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On infinite class field towers ramified at
three primes

Jonah Leshin

Abstract. For a prime l ≥ 3, we construct a class of number fields with
infinite l-class field tower in which only l and two other primes ramify.
As an application, we find an S3 number field with infinite 3-class field
tower with smallest known (to the author) root discriminant among all
S3 fields with infinite 3-class field tower.
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1. Introduction

Let K := K0 be a number field, and for i ≥ 1, let Ki denote the Hilbert
class field of Ki−1 — that is, Ki is the maximum abelian unramified ex-
tension of Ki−1. The tower K0 ⊆ K1 ⊆ K2 ⊆ · · · is called the Hilbert
class field tower of K. If the tower stabilizes, meaning Ki = Ki+1 for some
i, then the class field tower is finite. Otherwise, ∪iKi is an infinite un-
ramified extension of K, and K is said to have infinite class field tower.
For a prime p, we define the p-Hilbert class field of K to be the maximal
abelian unramified extension of K of p-power degree over K. We may then
analogously define the p-Hilbert class field tower of K. In 1964, Golod and
Shafarevich demonstrated the existence of a number field with infinite class
field tower [5]. This finding has motivated the construction of number fields
with various properties that have infinite class field tower. One of Golod
and Shafarevich’s examples of a number field with infinite class field tower
was any quadratic extension of the rationals ramified at sufficiently many
primes, which was shown to have infinite 2-class field tower. An elementary
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exercise shows that if K has infinite class field tower, then any finite ex-
tension of K does as well. Thus a task of interest becomes finding number
fields of small size with infinite class field towers. The size of a number field
K might be measured by the number of rational primes ramifying in K, the
size of the rational primes ramifying in K, the root discriminant of K, or
any combination of these three.

With regard to number of primes ramifying, Schmithals [6] gave an ex-
ample of a quadratic number field with infinite class field tower in which a
single rational prime ramified. Odlyzko’s bounds [4] imply that any num-
ber field with infinite class field tower must have root discriminant at least
22.3 (44.6 if we assume GRH); Martinet showed that the number field
Q(ζ11 + ζ−111 ,

√
46), with root discriminant ≈ 92.4, has infinite class field

tower [3]. The primes ramifying in this field are also “small.”
Here we use a theorem of Schoof to produce a class of Z/lZoZ/(l− 1)Z

extensions of Q with infinite class field tower. Our fields are ramified at
three primes including l. Our main theorem is the following.

Theorem 1. Let l, p be distinct primes and suppose that the class number
h of Q(ζl, l

√
p) is at least 3 if l ≥ 5, and that h ≥ 6 if l = 3, where ζl

is a primitive lth root of unity. For infinitely many primes q, there exists
δ ∈ {paqb}1≤a,b≤l−1 such that Q(ζl,

l
√
δ) has infinite l-class field tower.

As a direct consequence of the proof of Theorem 1, we find that Q
(
ω, 3
√

79 · 97
)

has infinite 3-class field tower.

2. Proof of Theorem 1

Our construction is analogous to that of Schoof [7], Theorem 3.4. From
hereon, for a prime l, define

Al = lth powers in Z/l2Z.

We begin with a lemma.

Lemma 1. Let l be a prime and n an integer prime to l. Let ζl be a primitive
lth root of unity. The prime (ζl−1) above l of Q(ζl) is unramified (and splits
completely) in Q( l

√
n, ζl) if and only if n ∈ Al.

Proof. This can also be deduced from [1, Theorem 119]. We provide our
own proof for completeness.

Let F = Q(ζl),M = F ( l
√
n). Let l = (ζl − 1) be the unique prime of

F above l. Suppose that l were inert in M . Then there would only be a
single prime of M , and therefore a single prime of Q( l

√
n), lying over l. The

extension Q( l
√
n)/Q cannot be unramified at l since its compositum with its

conjugates contains ζl. But the extension cannot be totally ramified either
since that would imply that M/Q has ramification degree l(l − 1) above l.

Therefore, either M/Q is totally ramified above l, or the ramification
degree is l − 1, in which case l splits into l primes in M . Suppose that we
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F = Q(ζl)

F ( l
√
p) K = F ( l

√
δ)

E = F ( l
√
q, l
√
p)

F ( l
√
q)

H

L = H( l
√
q)

Figure 1. Field Diagram for Theorem 3.

are in the case of the latter, so each corresponding local extension of M/Q
above l is totally ramified of degree l − 1. It follows that any prime l′ of
Q( l
√
n) above l either splits completely in M (the case Q( l

√
n)l′ = Ml̃, where

l̃|l) or is totally ramified in M (the case Q( l
√
n)l′ = Ql). Thus, there must

be two primes above l in Q( l
√
n), one of which splits completely in M and

has ramification degree l− 1 over l, and one of which ramifies completely in
M and is unramified over l with residue degree 1. We have established:

l totally ramified in M ⇔ l totally ramified in M

⇔ l totally ramified in Q( l
√
n)

⇔ no lth root of n is contained in Ql.

