isometry then A∗ is the fundamental

operator of the Γ-co-isometry (T ∗A+A∗z, T
∗
z ). Denoting by F̂∗, the fundamen-

tal operator of (Ŝ∗, P̂ ∗), we have that Ŝ = U∗TF̂ ∗
∗ +F̂∗z

U .

The proof to the converse is simple. The fact that (TA+A∗z, Tz) on H2(E)
is a Γ-isometry, when ω(A) ≤ 1, follows from Theorem 2.9(3). Moreover,
since Tz is pure isometry, (TA+A∗z, Tz) is a pure Γ-isometry. �

The following result of one variable dilation theory is necessary for the
proof of the model theorem for a Γ-contraction. We present a proof of it
due to lack of a good reference.

Proposition 5.2. If T is a contraction and V is its minimal isometric
dilation then T ∗ and V ∗ have defect spaces of same dimension.

Proof. Let T and V be defined on H and K. Since V is the minimal
isometric dilation of T we have

K = span{p(V )h : h ∈ H and p is any polynomial in one variable}.

The defect spaces of T ∗ and V ∗ are respectively DT ∗ = Ran (I − TT ∗)
1
2

and DV ∗ = Ran (I − V V ∗)
1
2 . Let N = Ran (I − V V ∗)

1
2 |H. For h ∈ H and

n ≥ 1, we have

(I − V V ∗)V nh = V nh− V V ∗V nh = 0,

as V is an isometry. Therefore, (I − V V ∗)p(V )h = p(0)(I − V V ∗)h for any
polynomial p in one variable. So (I−V V ∗)k ∈ N for any k ∈ K. This shows
that Ran(I − V V ∗) ⊆ N and hence Ran(I − V V ∗) = DV ∗ = N .

We now define for h ∈ H,

LRan(I − TT ∗)
1
2 → Ran(I − V V ∗)

1
2

(I − TT ∗)
1
2h 7→ (I − V V ∗)

1
2h.

We prove that L is an isometry. Since V ∗ is co-isometric extension of T ∗,
TT ∗ = PHV V

∗|H and thus we have (IH−TT ∗) = PH(IK−V V ∗)|H, that is,
D2
P ∗ = PHD

2
V ∗ |H. Therefore, for h ∈ H,

‖DT ∗h‖2 = 〈D2
P ∗h, h〉 = 〈PHD2

V ∗h, h〉 = 〈D2
V ∗h, h〉 = ‖DV ∗h‖2,

and L is an isometry and this can clearly be extended to a unitary from DT ∗

to DV ∗ . �

The following is the model theorem of a Γ-contraction and is another
main result of this section. This can be treated as a concrete form of the
model given by Agler and Young (Theorem 1.3) in the sense that we have
specified the model space and model operators.
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Theorem 5.3. Let (S, P ) be a Γ-contraction on a Hilbert space H. Let
(T, V ) on K∗ = H⊕DP ∗ ⊕DP ∗ ⊕ · · · be defined as

T =


S DP ∗F∗ 0 0 · · ·
0 F ∗∗ F∗ 0 · · ·
0 0 F ∗∗ F∗ · · ·
0 0 0 F ∗∗ · · ·
...

...
...

...
. . .

 , V =


P DP ∗ 0 0 · · ·
0 0 I 0 · · ·
0 0 0 I · · ·
0 0 0 0 · · ·
...

...
...

...
. . .

 ,
where F∗ is the fundamental operator of (S∗, P ∗). Then:

(1) (T, V ) is a Γ-co-isometry, H is a common invariant subspace of T, V
and T |H = S and V |H = P .

(2) There is an orthogonal decomposition K∗ = K1 ⊕ K2 into reduc-
ing subspaces of T and V such that (T |K1 , V |K1) is a Γ-unitary and
(T |K2 , V |K2) is a pure Γ-co-isometry.

(3) K2 can be identified with H2(DV ), where DV has same dimension
as that of DP . The operators T |K2 and V |K2 are respectively uni-
tarily equivalent to TB+B∗z̄ and Tz̄ defined on H2(DV ), B being the
fundamental operator of (T, V ).

