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Conway–Gordon type theorem for the
complete four-partite graph K3,3,1,1

Hiroka Hashimoto and Ryo Nikkuni

Abstract. We give a Conway–Gordon type formula for invariants of
knots and links in a spatial complete four-partite graph K3,3,1,1 in terms
of the square of the linking number and the second coefficient of the
Conway polynomial. As an application, we show that every rectilinear
spatial K3,3,1,1 contains a nontrivial Hamiltonian knot.
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1. Introduction

Throughout this paper we work in the piecewise linear category. Let G be
a finite graph. An embedding f of G into the Euclidean 3-space R3 is called
a spatial embedding of G and f(G) is called a spatial graph. We denote the
set of all spatial embeddings of G by SE(G). We call a subgraph γ of G
which is homeomorphic to the circle a cycle of G and denote the set of all
cycles of G by Γ(G). We also call a cycle of G a k-cycle if it contains exactly
k edges and denote the set of all k-cycles of G by Γk(G). In particular, a
k-cycle is said to be Hamiltonian if k equals the number of all vertices of G.
For a positive integer n, Γ(n)(G) denotes the set of all cycles of G (= Γ(G))
if n = 1 and the set of all unions of n mutually disjoint cycles of G if n ≥ 2.
For an element γ in Γ(n)(G) and an element f in SE(G), f(γ) is none other
than a knot in f(G) if n = 1 and an n-component link in f(G) if n ≥ 2. In
particular, we call f(γ) a Hamiltonian knot in f(G) if γ is a Hamiltonian
cycle.
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For an edge e of a graph G, we denote the subgraph G \ inte by G − e.
Let e = uv be an edge of G which is not a loop, where u and v are distinct
end vertices of e. Then we call the graph which is obtained from G − e by
identifying u and v the edge contraction of G along e and denote it by G/e.
A graph H is called a minor of a graph G if there exists a subgraph G′ of
G and the edges e1, e2, . . . , em of G′ each of which is not a loop such that H
is obtained from G′ by a sequence of edge contractions along e1, e2, . . . , em.
A minor H of G is called a proper minor if H does not equal G. Let P
be a property of graphs which is closed under minor reductions; that is, for
any graph G which does not have P, all minors of G also do not have P. A
graph G is said to be minor-minimal with respect to P if G has P but all
proper minors of G do not have P. Then it is known that there exist finitely
many minor-minimal graphs with respect to P [RS].

Let Km be the complete graph on m vertices, namely the simple graph
consisting of m vertices in which every pair of distinct vertices is connected
by exactly one edge. Then the following are very famous in spatial graph
theory, which are called the Conway–Gordon theorems.

Theorem 1.1 (Conway–Gordon [CG]).

( 1 ) For any element f in SE(K6),

(1.1)
∑

γ∈Γ(2)(K6)

lk(f(γ)) ≡ 1 (mod 2),

where lk denotes the linking number.

( 2 ) For any element f in SE(K7),

(1.2)
∑

γ∈Γ7(K7)

a2(f(γ)) ≡ 1 (mod 2),

where a2 denotes the second coefficient of the Conway polynomial.

A graph is said to be intrinsically linked if for any element f in SE(G),

there exists an element γ in Γ(2)(G) such that f(γ) is a nonsplittable 2-
component link, and to be intrinsically knotted if for any element f in SE(G),
there exists an element γ in Γ(G) such that f(γ) is a nontrivial knot. The-
orem 1.1 implies that K6 (resp. K7) is intrinsically linked (resp. knotted).
Moreover, the intrinsic linkedness (resp. knottedness) is closed under minor
reductions [NeTh] (resp. [FL]), and K6 (resp. K7) is minor-minimal with
respect to the intrinsically linkedness [S] (resp. knottedness [MRS]).

A 4Y -exchange is an operation to obtain a new graph GY from a graph
G4 by removing all edges of a 3-cycle 4 of G4 with the edges uv, vw and
wu, and adding a new vertex x and connecting it to each of the vertices
u, v and w as illustrated in Figure 1.1 (we often denote ux ∪ vx ∪ wx by
Y ). A Y4-exchange is the reverse of this operation. We call the set of
all graphs obtained from a graph G by a finite sequence of 4Y and Y4-
exchanges the G-family and denote it by F(G). In particular, we denote
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the set of all graphs obtained from G by a finite sequence of 4Y -exchanges
by F4(G). For example, it is well known that the K6-family consists of
exactly seven graphs as illustrated in Figure 1.2, where an arrow between
two graphs indicates the application of a single 4Y -exchange. Note that
F4(K6) = F(K6) \ {P7}. Since P10 is isomorphic to the Petersen graph,
the K6-family is also called the Petersen family. It is also well known that
the K7-family consists of exactly twenty graphs, and there exist exactly six
graphs in the K7-family each of which does not belong to F4(K7). Then
the intrinsic linkedness and the intrinsic knottedness behave well under4Y -
exchanges as follows.

Proposition 1.2 (Sachs [S]).

( 1 ) If G4 is intrinsically linked, then GY is also intrinsically linked.
( 2 ) If G4 is intrinsically knotted, then GY is also intrinsically knotted.

u

vw

x

u

vw

Y

Y

G GY

Figure 1.1.

K6 Q Q8

P 8 P 9

7

P 7 P 10
u

v

v'

Figure 1.2.

