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Examples of parametrized families of
elliptic functions with empty Fatou sets

Lorelei Koss

Abstract. In this paper, we investigate parametrized families of ellip-
tic functions on real rectangular lattices. Although these functions have
at most four critical values, we prove that they have at most one at-
tracting or parabolic cycle of Fatou components. We find some families
for which the Julia set is always the entire sphere.
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1. Introduction

Hawkins showed in [10] that the Weierstrass elliptic ℘-function on any
square lattice in the real rhombic position has Julia set equal to the entire
sphere. The space of all real lattices can be parametrized by C\{0}, and the
real rhombic lattices lie on the negative real axis. The main technique used
in [10] to show that the Fatou set was empty involved extending a result
of Singer’s [21] on properties of real functions with negative Schwarzian
derivatives to the context of elliptic functions.
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In this paper, we investigate elliptic functions of the form

fn,Λ,b(z) = (℘Λ(z))n + b,

where Λ is a real rectangular lattice, n is a positive integer, and b is a
real number. The functions fn,Λ,b have order 2n and two, three, or four
distinct critical values, depending on the shape of the lattice and the value
of n. We show that fn,Λ,b restricted to the real line always has a negative
Schwarzian derivative. Using the techniques developed in [10], we prove
that the complex functions fn,Λ,b have at most one periodic cycle of Fatou
components that is either attracting or parabolic.

We apply the results to families fn,Λ,b with b = −en1 , where e1 is the
real critical value of ℘Λ. With this choice of b, these functions all have the
property that the real critical value of fn,Λ,b is a pole. In this case, our main
theorem implies that that the Julia set of fn,Λ,b is always the entire sphere
on any real rectangular lattice, an open set in the parameter space of real
lattices.

We also use our results to investigate the Weierstrass ℘Λ-function on real
rectangular lattices Λ. In [11], Hawkins and the author proved that the
Julia set of ℘Λ on a real rectangular lattice is either the entire sphere or
there exists at most three real periodic cycles that are superattracting or
rationally neutral. The main theorem proved here implies that either the
Julia set of ℘Λ is the entire sphere or there is exactly one attracting or
rationally neutral real cycle. In [12], infinitely many real lattices for which
the Julia set of ℘Λ is the entire sphere were found, but not one for every real
rectangular equivalence class of lattices. We strengthen the result in [12] by
finding infinitely many lattices in each real rectangular equivalence class for
which the Julia set of ℘Λ is the entire sphere.

2. The iteration of elliptic functions

We begin with some preliminaries about elliptic functions, the Weierstrass
℘-function and period lattices. Let λ1, λ2 be nonzero complex numbers such
that λ2/λ1 /∈ R. A lattice Λ ⊂ C is defined by

Λ = [λ1, λ2] = {mλ1 + nλ2 : m,n ∈ Z};

we note that two different sets of vectors can generate the same lattice Λ.
If Λ = [λ1, λ2], and k 6= 0 is any complex number, then kΛ is the lattice

defined by taking kλ for each λ ∈ Λ; kΛ is said to be similar to Λ. Similar-
ity is an equivalence relation between lattices, and an equivalence class of
lattices is called a shape. A lattice Λ is real if Λ = Λ.

Definition 2.1.

(1) A lattice Λ is real rectangular if Λ = [λ1, λ2] with λ1 ∈ R and λ2

purely imaginary.
(2) A lattice Λ is real rhombic if Λ = [λ1, λ2] with λ2 = λ1.
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(3) A lattice Λ is square if iΛ = Λ. (Equivalently, Λ is square if it is
similar to a lattice generated by [λ, λ i], for some λ > 0.)

In each of cases of Definition 2.1, the period parallelogram with vertices
0, λ1, λ2, and λ3 := λ1 + λ2 can be chosen to look rectangular, rhombic, or
square respectively.

We begin with a meromorphic function f : C→ C∞, where C∞ = C∪{∞}
denotes the Riemann sphere. An elliptic function is a meromorphic function
in C which is periodic with respect to a lattice Λ. For any z ∈ C and any
lattice Λ, the Weierstrass elliptic function is defined by

℘Λ(z) =
1

z2
+

∑
w∈Λ\{0}

(
1

(z − w)2
− 1

w2

)
.

It is well-known that ℘Λ is meromorphic, is even, is periodic with respect to
Λ, and has order 2. In the following, we will denote iteration of ℘Λ by ℘nΛ
or ℘nΛ(z) and products of ℘Λ by (℘Λ)n or (℘Λ(z))n.

The Weierstrass elliptic function and its derivative are related by the
differential equation

(1) (℘′Λ(z))2 = 4(℘Λ(z))3 − g2℘Λ(z)− g3,

where

g2(Λ) = 60
∑

w∈Λ\{0}

w−4,

and

g3(Λ) = 140
∑

w∈Λ\{0}

w−6.

The numbers g2(Λ) and g3(Λ) are invariants of the lattice Λ in the follow-
ing sense: if g2(Λ) = g2(Λ′) and g3(Λ) = g3(Λ′), then Λ = Λ′. Furthermore,
given any g2 and g3 such that g3

2 − 27g2
3 6= 0 there exists a lattice Λ having

g2 = g2(Λ) and g3 = g3(Λ) as its invariants [8], and we call such a lattice Λ
a (g2, g3) lattice.