Define f(x) = xl − n, and let f̄ denote its reduction modulo l3. A root α of
f̄ satisfies |f(α)|l < |f ′(α)|2l , so by Hensel’s lemma, f(x) has a solution in
Ql if and only if n is an lth power in Z/l3Z, which is equivalent to n being
an lth power in Z/l2Z. �

Let p be any prime different from l, and let h be the class number of
Q(ζl, l

√
p) with H its Hilbert class field. Let q be a rational prime that

splits completely in H, so by class field theory, q is a prime that splits
completely into principal prime ideals in Q(ζl, l

√
p). In particular, q ≡ 1

(mod l), and thus by Lemma 1, (1−ζl) is totally ramified in Q(ζl, l
√
q) unless

q ≡ 1 (mod l2). Set F = Q(ζl), E = F ( l
√
p, l
√
q). In what follows, we find

δ = δp,q ∈ {paqb}1≤a,b≤l−1 so that E is unramified over K = Kδ := F ( l
√
δ)

(see Figure 1).

Case I. p /∈ Al.
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In this case, (ζl − 1) ramifies totally in F ( l
√
p) by Lemma 1. By viewing

(Z/l2Z)∗ as Z/lZ× Z/(l− 1)Z, we see there exists a, b with 1 ≤ a, b ≤ l− 1
such that paqb /∈ Al. Set

δ = paqb.

We claim that the ramification degree e(E, l) of l in E is l(l−1). Suppose
for contradiction that this is not so, in which case we must have e(E, l) =
l2(l−1). It follows from Lemma 1 that this is impossible if q ∈ Al, so assume

q /∈ Al. This means that the field E has a single prime l̃ lying above l, and
that El̃/Ql is totally ramified. Since q ≡ 1 (mod l) but q 6≡ 1 (mod l2),
there exists c such that pqc ∈ Al. Set γ = pqc, and let E′ = Q(ζl, l

√
γ).

The extension E′/Q(ζl) is unramified above above (ζl − 1) by Lemma 1, a
contradiction.

We claim that E/K is unramified. Since E is generated over K by either
xl − p or xl − q, the relative discriminant of E/K must be a power of l.
Therefore, the only possible primes of K that can ramify in E are those
lying above l. It is necessary and sufficient to show that e(K, l) = l(l − 1).
By the definition of δ and Lemma 1, we know (ζl − 1) is totally ramified in
Kδ, from which it follows that e(K, l) = l(l − 1).

Case II. p ∈ Al.

If q /∈ Al, Case I with the roles of p and q now reversed allows us to pick
δ so that E/Kδ is unramified. If q ∈ Al, then E/F is unramified above l, so
for any choice of δ ∈ {paqb}1≤a,b,≤l−1, E/Kδ is unramified.

We are now ready to invoke a theorem of Schoof [7]. First we set notation.
Given any number field H, let OH denote the ring of integers of H. Let UH
be the units in the idèle group of H– that is, the idèles with valuation zero
at all finite places. Given a finite extension L of H, we have the norm map
NUL/UH

: UL → UH , which is just the restriction of the norm map from the
idèles of L to the idèles of H. We may view O∗H as a subgroup of UH by
embedding it along the diagonal. Given a finitely generated abelian group
A, let dl(A) denote the dimension of the Fl-vector space A/lA.

Theorem 2 (Schoof, [7]). Let H be a number field. Let L/H be a cyclic
extension of prime degree l, and let ρ denote the number of primes (both
finite and infinite) of H that ramify in L. Then L has infinite l-class field
tower if

ρ ≥ 3 + dl
(
O∗H/(O

∗
H ∩NUL/UH

UL)
)

+ 2
√
dl(O

∗
L) + 1 .

We apply Schoof’s theorem to the extension L := H( l
√
q) over H, where

H, as above, is the Hilbert class field of F ( l
√
p). All hl(l − 1) primes in H

above q ramify completely in the field H( l
√
q). Thus ρ ≥ hl(l−1), with strict

inequality if and only if the primes above l in H ramify in L. By Dirichlet’s
unit theorem, dl(O

∗
L) = 1

2hl
2(l − 1) and dl(O

∗
H) = 1

2hl(l − 1). Thus, after
some rearranging, we see that if h and l satisfy
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1

2
h(l − 1) ≥ 3

l
+ 2

√
1

2
h(l − 1) +

1

l2
,

then L will have infinite l-class field tower. If l = 3, the minimal such h is
given by h = 6. If l ≥ 5, the minimal such h is given by h = 3. Since L/K
is an unramified (as both L/E and E/K are unramified) solvable extension,
it follows that K has infinite class field tower as well.

This proves the following version of our main theorem.