Proposition 1.2 implies that any element in F4(K6) (resp. F4(K7)) is
intrinsically linked (resp. knotted). In particular, Robertson–Seymour–
Thomas showed that the set of all minor-minimal intrinsically linked graphs
equals the K6-family, so the converse of Proposition 1.2(1) is also true [RST].
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On the other hand, it is known that any element in F4(K7) is minor-
minimal with respect to the intrinsic knottedness [KS], but any element in
F(K7) \ F4(K7) is not intrinsically knotted [FN], [HNTY], [GMN], so the
converse of Proposition 1.2(2) is not true. Moreover, there exists a minor-
minimal intrinsically knotted graph which does not belong to F4(K7) as
follows. Let Kn1,n2,...,nm be the complete m-partite graph, namely the sim-
ple graph whose vertex set can be decomposed into m mutually disjoint
nonempty sets V1, V2, . . . , Vm where the number of elements in Vi equals ni
such that no two vertices in Vi are connected by an edge and every pair
of vertices in the distinct sets Vi and Vj is connected by exactly one edge,
see Figure 1.3 which illustrates K3,3, K3,3,1 and K3,3,1,1. Note that K3,3,1

is isomorphic to P7 in the K6-family, namely K3,3,1 is a minor-minimal in-
trinsically linked graph. On the other hand, Motwani–Raghunathan–Saran
claimed in [MRS] that it may be proven that K3,3,1,1 is intrinsically knotted
by using the same technique of Theorem 1.1, namely, by showing that for
any element in SE(K3,3,1,1), the sum of a2 over all of the Hamiltonian knots
is always congruent to one modulo two. But Kohara–Suzuki showed in [KS]
that the claim did not hold; that is, the sum of a2 over all of the Hamiltonian
knots is dependent to each element in SE(K3,3,1,1). Actually, they demon-
strated the specific two elements f1 and f2 in SE(K3,3,1,1) as illustrated in
Figure 1.4. Here f1(K3,3,1,1) contains exactly one nontrivial knot f1(γ0) (=
a trefoil knot, a2 = 1) which is drawn by bold lines, where γ0 is an element
in Γ8(K3,3,1,1), and f2(K3,3,1,1) contains exactly two nontrivial knots f2(γ1)
and f2(γ2) (= two trefoil knots) which are drawn by bold lines, where γ1

and γ2 are elements in Γ8(K3,3,1,1). Thus the situation of the case of K3,3,1,1

is different from the case of K7. By using another technique different from
Conway–Gordon’s, Foisy proved the following.

x

y

K3,3,1,1K3,3,1

u

K3,3

Figure 1.3.

Theorem 1.3 (Foisy [F02]). For any element f in SE(K3,3,1,1), there exists
an element γ in ∪8

k=4Γk(K3,3,1,1) such that a2(f(γ)) ≡ 1 (mod 2).

Theorem 1.3 implies K3,3,1,1 is intrinsically knotted. Moreover, Proposi-
tion 1.2(2) and Theorem 1.3 imply that any element G in F4(K3,3,1,1) is
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also intrinsically knotted. It is known that there exist exactly twenty six
elements in F4(K3,3,1,1). Since Kohara–Suzuki pointed out that each of
the proper minors of G is not intrinsically knotted [KS], it follows that any
element in F4(K3,3,1,1) is minor-minimal with respect to the intrinsic knot-
tedness. Note that a 4Y -exchange does not change the number of edges of
a graph. Since K7 and K3,3,1,1 have different numbers of edges, the families
F4(K7) and F4(K3,3,1,1) are disjoint.

Our first purpose in this article is to refine Theorem 1.3 by giving a kind
of Conway–Gordon type formula for K3,3,1,1 not over Z2, but integers Z. In

the following, Γ
(2)
k,l (G) denotes the set of all unions of two disjoint cycles of

a graph G consisting of a k-cycle and an l-cycle, and x and y denotes the
two vertices of K3,3,1,1 with valency seven. Then we have the following.

Theorem 1.4.

( 1 ) For any element f in SE(K3,3,1,1),

(1.3) 4
∑

γ∈Γ8(K3,3,1,1)

a2(f(γ))− 4
∑

γ∈Γ7(K3,3,1,1)
{x,y}6⊂γ

a2(f(γ))

− 4
∑
γ∈Γ′6

a2(f(γ))− 4
∑

γ∈Γ5(K3,3,1,1)
{x,y}6⊂γ

a2(f(γ))

=
∑

λ∈Γ
(2)
3,5(K3,3,1,1)

lk(f(λ))2 + 2
∑

λ∈Γ
(2)
4,4(K3,3,1,1)

lk(f(λ))2 − 18,

where Γ′6 is a specific proper subset of Γ6(K3,3,1,1) which does not
depend on f (see (2.31)).

( 2 ) For any element f in SE(K3,3,1,1),

(1.4)
∑

λ∈Γ
(2)
3,5(K3,3,1,1)

lk(f(λ))2 + 2
∑

λ∈Γ
(2)
4,4(K3,3,1,1)

lk(f(λ))2 ≥ 22.
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We prove Theorem 1.4 in the next section. By combining the two parts
of Theorem 1.4, we immediately obtain the following.

Corollary 1.5. For any element f in SE(K3,3,1,1),

(1.5)
∑

γ∈Γ8(K3,3,1,1)

a2(f(γ))−
∑

γ∈Γ7(K3,3,1,1)
{x,y}6⊂γ

a2(f(γ))

−
∑
γ∈Γ′6

a2(f(γ))−
∑

γ∈Γ5(K3,3,1,1)
{x,y}6⊂γ

a2(f(γ)) ≥ 1.

Corollary 1.5 gives an alternative proof of the fact that K3,3,1,1 is intrin-
sically knotted. Moreover, Corollary 1.5 refines Theorem 1.3 by identifying
the cycles that might be nontrivial knots in f(K3,3,1,1).

Remark 1.6. We see the left side of (1.5) is not always congruent to one
modulo two by considering two elements f1 and f2 in SE(K3,3,1,1) as illus-
trated in Figure 1.4. Thus Corollary 1.5 shows that the argument over Z has
a nice advantage. In particular, f1 gives the best possibility for (1.5), and
therefore for (1.4) by Theorem 1.4(1). Actually f1(K3,3,1,1) contains exactly
fourteen nontrivial links all of which are Hopf links, where the six of them

are the images of elements in Γ
(2)
3,5(K3,3,1,1) by f1 and the eight of them are

the images of elements in Γ
(2)
4,4(K3,3,1,1) by f1.