In this paper, we focus on real lattices. We say that ℘Λ is real if z ∈ R
implies that ℘Λ(z) ∈ R ∪ {∞}.

Theorem 2.2 ([16]). The following are equivalent:

(1) ℘Λ is real.
(2) Λ is a real lattice.
(3) g2, g3 ∈ R.

For any lattice Λ, the Weierstrass elliptic function and its invariants satisfy
homogeneity properties:

Lemma 2.3 ([8]). For lattices Λ and Λ′ and for k ∈ C\{0}:
(1) Λ′ = kΛ if and only if g2(Λ′) = k−4g2(Λ) and g3(Λ′) = k−6g3(Λ).
(2) If Λ′ = kΛ then ℘Λ′(ku) = k−2℘Λ(u) for all u ∈ C.
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Verification of the homogeneity properties can be seen by substitution
into the series definitions.

The following classical result characterizes all elliptic functions in terms
of ℘ and ℘′.

Theorem 2.4 ([8]). Every elliptic function fΛ with period lattice Λ can be
written as fΛ(z) = R(℘Λ(z)) +℘Λ

′(z)Q(℘Λ(z)), where R and Q are rational
functions with complex coefficients. The converse is also true; namely, every
fΛ of this form is elliptic.

We can determine the critical values of the Weierstrass elliptic function
on an arbitrary lattice Λ = [λ1, λ2]. Define λ3 = λ1 + λ2. For j = 1, 2, 3,
notice that ℘Λ(λj − z) = ℘Λ(z) for all z. Taking derivatives of both sides
we obtain −℘′Λ(λj − z) = ℘′Λ(z). Substituting z = λj/2, we see that

(2) ℘′Λ(z) = 0 when z =
λj
2

+ Λ,

for j = 1, 2, 3. We use the notation

(3) e1 = ℘Λ

(
λ1

2

)
, e2 = ℘Λ

(
λ2

2

)
, e3 = ℘Λ

(
λ3

2

)
to denote the critical values of ℘Λ. Since e1, e2, e3 are the distinct zeros of
Equation (1), we also write

(4) (℘′Λ(z))2 = 4(℘Λ(z)− e1)(℘Λ(z)− e2)(℘Λ(z)− e3).

Equating like terms in Equations (1) and (4), we obtain

(5) e1 + e2 + e3 = 0, e1e3 + e2e3 + e1e2 =
−g2

4
, e1e2e3 =

g3

4
.

It will be useful to have an expression for the second derivative of the
Weierstrass elliptic function,

(6) ℘′′Λ(z) = 6(℘Λ(z))2 − g2(Λ)

2
.

The lattice shape relates to the properties and dynamics of the cor-
responding Weierstrass elliptic function to some extent, as discussed in
[9, 10, 11, 12, 13, 14, 15]; however these papers also show that within a
given shape equivalence class the dynamics vary widely.

2.1. Real rectangular lattices. In this section we recall some well-known
results about the Weierstrass elliptic function on real rectangular lattices.
By Theorem 2.2, Λ is real if and only if g2(Λ) and g3(Λ) are real, so we
can identify a real lattice Λ with a point (g2, g3) in R2. We begin with a
proposition that locates real rectangular lattices in the real (g2, g3) plane.

Denote p(x) = 4x3 − g2x− g3, the polynomial associated with Λ.

Proposition 2.5 ([8]).

(1) If Λ is real rectangular, then g3
2 − 27g2

3 > 0 and g2 > 0; in this case
the roots of p are three distinct real roots.
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Figure 1. Points
in (g2, g3) parameter
space corresponding
to real rectangular
lattices.
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Figure 2. All points
colored orange repre-
sent real lattices sim-
ilar to the (5,−1) lat-
tice.

(2) If Λ is real rectangular square, then g2 > 0 and g3 = 0; in this case
the roots of p are 0,±√g2/2.

The grey region in Figure 1 shows the locations of real rectangular lattices
in (g2, g3) space. The curve g3

2 − 27g2
3 = 0 for which no lattice is defined is

shown as a dotted black curve. We can use Lemma 2.3 to find all real lattices
that are similar to a given real lattice. If Λ is the real lattice corresponding
to the invariants (g2, g3), then parameters that lie on the planar curve

y2 = g2
3x

3/g3
2

represent real lattices similar to Λ. In Figure 2, the orange curve represents
the invariants of real lattices that are similar to the lattice Λ with invariants
(g2, g3) = (5,−1). In this case, the portion of the curve lying in the lower half
plane represents lattices kΛ where k is real. The portion of the curve lying
in the upper half plane represents lattices kΛ where k is purely imaginary;
note that kΛ is still real rectangular in this case.

Next, we state some properties of ℘Λ on any real rectangular lattice. The
following proposition, which can be obtained using Equations (1) and (5),
provides useful information for our study in subsequent sections.