Proof. It is evident from Corollary 4.4 that (T ∗, V ∗) is minimal Γ-isometric
dilation of (S∗, P ∗), where V ∗ is the minimal isometric dilation of P ∗. There-
fore by Proposition 4.2, (T, V ) is Γ-co-isometric extension of (S, P ). So we
have that H is a common invariant subspace of T and V and T |H = S,
V |H = P . Again since (T ∗, V ∗) is a Γ-isometry, by Theorem 2.9(2), there
is an orthogonal decomposition K∗ = K1 ⊕ K2 into reducing subspaces of
T and V such that (T |K1 , V |K1) is a Γ-unitary and (T |K2 , V |K2) is a pure
Γ-co-isometry. If we denote (T |K1 , V |K1) by (T1, V1) and (T |K2 , V |K2) by
(T2, V2) then with respect to the orthogonal decomposition K∗ = K1 ⊕ K2

we have

T =

[
T1 0
0 T2

]
, V =

[
V1 0
0 V2

]
.

The fundamental equation T − T ∗V = DVXDV clearly becomes[
T1 − T ∗1 V1 0

0 T2 − T ∗2 V2

]
=

[
0 0
0 DV2X2DV2

]
, X =

[
X1

X2

]
.

Since DV = DV2 , the above form of the fundamental equation shows that
(T, V ) and (T2, V2) have the same fundamental operator. Now we apply
Theorem 5.1 to the pure Γ-isometry (T ∗2 , V

∗
2 ) = (T ∗|K2 , V

∗|K2) and get the
following:

(i) K2 can be identified with H2(DV2) = H2(DV ).
(ii) T ∗2 and V ∗2 can be identified with the Toeplitz operators TB∗+Bz

and Tz respectively defined on H2(DV ), B being the fundamental
operator of (T, V ).
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Therefore, T |K2 and V |K2 are respectively unitarily equivalent to TB+B∗z̄

and Tz̄ defined on H2(DV ). Also since V ∗ is the minimal isometric dilation
of P ∗ by Proposition 5.2, DV and DP have same dimension. �

Acknowledgement. The author would like to thank Orr Shalit for his
invaluable comments on this article. Moreover, the author is grateful to Orr
Shalit for providing warm and generous hospitality at Ben-Gurion Univer-
sity, Be’er Sheva, Israel.

References

[1] Agler, Jim. Rational dilation on an annulus. Ann. of Math. 121 (1985), no. 3,
537–563. MR0794373 (87a:47007), Zbl 0609.47013, doi: 10.2307/1971209.

[2] Agler, Jim; Harland, John; Raphael, Benjamin J. Classical function theory,
operator dilation theory, and machine computation on multiply-connected domains.
Mem. Amer. Math. Soc. 191 (2008), no. 892, viii+159 pp. MR2375060 (2009d:47011),
Zbl 1145.30001, doi: 10.1090/memo/0892.

[3] Agler, J.; Young, N.J. A commutant lifting theorem for a domain in C2 and
spectral interpolation. J. Funct. Anal. 161 (1999), no. 2, 452–477. MR1674635
(2000f:47013), Zbl 0943.47005, doi: 10.1006/jfan.1998.3362.

[4] Agler, J.; Young, N.J. Operators having the symmetrized bidisc as a spectral set.
Proc. Edinburgh Math. Soc. (2) 43 (2000), no. 1, 195–210. MR1744711 (2001c:47008),
Zbl 0983.47004, doi: 10.1017/S0013091500020812.

[5] Agler, J.; Young, N.J. A schwarz lemma for symmetrized bidisc. Bull. London
Math. Soc. 33 (2001), no. 2, 175–186. MR1815421 (2002e:30026), Zbl 1030.32011,
doi: 10.1112/blms/33.2.175.

[6] Agler, J.; Young, N.J. A model theory for Γ-contractions. J. Operator Theory 49
(2003), no. 1, 45–60. MR1978320 (2004b:47008), Zbl 1019.47013.

[7] Agler, J.; Young, N.J. The hyperbolic geometry of the symmetrized bidisc. J.
Geom. Anal. 14 (2004), no. 3, 375–403. MR2077158 (2005e:32022), Zbl 1055.32010,
doi: 10.1007/BF02922097.

[8] Agler, Jim; Young, Nicholas John. The magic functions and automorphisms of a
domain. Complex. Anal. Oper. Theory 2 (2008), 383–404. MR2434458 (2010c:32015),
Zbl 1195.32013, arXiv:0709.0096, doi: 10.1007/s11785-007-0039-5.
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