As we said before, any element G in F4(K7) ∪ F4(K3,3,1,1) is a minor-
minimal intrinsically knotted graph. If G belongs to F4(K7), then it is
known that Conway–Gordon type formula over Z2 as in Theorem 1.1 also
holds for G as follows.

Theorem 1.7 (Nikkuni–Taniyama [NT]). Let G be an element in F4(K7).
Then, there exists a map ω from Γ(G) to Z2 such that for any element f in
SE(G), ∑

γ∈Γ(G)

ω(γ)a2(f(γ)) ≡ 1 (mod 2).

Namely, for any element G in F4(K7), there exists a subset Γ of Γ(G)
which depends on only G such that for any element f in SE(G), the sum
of a2 over all of the images of the elements in Γ by f is odd. On the other
hand, if G belongs to F4(K3,3,1,1), we have a Conway–Gordon type formula
over Z for G as in Corollary 1.5 as follows. We prove it in Section 3.

Theorem 1.8. Let G be an element in F4(K3,3,1,1). Then, there exists a
map ω from Γ(G) to Z such that for any element f in SE(G),∑

γ∈Γ(G)

ω(γ)a2(f(γ)) ≥ 1.
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Our second purpose in this article is to give an application of Theorem 1.4
to the theory of rectilinear spatial graphs. A spatial embedding f of a graph
G is said to be rectilinear if for any edge e of G, f(e) is a straight line
segment in R3. We denote the set of all rectilinear spatial embeddings of
G by RSE(G). We can see that any simple graph has a rectilinear spatial
embedding by taking all of the vertices on the spatial curve (t, t2, t3) in R3

and connecting every pair of two adjacent vertices by a straight line segment.
Rectilinear spatial graphs appear in polymer chemistry as a mathematical
model for chemical compounds, see [A] for example. Then by an application
of Theorem 1.4, we have the following.

Theorem 1.9. For any element f in RSE(K3,3,1,1),∑
γ∈Γ8(K3,3,1,1)

a2(f(γ)) ≥ 1.

We prove Theorem 1.9 in section 4. As a corollary of Theorem 1.9, we
immediately have the following.

Corollary 1.10. For any element f in RSE(K3,3,1,1), there exists a Hamil-
tonian cycle γ of K3,3,1,1 such that f(γ) is a nontrivial knot with a2(f(γ)) >
0.

Corollary 1.10 is an affirmative answer to the question of Foisy–Ludwig
[FL, Question 5.8] which asks whether the image of every rectilinear spa-
tial embedding of K3,3,1,1 always contains a nontrivial Hamiltonian knot.

Remark 1.11.

( 1 ) In [FL, Question 5.8], Foisy–Ludwig also asked that whether the
image of every spatial embedding of K3,3,1,1 (which may not be recti-
linear) always contains a nontrivial Hamiltonian knot. As far as the
authors know, it is still open.

( 2 ) In addition to the elements in F4(K7) ∪ F4(K3,3,1,1), many minor-
minimal intrinsically knotted graph are known [F04], [GMN]. In
particular, it has been announced by Goldberg–Mattman–Naimi that
all of the thirty two elements in F(K3,3,1,1) \F4(K3,3,1,1) are minor-
minimal intrinsically knotted graphs [GMN]. Note that their method
is based on Foisy’s idea in the proof of Theorem 1.3 with the help of
a computer.

2. Conway–Gordon type formula for K3,3,1,1

To prove Theorem 1.4, we recall a Conway–Gordon type formula over Z
for a graph in the K6-family which is as below.

Theorem 2.1. Let G be an element in F(K6). Then there exist a map ω
from Γ(G) to Z such that for any element f in SE(G),

(2.1) 2
∑

γ∈Γ(G)

ω(γ)a2(f(γ)) =
∑

γ∈Γ(2)(G)

lk(f(γ))2 − 1.



478 HIROKA HASHIMOTO AND RYO NIKKUNI

We remark here that Theorem 2.1 was shown by Nikkuni (for the case
G = K6) [N], O’Donnol (G = P7) [O] and Nikkuni–Taniyama (for the others)
[NT]. In particular, we use the following explicit formulae for Q8 and P7

in the proof of Theorem 1.4. For the other cases, see Hashimoto–Nikkuni
[HN].

Theorem 2.2.

( 1 ) (Hashimoto–Nikkuni [HN]). For any element f in SE(Q8),

2
∑

γ∈Γ7(P7)

a2(f(γ)) + 2
∑

γ∈Γ6(Q8)
v,v′ 6∈γ

a2(f(γ))− 2
∑

γ∈Γ6(Q8)
γ∩{v,v′}6=∅

a2(f(γ))

=
∑

γ∈Γ
(2)
4,4(Q8)

lk(f(γ))2 − 1,

where v and v′ are exactly two vertices of Q8 with valency three.
( 2 ) (O’Donnol [O]). For any element f in SE(P7),

2
∑

γ∈Γ7(P7)

a2(f(γ))− 4
∑

γ∈Γ6(P7)
u6∈γ

a2(f(γ))− 2
∑

γ∈Γ5(P7)

a2(f(γ))

=
∑

γ∈Γ
(2)
3,4(P7)

lk(f(γ))2 − 1,

where u is the vertex of P7 with valency six.

By taking the modulo two reduction of (2.1), we immediately have the
following fact containing Theorem 1.1(1).

Corollary 2.3 (Sachs [S], Taniyama–Yasuhara [TY]). Let G be an element
in F(K6). Then, for any element f in SE(G),∑

γ∈Γ(2)(G)

lk(f(γ)) ≡ 1 (mod 2).