Proposition 2.6 ([11]). Let Λ = [λ1, λ2] with λ1 > 0 be a real rectangular
lattice. Then:

(1) ℘Λ|R : R→ [e1,∞] is piecewise monotonic and onto. Specifically, ℘Λ

is strictly decreasing on [0, λ1/2] and strictly increasing on [λ1/2, λ1],
where λ1 > 0 denotes the real period of Λ.
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(2) The critical values e1, e2, e3 of ℘Λ are all real.
(a) If g3 > 0 then e2 < e3 < 0 < e1, and ℘Λ has a zero on the

vertical line segment connecting λ1/2 to (λ1 + λ2)/2.
(b) If g3 < 0 then e2 < 0 < e3 < e1, and ℘Λ has a zero on the

horizontal line segment connecting λ2/2 to (λ1 + λ2)/2.
(c) If g3 = 0 (Λ is rectangular square) then

e1 =
√
g2/2 > 0, e2 = −e1, and e3 = 0.

2.2. The family of functions fn,Λ,b. The investigation in this paper fo-
cuses on elliptic functions of the form fn,Λ,b(z) = (℘Λ(z))n + b with Λ a real
rectangular lattice, n a positive integer, and b ∈ R. Since ℘Λ is even and
periodic with respect to Λ, so is fn,Λ,b. Since ℘Λ has order two, fn,Λ,b has
order 2n. Many properties about the critical points, critical values, as well
as the shape of fn,Λ,b restricted to R, follow from properties of ℘Λ; we collect
these into one lemma.

Lemma 2.7. Let Λ = [λ1, λ2] with λ1 > 0 be a real rectangular lattice.

(1) If n = 1 then the critical points of f1,Λ,b are

{λ1/2, λ2/2, λ1/2 + λ2/2}+ Λ,

and the critical values are e1 + b, e2 + b, and e3 + b.
(2) If n > 1 then the critical points of fn,Λ,b are

{λ1/2, λ2/2, λ1/2 + λ2/2, ℘
−1
Λ (0)}+ Λ,

and the critical values are en1 + b, en2 + b, en3 + b and b.
(3) The only real critical points of fn,Λ,b are λ1/2 + kλ1, k ∈ Z.
(4) fn,Λ,b : R→ [en1 + b,∞] and f(λ1/2) = en1 + b.
(5) The postcritical set of fn,Λ,b is real.
(6) fn,Λ,b is strictly decreasing on [0, λ1/2] and strictly increasing on

[λ1/2, λ].

Proof. If n = 1 then the critical points of f1,Λ,b are the roots of ℘′Λ, which
occur at {λ1/2, λ2/2, λ1/2 + λ2/2}+ Λ by Equation (2). The critical values
of ℘Λ are defined in Equation (3), and thus the critical values of f1,Λ,b are
e1 + b, e2 + b, and e3 + b. If n > 1 then f ′n,Λ,b(z) = n(℘Λ(z))n−1℘′Λ(z), and

so the critical points of fn,Λ,b occur at the roots of ℘Λ and the roots of ℘′Λ,

or {λ1/2, λ2/2, λ1/2 + λ2/2, ℘
−1
Λ (0)} + Λ. Thus for n > 1, fn,Λ,b has four

critical values: en1 + b, en2 + b, en3 + b and b (which may not be distinct).
By definition, if the real rectangular lattice Λ = [λ1, λ2] has λ1 > 0, then

{λ2/2, λ1/2 + λ2/2} + Λ do not lie on the real line. By Proposition 2.6(2),
the zeros of ℘Λ lie on the vertical line connecting λ1/2 to (λ1 + λ2)/2 (and
its translates) or the horizontal line connecting λ2/2 to (λ1 + λ2)/2 (and its
translates), and therefore the only real critical points are λ1/2 + kλ1, k ∈ Z.

Parts (4) and (6) follow immediately from Proposition 2.6(2) and the
fact that f ′n,Λ,b(z) = n(℘Λ(z))n−1℘′Λ(z). Proposition 2.6(2) implies that the
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Figure 3. An example of a graph f2,Λ,1(x) = (℘Λ(x))2 + 1
on R, where (g2, g3) = (5,−1), in black, with its Schwarzian
Sf2,Λ,1

(x) (see Theorem 3.5) in blue.

critical values of fn,Λ,b are real, and thus so is the entire postcritical set using
part (4). �

Since e1, e2, and e3 are distinct, the critical values in Lemma 2.7(1) are
distinct. However, the critical points and critical values discussed in Lem-
ma 2.7(2) may not be distinct. If Λ is square then ℘−1

Λ (0) = (λ1 + λ2)/2 +
Λ, so there are only three equivalence classes of critical points. A simple
example with fewer critical values occurs when Λ is square and n = 2; in this
case, e2 = −e1 by Proposition 2.6(2c), so (e1)2 + b = (e2)2 + b. The black
curve in Figure 3 shows part of a typical function in this family restricted to
R, f2,Λ,1(x) = (℘Λ(x))2 +1, where the lattice Λ is defined by the parameters
g2(Λ) = 5 and g3(Λ) = −1. The function shown in blue will be described in
Section 3.