Theorem 3. Let p and l be distinct primes and suppose the class number
h of Q(ζl, l

√
p) satisfies h ≥ 3 if l ≥ 5, and satisfies h ≥ 6 if l = 3. Let q be

a prime that splits completely into principal ideals in Q(ζl, l
√
p). Then there

exists δ ∈ {paqb}1≤a,b≤l−1 such that Q(ζl,
l
√
δ) has infinite class field tower.

Remark 1. By the Chebotarev density theorem, the density of such q is
1

l(l−1)h .

Remark 2. If δ ∈ Al then δc ∈ Al as well for all powers c. Thus, the proof
of Theorem 3 goes through with δ replaced by δc, and we always generate
l−1 extensions of Q with Galois group Z/lZoZ/(l−1)Z unramified outside
{l, p, q} with infinite class field tower.

In the proof of Theorem 3, we were assuming that

dl(O
∗
H) = dl(O

∗
H ∩NUL/UH

UL).

Let x be an arbitrary element of O∗H . We attempt to construct y = (yw) ∈
UL such that Ny = x. Consider first the primes of H that are unramified
in L. Let v be such a prime and suppose {w1, . . . , wa} (a = 1 or l) are
the primes above v in L. Because v is unramified, the local norm map
N : O∗Lwi

→ O∗Hv
is surjective, so we can pick yv ∈ Lw1 such that Nyv = x.

Put 1 in the wi components of y for i ≥ 2 if a = l.
Now let v be a prime of H that ramifies (totally) in L. If v splits com-

pletely in H( l
√
O∗H), then l

√
O∗H ∈ Hv. Letting w be the prime above v in

L, we set yw = l
√
x. Putting the ramified and unramified components of

y together gives the desired element. The inequality needed for an infinite
class field tower is then

h(l − 1) ≥ 3

l
+ 2

√
1

2
h(l − 1) +

1

l2
,

which is satisfied by h ≥ 2 if l = 3, and is satisfied with no restriction on h
if l ≥ 5.

Suppose now that the primes of H that ramify in L split completely in
H( l
√
O∗H). If p ∈ Al and q /∈ Al, then ramification considerations show

that the primes above l in H ramify in L; otherwise, the only primes in H
ramifying in L are those above q. This gives us the following result.
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Theorem 4. Let p be a prime with p /∈ Al. If l ≥ 5, then for infinitely many
primes q, there exists δ ∈ {paqb}1≤a,b≤l−1 such that Q(ζl,

l
√
δ) has infinite

class field tower. If l = 3, the conclusion holds if we also assume that the
class number of Q(ζl, l

√
p) is at least 2.

Proof. For such p, the set of desired primes q consists of all rational primes
splitting completely in H( 3

√
O∗H). �

2.1. The case l = 3. We apply Theorem 3 in the case l = 3 to explicitly
produce an infinite class field tower.

The field Q(ζ3,
3
√

79) has class number 12, and 97 splits completely into
a product of principal ideals in this field [8], so we obtain:

Corollary 1. The field Q
(
ω, 3
√

79 · 97
)

has infinite 3-class field tower.

3. Some other fields with infinite 3-class field tower

It is a Theorem of Koch and Venkov [9] that a quadratic imaginary field
whose class group has p-rank three or larger has infinite p-class field tower.
The table [2] of class groups of imaginary quadratic fields, although not
constructed with the intent of producing number fields with infinite class
field tower and small root discriminant, enables us to find a multitude of
imaginary quadratic fields whose class group has 3-rank at least three, and
thus have infinite 3-class field tower. From [2], we may conclude that the
imaginary quadratic field with infinite 3-class field tower having smallest
root discriminant is Q(

√
−3321607), with root discriminant ≈ 1822.5.

One may creatively use Schoof’s theorem (Theorem 2) to construct var-
ious examples of number fields with infinite l-class field tower and small
root discriminant. Below we outline an example for the case l = 3 that was
communicated to the author by the referee.

Let H be the subfield of the cyclotomic field Q(ζ600) fixed by the order
four automorphism ζ600 7→ ζ7600. By construction, the rational prime 7 splits
completely in H into 40 primes pi. Now, let K be the unique cubic subfield of
Q(ζ7). All the pi ramify in HK, so the inequality in Theorem 2 implies that
the 3-class field tower of HK is finite. One checks that the root discriminant
of HK is ≈ 391.1.
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[7] Schoof, René. Infinite class field towers of quadratic fields. J. Reine
Angew. Math. 372 (1986), 209–220. MR0863524 (88a:11121), Zbl 0589.12011,
doi: 10.1515/crll.1986.372.209.

[8] Stein, William; et al. Sage Mathematics Software, Version 5.10. The Sage Devel-
opment Team, 2013. http://www.sagemath.org.

[9] Venkov, B. B.; Koh, H. The p-tower of class fields for an imaginary quadratic
field. Modules and representations. Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst.
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