Now we give labels for the vertices of K3,3,1,1 as illustrated in the left figure
in Figure 2.1. We also call the vertices 1, 3, 5 and 2, 4, 6 the black vertices
and the white vertices, respectively. We regard K3,3 as the subgraph of
K3,3,1,1 induced by all of the white and black vertices. Let Gx and Gy be
two subgraphs of K3,3,1,1 as illustrated in Figure 2.1(1) and (2), respectively.
Since each of Gx and Gy is isomorphic to P7, by applying Theorem 2.2(2)
to f |Gx and f |Gy for an element f in SE(K3,3,1,1), it follows that

(2.2) 2
∑

γ∈Γ7(Gx)

a2(f(γ))− 4
∑

γ∈Γ6(K3,3)

a2(f(γ))− 2
∑

γ∈Γ5(Gx)

a2(f(γ))

=
∑

γ∈Γ
(2)
3,4(Gx)

lk(f(γ))2 − 1,
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(2.3) 2
∑

γ∈Γ7(Gy)

a2(f(γ))− 4
∑

γ∈Γ6(K3,3)

a2(f(γ))− 2
∑

γ∈Γ5(Gy)

a2(f(γ))

=
∑

γ∈Γ
(2)
3,4(Gy)

lk(f(γ))2 − 1.

x

y

1

3

5

2

4

6

x

1

3

5

2

4

6

y

1

3

5

2

4

6

(1) (2)

Figure 2.1. (1) Gx, (2) Gy

Let γ be an element in Γ(K3,3,1,1) which is a 8-cycle or a 6-cycle containing
x and y. We will assign a type to γ as follows:

• γ is of Type A if the neighbor vertices of x in γ consist of both a
black vertex and a white vertex (if and only if the neighbor vertices
of y in γ consist of both a black vertex and a white vertex).
• γ is of Type B if the neighbor vertices of x in γ consist of only black

(resp. white) vertices and the neighbor vertices of y in γ consist of
only white (resp. black) vertices.
• γ is of Type C if γ contains the edge xy.
• γ is of Type D if γ ∈ Γ6(K3,3,1,1) and the neighbor vertices of x and
y in γ consist of only black or only white vertices.

Note that any element in Γ8(K3,3,1,1) is of Type A, B or C, and any element
in Γ6(K3,3,1,1) containing x and y is of Type A, B, C or D.

On the other hand, let λ be an element in Γ
(2)
4,4(K3,3,1,1). We assign types

to λ as follows:

• λ is of Type A if λ does not contain the edge xy and both x and y
are contained in either connected component of λ.
• λ is of Type B if x and y are contained in different connected com-

ponents of λ.
• λ is of Type C if λ contains the edge xy.

Note that any element in Γ
(2)
4,4(K3,3,1,1) is of Type A, B or C.

Then the following three lemmas hold.
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Lemma 2.4. For any element f in SE(K3,3,1,1),∑
λ∈Γ

(2)
3,5(K3,3,1,1)

lk(f(λ))2 + 2
∑

λ∈Γ
(2)
4,4(K3,3,1,1)

Type A

lk(f(λ))2(2.4)

= 4
∑

γ∈Γ8(K3,3,1,1)
Type A

a2(f(γ))− 4

 ∑
γ∈Γ7(Gx)

a2(f(γ)) +
∑

γ∈Γ7(Gy)

a2(f(γ))


+ 8

∑
γ∈Γ6(K3,3)

a2(f(γ))− 4
∑

γ∈Γ6(K3,3,1,1)
x,y∈γ, Type A

a2(f(γ))

− 4

 ∑
γ∈Γ5(Gx)

a2(f(γ)) +
∑

γ∈Γ5(Gy)

a2(f(γ))

 + 10.

Proof. For i = 1, 3, 5 and j = 2, 4, 6, let us consider subgraphs F
(ij)
x =

(Gx − ij) ∪ iy ∪ jy and F
(ij)
y = (Gy − ij) ∪ ix ∪ jx of K3,3,1,1 as illustrated

in Figure 2.2(1) and (2), respectively. Since each of F
(ij)
x and F

(ij)
y is home-

omorphic to P7, by applying Theorem 2.2(2) to f |
F

(ij)
x

, it follows that∑
λ=γ∪γ′∈Γ

(2)
3,5(F

(ij)
x )

γ∈Γ3(F
(ij)
x ), γ′∈Γ5(F

(ij)
x )

x∈γ, y∈γ′

lk(f(λ))2 +
∑

λ=γ∪γ′∈Γ
(2)
4,4(F

(ij)
x )

x,y∈γ′

lk(f(λ))2(2.5)

+
∑

λ=γ∪γ′∈Γ
(2)
3,4(Gx)

γ∈Γ3(Gx), γ′∈Γ4(Gx)

ij 6⊂λ, x∈γ

lk(f(λ))2

= 2


∑

γ∈Γ8(F
(ij)
x )

a2(f(γ)) +
∑

γ∈Γ7(Gx)

ij 6⊂γ

a2(f(γ))


− 4


∑

γ∈Γ7(F
(ij)
x )

x 6∈γ, y∈γ

a2(f(γ)) +
∑

γ∈Γ6(K3,3)

ij 6⊂γ

a2(f(γ))


− 2


∑

γ∈Γ6(F
(ij)
x )

x,y∈γ

a2(f(γ)) +
∑

γ∈Γ5(Gx)

ij 6⊂γ

a2(f(γ))

 + 1.



CONWAY–GORDON TYPE THEOREM FOR K3,3,1,1 481

x

y

i j

x

y

i j

(1) (2)

Figure 2.2. (1) F
(ij)
x , (2) F

(ij)
y (i = 1, 3, 5, j = 2, 4, 6)

Let us take the sum of both sides of (2.5) over i = 1, 3, 5 and j = 2, 4, 6.