2.3. Julia and Fatou sets of elliptic functions. We review the ba-
sic dynamical definitions and properties for meromorphic functions which
appear, for example, in [1, 2, 3, 7]. Let f : C → C∞ be a meromorphic
function, and let fk(z) denote the composition of f with itself k times.
The Fatou set F (f) is the set of points z ∈ C∞ such that {fk : k ∈ N}
is defined and normal in some neighborhood of z. The Julia set is the
complement of the Fatou set on the sphere, J(f) = C∞\F (f). Notice that

C∞\
⋃
k≥0 f

−k(∞) is the largest open set where all iterates are defined. Since
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f(C∞\
⋃
k≥0 f

−k(∞)) ⊂ C∞\
⋃
k≥0 f

−k(∞), Montel’s theorem implies that

J(f) =
⋃
k≥0

f−k(∞).

Let Crit(f) denote the set of critical points of f , i.e.,

Crit(f) = {z : f ′(z) = 0}.
If z0 is a critical point then f(z0) is a critical value. The singular set Sing(f)
of f is the set of critical and finite asymptotic values of f and their limit
points. A function is called Class S if f has only finitely many critical and
asymptotic values; for each lattice Λ, every elliptic function with period
lattice Λ is of Class S [8]. If f is Class S then f does not have wandering
domains [2] or Baker domains [20]. The postcritical set of f is:

P (f) =
⋃
k≥1

fk(Crit(f)).

For a meromorphic function f , a point z0 is periodic of period p if there
exists a p ≥ 1 such that fp(z0) = z0. We also call the set

{z0, f(z0), . . . , fp−1(z0)}
a p-cycle. The multiplier of a point z0 of period p is the derivative (fp)′(z0).
A periodic point z0 is called attracting, repelling, or neutral if |(fp)′(z0)| is
less than, greater than, or equal to 1 respectively. If |(fp)′(z0)| = 0 then z0

is called a superattracting periodic point.
Suppose U is a connected component of the Fatou set. We say that U is

preperiodic if there exists n > m ≥ 0 such that fn(U) = fm(U), and the
minimum of n−m = p for all such n,m is the period of the cycle.

Let C = {U0, U1, . . . Up−1} be a periodic cycle of components of F (f). If
C is a cycle of immediate attractive basins or Leau domains, then

Uj ∩ Sing(f) 6= ∅
for some 0 ≤ j ≤ p− 1. If C is a cycle of Siegel Disks or Herman rings, then

∂Uj ⊂
⋃
k≥0

fk(Sing(f))

for all 0 ≤ j ≤ p− 1. In particular, singular points are required for any type
of preperiodic Fatou component.

In this paper, we focus exclusively on elliptic functions whose postcritical
set is real and which map the real line to the real line. In this case, we can
eliminate the possibility of Siegel disks or Herman rings. A version of the
following proposition was proved for ℘Λ in [11], and we extend the result to
the family fn,Λ,b on real rectangular lattices.

Proposition 2.8. If fn,Λ,b(z) = (℘Λ(z))n + b, with b ∈ R and Λ a real
rectangular lattice, then fn,Λ,b has no Siegel disks or Herman rings.



ELLIPTIC FUNCTIONS WITH EMPTY FATOU SETS 615

Proof. Since fn,Λ,b is periodic with respect to Λ, we have

J(fn,Λ,b) + Λ = J(fn,Λ,b)

and F (fn,Λ,b) + Λ = F (fn,Λ,b). If C = {U0, U1, . . . Up−1} is a cycle of Siegel
disks or Herman rings, then

∂Uj ⊂
⋃
k≥0

fkn,Λ,b(Sing(fn,Λ,b))

for all 0 ≤ j ≤ p − 1. (cf. [3], Theorem 7). By Lemma 2.7(5), the post-
critical set of fn,Λ,b is contained in the real axis, and thus the closure of the
postcritical set is a subset of R ∪ {∞}. However, our cycle C must satisfy
∂Uj ⊂ R for all 0 ≤ j ≤ p− 1, which contradicts the periodicity of the Julia
set with respect to Λ. �

3. The Schwarzian derivative

In this section, we prove a sharp bound on the number of nonrepelling
periodic orbits for fn,Λ,b on a real rectangular lattice. For a general interval
map, there can be more nonrepelling cycles than critical points; an example
of a real polynomial function with one critical point and two attracting cycles
can be found in [21]. Even in the case of elliptic functions it is possible to
have such behavior. For example, ℘Λ on the real rhombic lattice Λ with
invariants g2(Λ) = 26.56 and g3(Λ) = −26.26 has a real attracting fixed
point that does not attract any real critical point (see Example 3.7 in [13]),
and so the results of this paper cannot be extended to elliptic functions on
arbitrary real rhombic lattices.

Schwarzian derivatives were first used in the context of the Weierstrass
elliptic function in [10] to show that real rhombic square lattices have no
non-repelling periodic cycles, and our method in this section follows the
technique given there.

We recall the definition of the Schwarzian derivative.

Definition 3.1. If z is not a critical point or pole of a meromorphic function
g, then the Schwarzian derivative of g at z is

Sg(z) =
g′′′(z)

g′(z)
− 3

2

(
g′′(z)

g′(z)

)2

.

Using the chain rule, we have that

Sg◦h(z) = Sg(h(z))(h′(z))2 + Sh(z)

at every point z for which h(z) is defined. The chain rule immediately
implies the following lemma.