For an element γ in Γ8(K3,3,1,1) of Type A, there uniquely exists F
(ij)
x con-

taining γ. This implies that

(2.6)
∑
i,j

 ∑
γ∈Γ8(F

(ij)
x )

a2(f(γ))

 =
∑

γ∈Γ8(K3,3,1,1)
Type A

a2(f(γ)).

For an element γ of Γ7(Gx), there exist exactly four edges of K3,3 which are

not contained in γ. Thus γ is common for exactly four F
(ij)
x ’s. This implies

that

(2.7)
∑
i,j

 ∑
γ∈Γ7(Gx)

ij 6⊂γ

a2(f(γ))

 = 4
∑

Γ7(Gx)

a2(f(γ)).

For an element γ in Γ7(Gy), there uniquely exists F
(ij)
x containing γ. This

implies that

(2.8)
∑
i,j

 ∑
γ∈Γ7(F

(ij)
x )

x 6∈γ, y∈γ

a2(f(γ))

 =
∑

γ∈Γ7(Gy)

a2(f(γ)).

For an element γ in Γ6(K3,3), there exist exactly three edges of K3,3 which

are not contained in γ. Thus γ is common for exactly three F
(ij)
x ’s. This
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implies that

(2.9)
∑
i,j

 ∑
γ∈Γ6(K3,3)

ij 6⊂γ

a2(f(γ))

 = 3
∑

γ∈Γ6(K3,3)

a2(f(γ)).

For an element γ in Γ6(K3,3,1,1) containing x and y, if γ is of Type A, then

there uniquely exists F
(ij)
x containing γ. This implies that

(2.10)
∑
i,j

 ∑
γ∈Γ6(F

(ij)
x )

x,y∈γ

a2(f(γ))

 =
∑

γ∈Γ6(K3,3,1,1)
x,y∈γ, Type A

a2(f(γ)).

For an element γ in Γ5(Gx), there exist exactly six edges of K3,3 which are

not contained in γ. Thus γ is common for exactly six F
(ij)
x ’s. This implies

that

(2.11)
∑
i,j

 ∑
γ∈Γ5(Gx)

ij 6⊂γ

a2(f(γ))

 = 6
∑

γ∈Γ5(Gx)

a2(f(γ)).

For an element λ = γ ∪ γ′ in Γ
(2)
3,5(K3,3,1,1) where γ is a 3-cycle and γ′ is

a 5-cycle, if γ contains x and γ′ contains y, then there uniquely exists F
(ij)
x

containing λ. This implies that

(2.12)
∑
i,j


∑

λ=γ∪γ′∈Γ
(2)
3,5(F

(ij)
x )

γ∈Γ3(F
(ij)
x ), γ′∈Γ5(F

(ij)
x )

x∈γ, y∈γ′

lk(f(λ))2


=

∑
λ=γ∪γ′∈Γ

(2)
3,5(K3,3,1,1)

γ∈Γ3(K3,3,1,1), γ′∈Γ5(K3,3,1,1)
x∈γ, y∈γ′

lk(f(λ))2.
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For an element λ in Γ
(2)
4,4(K3,3,1,1) of Type A, there uniquely exists F

(ij)
x

containing λ. This implies that

(2.13)
∑
i,j


∑

λ=γ∪γ′∈Γ
(2)
4,4(F

(ij)
x )

x,y∈γ′

lk(f(λ))2

 =
∑

λ∈Γ
(2)
4,4(K3,3,1,1)

Type A

lk(f(λ))2.

For an element λ in Γ
(2)
3,4(Gx), there exist exactly four edges of K3,3 which

are not contained in λ. Thus λ is common for exactly four F
(ij)
x ’s. This

implies that

(2.14)
∑
i,j


∑

λ=γ∪γ′∈Γ
(2)
3,4(Gx)

γ∈Γ3(Gx), γ′∈Γ4(Gx)

ij 6⊂λ, x∈γ

lk(f(λ))2


= 4

∑
λ∈Γ

(2)
3,4(Gx)

lk(f(λ))2.

Thus by (2.5), (2.6), (2.7), (2.8), (2.9), (2.10), (2.11), (2.12), (2.13) and
(2.14), we have ∑

λ=γ∪γ′∈Γ
(2)
3,5(K3,3,1,1)

γ∈Γ3(K3,3,1,1), γ′∈Γ5(K3,3,1,1)
x∈γ, y∈γ′

lk(f(λ))2 +
∑

λ∈Γ
(2)
4,4(K3,3,1,1)

Type A

lk(f(λ))2(2.15)

+ 4
∑

λ∈Γ
(2)
3,4(Gx)

lk(f(λ))2

= 2
∑

γ∈Γ8(K3,3,1,1)
Type A

a2(f(γ)) + 8
∑

γ∈Γ7(Gx)

a2(f(γ))

− 4
∑

γ∈Γ7(Gy)

a2(f(γ))− 12
∑

γ∈Γ6(K3,3)

a2(f(γ))

− 2
∑

γ∈Γ6(K3,3,1,1)
x,y∈γ, Type A

a2(f(γ))12
∑

γ∈Γ5(Gx)

a2(f(γ)) + 9.

Then by combining (2.15) and (2.2), we have



484 HIROKA HASHIMOTO AND RYO NIKKUNI

∑
λ=γ∪γ′∈Γ

(2)
3,5(K3,3,1,1)

γ∈Γ3(K3,3,1,1), γ′∈Γ5(K3,3,1,1)
x∈γ, y∈γ′

lk(f(λ))2 +
∑

λ∈Γ
(2)
4,4(K3,3,1,1)

Type A

lk(f(λ))2(2.16)

= 2
∑

γ∈Γ8(K3,3,1,1)
Type A

a2(f(γ))− 4
∑

γ∈Γ7(Gy)

a2(f(γ))

+ 4
∑

γ∈Γ6(K3,3)

a2(f(γ))− 2
∑

γ∈Γ6(K3,3,1,1)
x,y∈γ, Type A

a2(f(γ))

− 4
∑

γ∈Γ5(Gx)

a2(f(γ)) + 5.

By applying Theorem 2.2(2) to f |
F

(ij)
y

and combining the same argument

as in the case of F
(ij)
x with (2.3), we also have∑

λ=γ∪γ′∈Γ
(2)
3,5(K3,3,1,1)

γ∈Γ3(K3,3,1,1), γ′∈Γ5(K3,3,1,1)
y∈γ, x∈γ′

lk(f(λ))2 +
∑

λ∈Γ
(2)
4,4(K3,3,1,1)

Type A

lk(f(λ))2(2.17)

= 2
∑

γ∈Γ8(K3,3,1,1)
Type A

a2(f(γ))− 4
∑

γ∈Γ7(Gx)

a2(f(γ)) + 4
∑

γ∈Γ6(K3,3)

a2(f(γ))

− 2
∑

γ∈Γ6(K3,3,1,1)
y,x∈γ, Type A

a2(f(γ))− 4
∑

γ∈Γ5(Gy)

a2(f(γ)) + 5.

Then by adding (2.16) and (2.17), we have the result. �

Lemma 2.5. For any element f in SE(K3,3,1,1),∑
λ∈Γ

(2)
4,4(K3,3,1,1)

Type B

lk(f(λ))2(2.18)

= 2
∑

γ∈Γ8(K3,3,1,1)
Type B

a2(f(γ)) + 4
∑

γ∈Γ6(K3,3)

a2(f(γ))

− 2


∑

γ∈Γ6(Gx)
x∈γ

a2(f(γ)) +
∑

γ∈Γ6(Gy)
y∈γ

a2(f(γ))


− 2

∑
γ∈Γ6(K3,3,1,1)
x,y∈γ, TypeB

a2(f(γ)) + 2.
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Proof. Let us consider subgraphs Q
(1)
8 = K3,3∪x1∪x3∪x5∪y2∪y4∪y6 and

Q
(2)
8 = K3,3∪x2∪x4∪x6∪y1∪y3∪y5 of K3,3,1,1 as illustrated in Figure 2.3(1)

and (2), respectively. Since each of Q
(1)
8 and Q

(2)
8 is homeomorphic to Q8,

by applying Theorem 2.2(1) to f |
Q

(1)
8

and f |
Q

(2)
8

, it follows that∑
λ∈Γ

(2)
4,4(Q

(i)
8 )

lk(f(λ))2 = 2
∑

γ∈Γ8(Q
(i)
8 )

a2(f(γ)) + 2
∑

γ∈Γ6(K3,3)

a2(f(γ))(2.19)

− 2
∑

γ∈Γ6(Q
(i)
8 )

x∈γ, y 6∈γ

a2(f(γ))− 2
∑

γ∈Γ6(Q
(i)
8 )

x 6∈γ, y∈γ

a2(f(γ))

− 2
∑

γ∈Γ6(Q
(i)
8 )

x,y∈γ

a2(f(γ)) + 1

for i = 1, 2. By adding (2.19) for i = 1, 2, we have the result. �

x

y

1

3

5

2

4

6

x

y

1

3

5

2

4

6

(1) (2)

Figure 2.3. (1) Q
(1)
8 , (2) Q

(2)
8

Lemma 2.6. For any element f in SE(K3,3,1,1),∑
λ∈Γ

(2)
4,4(K3,3,1,1)

Type C

lk(f(λ))2(2.20)

= 2
∑

γ∈Γ8(K3,3,1,1)
Type C

a2(f(γ))− 8
∑

γ∈Γ6(K3,3)

a2(f(γ))

− 2
∑

γ∈Γ6(K3,3,1,1)
x,y∈γ, Type C

a2(f(γ)) + 2.

Proof. For k = 1, 2, . . . , 6, let us consider subgraphs

F (k)
x = (Gx − xk) ∪ xy ∪ ky,
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F (k)
y = (Gy − yk) ∪ kx ∪ yx,

of K3,3,1,1 as illustrated in Figure 2.4(1) and (2), respectively. Since each of

F
(k)
x and F

(k)
y is also homeomorphic to P7, by applying Theorem 2.2(2) to

f |
F

(k)
x

, it follows that∑
λ=γ∪γ′∈Γ

(2)
4,4(F

(ij)
x )

x,y∈γ, Type C

lk(f(λ))2 +
∑

λ∈Γ
(2)
3,4(Gx)

xk 6⊂λ

lk(f(λ))2(2.21)

= 2


∑

γ∈Γ8(F
(k)
x )

a2(f(γ)) +
∑

γ∈Γ7(Gx)

xk 6⊂γ

a2(f(γ))


− 4

∑
γ∈Γ6(K3,3)

a2(f(γ))

− 2


∑

γ∈Γ6(F
(k)
x )

x,y∈γ

a2(f(γ)) +
∑

γ∈Γ5(Gx)

xk 6⊂γ

a2(f(γ))

 + 1.

k

k

x

y

x

y

(1) (2)

Figure 2.4. (1) F
(k)
x , (2) F

(k)
y (k = 1, 2, 3, 4, 5, 6)

Let us take the sum of both sides of (2.21) over k = 1, 2, . . . , 6. For an

element γ in Γ8(K3,3,1,1), if γ is of Type C, then there uniquely exists F
(k)
x

containing γ. This implies that

(2.22)
∑
k

 ∑
γ∈Γ8(F

(k)
x )

a2(f(γ))

 =
∑

γ∈Γ8(K3,3,1,1)
Type C

a2(f(γ)).
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For an element γ of Γ7(Gx), there exist exactly four edges which are incident
to x such that they are not contained in γ. Thus γ is common for exactly

four F
(k)
x ’s. This implies that

(2.23)
∑
k

 ∑
γ∈Γ7(Gx)

xk 6⊂γ

a2(f(γ))

 = 4
∑

Γ7(Gx)

a2(f(γ)).