Lemma 3.2. If Sg < 0 and Sh < 0 then Sg◦h < 0.
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3.1. The Schwarzian derivative of fn,Λ,b. We focus our attention on
the function fn,Λ,b(z) = (℘Λ(z))n+b for n ≥ 1 and b ∈ R on real rectangular
lattices Λ.

Lemma 3.3. Let Λ be a real rectangular lattice and let b ∈ R.

(1) Sfn,Λ,b
is an even elliptic function with poles at lattice points and half

lattice points.
(2) Sfn,Λ,b

is a real valued meromorphic function when restricted to R.

Proof. Let Λ be a real rectangular lattice, and let g2 = g2(Λ) and g3 = g3(Λ)
be its invariants. For n ≥ 1 we have f ′n,Λ,b = n(℘Λ)n−1℘′Λ. If n = 1 then

f ′′1,Λ,b = ℘′′Λ = 6(℘Λ)2 − g2/2 by Equation (6). For n > 1, we use the chain

rule and Equations (1) and (6) to obtain

f ′′n,Λ,b = n(℘Λ)n−1℘′′Λ + n(n− 1)(℘Λ)n−2(℘′Λ)2(7)

= n(℘Λ)n−1
(

6(℘Λ)2 − g2

2

)
+ n(n− 1)(℘n−2

Λ )(4(℘Λ)3 − g2℘Λ − g3)

= (g3n− g3n
2)(℘Λ)n−2 +

(g2n

2
− g2n

2
)

(℘Λ)n−1

+ (2n+ 4n2)(℘Λ)n+1.

For all n ≥ 1, we simplify by writing f ′′n,Λ,b = Pn(℘Λ), where Pn is a
polynomial of degree n+ 1 with real coefficients.

Using the chain rule, we have f ′′′n,Λ,b = P ′n(℘Λ)℘′Λ, and thus

Sfn,Λ,b
=

P ′n(℘Λ)℘′Λ
n(℘Λ)n−1℘′Λ

− 3

2

(
Pn(℘Λ)

n(℘Λ)n−1℘′Λ

)2

=
P ′n(℘Λ)

n(℘Λ)n−1
− 3

2

(
Pn(℘Λ)

n(℘Λ)n−1

)2 1

4(℘Λ)3 − g2℘Λ − g3
,

by Equation (1). For n = 1 we substitute f ′′1,Λ,b = ℘′′Λ = 6(℘Λ)2 − g2/2 to
obtain

Sf1,Λ,b
=
−3
(
g2

2 + 32g3℘Λ + 8g2(℘Λ)2 + 16(℘Λ)4
)

8(℘′Λ)2
(8)

=
−3
(
g2

2 + 32g3℘Λ + 8g2(℘Λ)2 + 16(℘Λ)4
)

8(4(℘Λ)2 − g2℘Λ − g3)
.
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For n > 1, we substitute Equation (7) for Pn and simplify.

Sfn,Λ,b
=
[
(.5g2

3 − .5g2
3n

2) + (21g3 − .5g2g3 − 21g3n+ 1.5g2g3n− g2g3n
2)℘Λ

+ (−73.5 + 21g2 − g2
2 − 21g2n+ 1.5g2

2n− .5g2
2n

2)(℘Λ)2

+ (−16g3 + 4g3n
2)(℘Λ)3 + (42− 10g2 + 84n− 6g2n+ 4g2n

2)(℘Λ)4

+ (2− 8n2)(℘Λ)6
]

/
(
4(℘Λ)5 − g2(℘Λ)3 − g3(℘Λ)2

)
.

Since Sfn,Λ,b
is a rational function of ℘Λ, it is elliptic by Theorem 2.4. It

is clearly even since ℘Λ is even. Simplifying the denominator of Sfn,Λ,b
when

n > 1, we obtain 4(℘Λ)5 − g2(℘Λ)3 − g3(℘Λ)2 = (℘Λ)2℘′Λ. The denominator
is only zero when ℘′Λ = 0 since ℘Λ 6= 0 on the real line by Proposition 2.6(2).
Therefore, the poles of Sfn,Λ,b

occur at the poles of ℘ and the zeros of ℘′,
which are the lattice points and half lattice points respectively.

Since g2, g3 ∈ R then by Theorem 2.2 either Sfn,Λ,b
(z) ∈ R or z is a

pole. �

Next, we prove that the Schwarzian of f1,Λ,b(z) = ℘Λ(z) + b is negative
on every real rectangular lattice.

Proposition 3.4. If Λ is a real rectangular lattice and b ∈ R, then Sf1,Λ,b

is negative for all real z for which it is defined.

Proof. Let Λ be a real rectangular lattice with invariants g2 and g3. Since
Λ is understood, we write ℘Λ = ℘. From Equation (8),

Sf1,Λ,b
=
−3
(
g2

2 + 32g3℘+ 8g2(℘)2 + 16(℘)4
)

8(℘′)2
.

Recall that g2 > 0 by Proposition 2.5, and ℘(z) > e1 > 0 on R by
Proposition 2.6(2). Thus, if g3 ≥ 0 then Sf1,Λ,b

< 0 at all points which are
not poles.