It is clear that any element γ in Γ6(K3,3) is common for exactly six F
(k)
x ’s.

This implies that

(2.24)
∑
k

 ∑
γ∈Γ6(K3,3)

a2(f(γ))

 = 6
∑

γ∈Γ6(K3,3)

a2(f(γ)).

For an element γ in Γ6(K3,3,1,1) containing x and y, if γ is of Type C, then

there uniquely exists F
(k)
x containing γ. This implies that

(2.25)
∑
k

 ∑
γ∈Γ6(F

(k)
x )

x,y∈γ

a2(f(γ))

 =
∑

γ∈Γ6(K3,3,1,1)
x,y∈γ, Type C

a2(f(γ)).

For an element γ of Γ5(Gx), there exist exactly four edges which are incident
to x such that they are not contained in γ. Thus γ is common for exactly

four F
(k)
x ’s. This implies that

(2.26)
∑
k

 ∑
γ∈Γ5(Gx)

xk 6⊂γ

a2(f(γ))

 = 4
∑

γ∈Γ5(Gx)

a2(f(γ)).

For an element λ = γ ∪ γ′ in Γ
(2)
4,4(K3,3,1,1), if λ is of Type C, then there

uniquely exists F
(k)
x containing λ. This implies that

(2.27)
∑
k


∑

λ=γ∪γ′∈Γ
(2)
4,4(F

(k)
x )

x,y∈γ, TypeC

lk(f(λ))2

 =
∑

λ∈Γ
(2)
4,4(K3,3,1,1)

Type C

lk(f(λ))2.

For an element λ in Γ
(2)
3,4(Gx), there exist exactly four edges which are in-

cident to x such that they are not contained in λ. Thus λ is common for
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exactly four F
(k)
x ’s. This implies that

(2.28)
∑
k


∑

λ∈Γ
(2)
3,4(Gx)

xk 6⊂λ

lk(f(λ))2

 = 4
∑

λ∈Γ
(2)
3,4(Gx)

lk(f(λ))2.

Then by (2.21), (2.22), (2.23), (2.24), (2.25), (2.26), (2.27) and (2.28), we
have ∑

λ∈Γ
(2)
4,4(K3,3,1,1)

Type C

lk(f(λ))2 + 4
∑

λ∈Γ
(2)
3,4(Gx)

lk(f(λ))2(2.29)

= 2
∑

γ∈Γ8(K3,3,1,1)
Type C

a2(f(γ)) + 8
∑

γ∈Γ7(Gx)

a2(f(γ))− 24
∑

γ∈Γ6(K3,3)

a2(f(γ))

− 2
∑

γ∈Γ6(K3,3,1,1)
x,y∈γ, Type C

a2(f(γ))− 8
∑

γ∈Γ5(Gx)

a2(f(γ)) + 6.

Then by combining (2.29) and (2.2), we have the reslut. We remark here
that by by applying Theorem 2.2 (2) to f |

F
(k)
y

combining the same argument

as in the case of F
(k)
x with (2.3), we also have (2.20). �

Proof of Theorem 1.4. (1) Let f be an element in SE(K3,3,1,1). Then by
combining (2.4), (2.18) and (2.20), we have

∑
λ∈Γ

(2)
3,5(K3,3,1,1)

lk(f(λ))2 + 2
∑

λ∈Γ
(2)
4,4(K3,3,1,1)

lk(f(λ))2

(2.30)

= 4
∑

γ∈Γ8(K3,3,1,1)

a2(f(γ))− 4

 ∑
γ∈Γ7(Gx)

a2(f(γ)) +
∑

γ∈Γ7(Gy)

a2(f(γ))


− 4


∑

γ∈Γ6(Gx)
x∈γ

a2(f(γ)) +
∑

γ∈Γ6(Gy)
y∈γ

a2(f(γ)) +
∑

γ∈Γ6(K3,3,1,1)
x,y∈γ

Type A,B,C

a2(f(γ))


− 4

 ∑
γ∈Γ5(Gx)

a2(f(γ)) +
∑

γ∈Γ5(Gy)

a2(f(γ))

 + 18.
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Note that

Γk(Gx) ∪ Γk(Gy) = {γ ∈ Γk(K3,3,1,1) | {x, y} 6⊂ γ}

for k = 5, 7. Moreover, we define a subset Γ′6 of Γ6(K3,3,1,1) by

Γ′6 = {γ ∈ Γ6(Gx) | x ∈ γ} ∪ {γ ∈ Γ6(Gy) | y ∈ γ}(2.31)

∪ {γ ∈ Γ6(K3,3,1,1) | x, y ∈ γ, γ is of Type A,B or C} .

Then we see that (2.30) implies (1.3).
(2) Let f be an element in SE(K3,3,1,1). Let us consider subgraphs H1 =

Q
(1)
8 ∪ xy and H2 = Q

(2)
8 ∪ xy of K3,3,1,1 as illustrated in Figure 2.5(1)

and (2), respectively. For i = 1, 2, Hi has the proper minor H ′i = Hi/xy
which is isomorphic to P7. For a spatial embedding f |Hi of Hi, there exists
a spatial embedding f ′ of H ′i such that f ′(H ′i) is obtained from f(Hi) by
contracting f(xy) into one point. Note that this embedding is unique up
to ambient isotopy in R3. Then by Corollary 2.3, there exists an element