Consider the situation when g3 < 0. Using the function

h = g2
2 + 32g3℘+ 8g2(℘)2 + 16(℘)4

that appears in the numerator of the formulation of Sf1,Λ,b
in Equation (8),

we claim that h > 0. To prove the claim, we begin by applying Theo-
rem 2.4 to observe that h is an even elliptic function with period lattice Λ.
Theorem 2.2 implies that h maps R to R ∪ {∞}.

Next, we show that h has a minimum at λ1/2. Taking the derivative, we
obtain

h′ = 16℘′(2g3 + g2℘+ 4(℘)3).

Since ℘′ < 0 on (0, λ1/2) by Proposition 2.6(1), if we show that the function
k = 2g3 + g2℘+ 4(℘)3 is always positive on (0, λ1/2) then h is decreasing on
(0, λ1/2). Proposition 2.6(2) also implies that ℘(z) ≥ e1 > 0 on R, so

k = 2g3 + g2℘+ 4(℘)3 ≥ 2g3 + g2e1 + 4e3
1.
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Using the relationship between g2, g3 and the critical values e1, e2, and e3 in
Equation (5), we have

k ≥ 2g3 + g2e1 + 4e3
1 = 2(4e1e2e3)− 4(e1e2 + e2e3 + e1e3)e1 + 4e3

1

= 4e1(e2 − e1)(e3 − e1).

By Proposition 2.6(2b), since g3 < 0 we have that e2 < 0 < e3 < e1.
Therefore k > 0, and h′ < 0 on (0, λ1/2). Thus h is decreasing on (0, λ1/2).
Since h is even and periodic with respect to Λ, h is increasing on (λ1/2, λ1)
and thus h has a minimum at λ1/2. We apply all three equations shown in
Equation (5) to obtain that for z 6= λ1/2,

h(z) > h

(
λ1

2

)
= g2

2 + 32g3℘

(
λ1

2

)
+ 8g2

(
℘

(
λ1

2

))2

+ 16

(
℘

(
λ1

2

))4

= g2
2 + 32g3e1 + 8g2e

2
1 + 16e4

1

= g2
2 + 32(4e1e2e3)e1 + 8g2e

2
1 + 16e4

1

= g2
2 + 128e2

1(e2e3) + 8g2e
2
1 + 16e4

1

= g2
2 + 128e2

1

(
−g2

4
− e1e2 − e1e3

)
+ 8g2e

2
1 + 16e4

1

= g2
2 + 128e2

1

(
−g2

4
+ e2

1

)
+ 8g2e

2
1 + 16e4

1

= (g2 − 12e2
1)2 ≥ 0.

This completes the proof of our claim that h > 0. Since λ1/2 is a pole of
Sf1,Λ,b

, we have that Sf1,Λ,b
< 0 at all z that are not lattice points or half

lattice points. �

Next, we show that all functions fn,Λ,b with n > 1 have negative Schwarz-
ian.

Theorem 3.5. If Λ is a real rectangular lattice, n > 1, b ∈ R, and

fn,Λ,b = (℘Λ)n + b,

then Sfn,Λ,b
< 0 for all z that are not lattice or half lattice points.

Proof. Using Proposition 3.4 with b = 0, we have that Sf1,Λ,0
= S℘Λ < 0

for all real rectangular lattices Λ. If g(x) = xn with n ≥ 2, then

Sg = −(n− 1)(n+ 1)

2x2
.

So Sg < 0 for all x 6= 0. Using Lemma 3.2, S(℘Λ)n = Sg◦℘Λ < 0 at all points
which are not lattice points of half lattice points. Finally, since S(℘Λ)n =
Sfn,Λ,b

for all n ≥ 1, we have that Sfn,Λ,b
< 0. �

Figure 3 shows the Schwarzian Sf2,Λ,1
(x) in blue for a typical function in

this family, f2,Λ,1(x) = (℘Λ(x))2 + 1, where the lattice Λ is defined by the
parameters g2(Λ) = 5 and g3(Λ) = −1.
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3.2. Consequences of a negative Schwarzian. In [10], Hawkins ex-
tended Singer’s result to the elliptic function ℘Λ defined on real rhombic
square lattices. Rhombic square lattices have g2 < 0 and g3 = 0 and appear
on the negative horizontal axis in Figure 1. The proof given in [10] that ℘Λ

on a square lattice satisfied a Minimum Principle depended on properties of
the square lattice; the proof shown here for fn,Λ,b on any real rectangular
lattice is similar to that found in [4].

Lemma 3.6 (Minimum Principle). Assume that Λ is a real rectangular
lattice. Suppose we have a closed interval I ⊂ R with endpoints l < r, not
containing any poles or critical points of fn,Λ,b. Then

|f ′n,Λ,b(z)| > min{|f ′n,Λ,b(l)|, |f ′n,Λ,b(r)|},∀z ∈ (l, r).

Proof. Let z0 be a critical point of |f ′n,Λ,b|. Then f ′′n,Λ,b(z0) = 0. Since

Sfn,Λ,b
< 0 by Theorem 3.5, f ′n,Λ,b and f ′′′n,Λ,b have opposite signs. If f ′n,Λ,b(z0)

is negative, then z0 is a local minimum of f ′n,Λ,b and thus a local maximum

of |f ′n,Λ,b|. If f ′n,Λ,b(z0) > 0 then z0 is a local maximum of |f ′n,Λ,b|. Thus

|f ′n,Λ,b| cannot have a local minimum in the interior of I. �

In [10], the Minimum Principle was used to extend Singer’s Theorem on
interval maps to the setting of the Weierstrass elliptic function on a real
square lattice. The extension of Singer’s Theorem given in [10] relied only
on the Minimum Principle and generic properties of elliptic functions on real
lattices; the proof for our setting follows identically so we do not provide it.

Before we state the theorem, we need to provide some definitions, fol-
lowing [10]. Given a real rectangular lattice Λ, we focus on the restriction
of fn,Λ,b to the real line. Using Lemma 2.7(1), we know that fn,Λ,b(R) ⊂
R ∪ {∞}. For any p-cycle

S = {z0, fn,Λ,b(z0), . . . , fp−1
n,Λ,b(z0)} ⊂ R,

we associate to it a set

B(S) = {x ∈ R : fkn,Λ,b(x)→ S as k →∞}.
The set S is topologically attracting if B(S) contains an open interval, and
in this case we call B(S) the real attracting basin of S. The real immediate
attracting basin of S is the union of components of B(S) in R that contain
points from S, and we denote this set by B0(S). Using Lemma 2.7(1), if
|(fpn,Λ,b)

′(z0)| < 1, then S ⊂ [en1 + b,∞) and B(S) 6= ∅, so S is topologically
attracting.

Theorem 3.7. If Λ is a real rectangular lattice, n ≥ 1, b ∈ R, and

fn,Λ,b = (℘Λ)n + b,

then:

(1) The real immediate basin of attraction of a topologically attracting
periodic orbit of fn,Λ,b contains a real critical point.
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(2) If y ∈ R is in a rationally neutral p-cycle for fn,Λ,b then it is topo-
logically attracting; i.e., there exists an open interval I such that for

every x ∈ I, limk→∞ f
kp
n,Λ,b(x) = y.

Lemma 2.7(1), (2) indicates that fn,Λ,b has three or four postcritical orbits
that may have no relation. However, Theorem 3.7 forces a restriction on the
number of nonrepelling cycles.

Proposition 3.8. For every real rectangular lattice Λ and for every n ≥ 1
and b ∈ R, one of the following must occur:

(1) J(fn,Λ,b) = C∞.
(2) There exists exactly one (super)attracting or rationally neutral Fatou

cycle for fn,Λ,b that contains a real critical point. In this case, the
nonrepelling cycle is real, and a real critical point is contained in the
cycle of Fatou components.

Proof. Proposition 2.8 implies that fn,Λ,b has no Siegel disks or Herman
rings. By Lemma 2.7(4), (5), fn,Λ,b maps R to [en1 +b,∞] and the postcritical
set of fn,Λ,b is real. If there is an attracting or parabolic cycle of Fatou
components, then the cycle must lie on the real axis and contain a real
critical point λ1/2 + kλ1, k ∈ Z by Theorem 3.7. But since

fn,Λ,b(λ1/2 + kλ1) = en1 + b

by Lemma 2.7(4), all real critical points have the same forward orbit, so
there can only be one nonrepelling cycle by Theorem 3.7. �

4. Applications of the theorems

In this section, we choose specific values of bΛ and apply the theorems of
the previous section to the resulting families fn,Λ,b.

4.1. Julia set the entire sphere. In this section, we investigate the fam-
ily

hn,Λ(z) = fn,Λ,−(℘Λ(λ1/2))n(z) = (℘Λ(z))n − (℘Λ(λ1/2))n.

Using Lemma 2.7, these functions all share the property that their minimum
on R is hn,Λ(λ1/2) = 0. Using the lattice Λ with generators (g2, g3) =
(5,−1), we show examples of the functions h1,Λ(x) and h2,Λ(x) on R for this
family in Figures 4 and 5.

For each integer n > 0, and for every real rectangular lattice, the real
critical points of hn,Λ all land on the pole at 0. Therefore, the results of
Section 3 enable us to show that the Julia set of hn,Λ is the entire sphere in
this case.

Proposition 4.1. For every real rectangular lattice Λ and for every n ≥ 1,
the function hn,Λ(z) = (℘Λ(z))n − (℘Λ(λ1/2))n has J(hn,Λ) = C∞.
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Figure 4. The
graph of h1,Λ(x) on
R when (g2, g3) =
(5,−1).
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Figure 5. The
graph of h2,Λ(x) on
R when (g2, g3) =
(5,−1).

Proof. By Proposition 3.8, either J(hn,Λ) = C∞ or there exists exactly one
(super)attracting or rationally neutral Fatou cycle for hn,Λ that contains a
real critical point. If there is a nonrepelling cycle for hn,Λ, the cycle must
lie on the real axis and contain a real critical point. Since hn,Λ(λ1/2) = 0,
we know that all real critical points are prepoles and hence belong to the
Julia set. Therefore, the Fatou set is empty. �

4.2. Applications to ℘Λ in real lattice space. In the case where n = 1
and b = 0, we have that fn,Λ,b = ℘Λ is the basic Weierstrass elliptic function
on a real lattice. This function has been studied in [9]–[15], and these families
of functions exhibit a wide variety of dynamical behaviors. If Λ is a rhombic
square lattice then J(℘Λ) = C∞ [10]. The rhombic square lattices lie on the
line where g2 < 0 and g3 = 0 in Figure 1. In [12], examples of real lattices
for which the Julia set of ℘Λ is the entire sphere were found, but not for
every real rectangular equivalence class. In this section, we use Theorem 3.7
to find a countable number of real rectangular lattices in every similarity
class for which the Julia set of ℘Λ is the entire sphere. We use the notation
℘Λ instead of fn,Λ,b throughout this section.

It will be helpful to identify a specified lattice within each shape equiv-
alence class. We define the standard lattice within any real rectangular
equivalence class as the lattice Γ = [γ1, γ2] for which ℘Γ(γ1/2) = 1. Using
the equations appearing in Equation (5) with e1 = 1 we obtain

1 + e2 + e3 = 0, e2e3 = −g2

4
, e2 + e3 + e2e3 =

g3

4
,
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Figure 6. Real rectangular standard lattices are shown in
green. All points colored orange represent real lattices similar
to the (5,−1) lattice.

and thus all real rectangular standard lattices lie on the line segment g3 =
−g2 + 4 with 3 < g2 < 12 in real lattice space. (The ray when g2 > 12
represents lattices for which ℘(λ1/2) > ℘(λ1/2 + λ2/2) = 1.) Each curve in
the parameter space representing a real rectangular lattice shape intersects
this line segment exactly twice: once when the lattice is oriented horizontally,
and once when the lattice is oriented vertically. We show the location of the
standard lattices in green in Figure 6. All points colored orange represent
real lattices similar to the (5,−1) lattice.

Given any standard lattice, we can use the homogeneity property to find
infinitely many similar lattices for which the real critical points land on a
pole in one iteration. The following lemma follows from the homogeneity
property in Lemma 2.3.

Lemma 4.2. [12] Let Γ = [γ1, γ2] be a standard real rectangular lattice,
where γ1 is chosen to be the smallest real positive lattice point. If m is any
positive integer and k = 3

√
1/(mγ1), then the lattice Λ = kΓ has

℘Λ(λ1/2) = mλ1

and thus ℘Λ(λ1/2) is a pole.

Lemma 4.2 was used in [12] to find isolated examples for which the Julia
set of ℘Λ was the entire sphere: namely, on real lattices for which we could
show that the other two critical values were also poles. However, the results
of Section 3 imply that even if the other two critical values are not poles,
their orbits cannot be associated with Fatou components. As a consequence,
given any real rectangular lattice, we can find infinitely many similar lattices
Λ for which the Julia set of ℘Λ is the entire sphere.
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Figure 7. Lattices for which J(℘Λ) = C∞ appear in in-
creasing shades of blue for m = 1, m = 2, and m = 3 in The-
orem 4.3. Real rhombic lattices (also having J(℘Λ) = C∞)
appear in grey. Lattices for which ℘Λ has a superattracting
fixed point appear in increasing shades of red for m = 1,
m = 2, and m = 3 in Lemma 4.4. All points colored orange
represent real lattices similar to the (5,−1) lattice.

Theorem 4.3. Let Γ = [γ1, γ2] be a standard real rectangular lattice, where
γ1 is chosen to be the smallest positive real lattice point. If m is any positive
integer and k = 3

√
1/(mγ1), then ℘Λ on the lattice Λ = kΓ has J(℘Λ) = C∞.

Proof. By Proposition 2.6(2) the postcritical set of ℘Λ is real. By Propo-
sition 3.8, either J(℘Λ) = C∞ or there exists exactly one (super)attracting
or rationally neutral Fatou cycle for ℘Λ that contains a real critical point.
By Lemma 4.2, all real critical points are prepoles, and therefore there are
no nonrepelling cycles by Theorem 3.7. �

Recall that if Λ is a real rhombic square lattice then J(℘Λ) = C∞ [10];
these lattices appear in grey in Figure 7 as the negative real axis. We show
an approximation of the locus of parameters for the cases m = 1, 2, and 3
from Theorem 4.3 in increasingly darker shades of blue in Figure 7 (light
blue corresponds to m = 1). We note that the locus of blue parameters in
the real rectangular region do not form straight lines.

In [12], we found lattices for which the real critical point is superattract-
ing.

Proposition 4.4. [12] Let Γ = [γ1, γ2] be a standard real rectangular lattice,
where γ1 is chosen to be the smallest positive real lattice point. If m is
any odd positive integer and k = 3

√
2/(mγ1), then the lattice Λ = kΓ has

℘Λ(λ1/2) = mλ1/2 and thus λ1/2 is a superattracting fixed point.
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Using Proposition 3.8, the functions discussed in Proposition 4.4 have no
other Fatou cycles. The locus of parameters for the cases m = 1, 2, and
3 from Proposition 4.4 appear in increasingly darker shades of red (pink
corresponds to m = 1) in Figure 7.
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