µ′i in Γ
(2)
3,4(H ′i) such that lk(f ′(µ′i)) ≡ 1 (mod 2) (i = 1, 2). Note that µ′i is

mapped onto an element µi in Γ4,4(Hi) by the natural injection from Γ3,4(H ′i)
to Γ4,4(Hi). Since f ′(µ′i) is ambient isotopic to f(µi), we have lk(f(µi)) ≡ 1
(mod 2) (i = 1, 2). We also note that both µ1 and µ2 are of Type C in

Γ
(2)
4,4(K3,3,1,1).

x

y

1

3

5

2

4

6

x

y

1

3

5

2

4

6

(1) (2)

Figure 2.5. (1) H1, (2) H2

For v = x, y and i, j, k = 1, 2, . . . , 6 (i 6= j), let P
(k)
8 (v; ij) be the sub-

graph of K3,3,1,1 as illustrated in Figure 2.6 (1) if v = y, k ∈ {1, 3, 5}
and i, j ∈ {2, 4, 6}, (2) if v = y, k ∈ {2, 4, 6} and i, j ∈ {1, 3, 5}, (3) if
v = x, k ∈ {1, 3, 5} and i, j ∈ {2, 4, 6} and (4) if v = x, k ∈ {2, 4, 6} and

i, j ∈ {1, 3, 5}. Note that there exist exactly thirty six P
(k)
8 (v; ij)’s and they

are isomorphic to P8 in the K6-family. Thus by Corollary 2.3, there exists

an element λ in Γ(2)(P
(k)
8 (v; ij)) such that lk(f(λ)) ≡ 1 (mod 2). All ele-

ments in Γ(2)(P
(k)
8 (v; ij)) consist of exactly four elements in Γ

(2)
3,5(P

(k)
8 (v; ij))
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and exactly four elements in Γ
(2)
4,4(P

(k)
8 (v; ij)) of Type A or Type B because

they do not contain the edge xy. It is not hard to see that any element

in Γ
(2)
3,5(K3,3,1,1) is common for exactly two P

(k)
8 (v; ij)’s, and any element in

Γ
(2)
4,4(K3,3,1,1) of Type A or Type B is common for exactly four P

(k)
8 (v; ij)’s.

k

(1) (2)

x

y
i

j

x

y
k

i

j

k

(3) (4)

y

x
i

j

y

x
k

i

j

Figure 2.6. P
(k)
8 (v; ij)

By (2.4), there exist a nonnegative integer m such that∑
λ∈Γ

(2)
3,5(K3,3,1,1)

lk(f(λ))2 = 2m.

If 2m ≥ 18, since there exist at least two elements µ1 and µ2 in Γ
(2)
4,4(K3,3,1,1)

of Type C such that lk(f(µi)) ≡ 1 (mod 2) (i = 1, 2), we have∑
λ∈Γ

(2)
3,5(K3,3,1,1)

lk(f(λ))2 + 2
∑

λ∈Γ
(2)
4,4(K3,3,1,1)

lk(f(λ))2 ≥ 18 + 4 = 22.

If 2m ≤ 16, then there exist at least (36 − 4m)/4 = 9 − m elements in

Γ
(2)
4,4(K3,3,1,1) of Type A or Type B such that each of the corresponding 2-

component links with respect to f has an odd linking number. Then we
have ∑

λ∈Γ
(2)
3,5(K3,3,1,1)

lk(f(λ))2 + 2
∑

λ∈Γ
(2)
4,4(K3,3,1,1)

lk(f(λ))2

≥ 2m+ 2 {(9−m) + 2} = 22. �

3. 4Y -exchange and Conway–Gordon type formulae

In this section, we give a proof of Theorem 1.8. Let G4 and GY be two
graphs such that GY is obtained from G4 by a single 4Y -exchange. Let γ′

be an element in Γ(G4) which does not contain 4. Then there exists an
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element Φ(γ′) in Γ(GY ) such that γ′ \ 4 = Φ(γ′) \ Y . It is easy to see that
the correspondence from γ′ to Φ(γ′) defines a surjective map

Φ : Γ(G4) \ {4} −→ Γ(GY ).

The inverse image of an element γ in Γ(GY ) by Φ contains at most two
elements in Γ(G4)\Γ4(G4). Figure 3.1 illustrates the case that the inverse
image of γ by Φ consists of exactly two elements. Let ω be a map from
Γ(G4) to Z. Then we define the map ω̃ from Γ(GY ) to Z by

ω̃(γ) =
∑

γ′∈Φ−1(γ)

ω(γ′)(3.1)

for an element γ in Γ(GY ).

u

v w

x

u

v w

u

v w

Figure 3.1.

Let f be an element in SE(GY ) and D a 2-disk in R3 such that D ∩
f(GY ) = f(Y ) and ∂D ∩ f(GY ) = {f(u), f(v), f(w)}. Let ϕ(f) be an
element in SE(G4) such that ϕ(f)(x) = f(x) for x ∈ G4 \4 = GY \Y and
ϕ(f)(G4) = (f(GY ) \ f(Y )) ∪ ∂D. Thus we obtain a map

ϕ : SE(GY ) −→ SE(G4).

Then we immediately have the following.

Proposition 3.1. Let f be an element in SE(GY ) and γ an element in
Γ(GY ). Then, f(γ) is ambient isotopic to ϕ(f)(γ′) for each element γ′ in
the inverse image of γ by Φ.

Then we have the following lemma which plays a key role to prove The-
orem 1.8. This lemma has already been shown in [NT, Lemma 2.2] in more
general form, but we give a proof for the reader’s convenience.
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Lemma 3.2 (Nikkuni–Taniyama [NT]). For an element f in SE(GY ),∑
γ∈Γ(GY )

ω̃(γ)a2(f(γ)) =
∑

γ′∈Γ(G4)

ω(γ′)a2(ϕ(f)(γ′)).

Proof. Since ϕ(f)(4) is the trivial knot, we have∑
γ′∈Γ(G4)

ω(γ′)a2(ϕ(f)(γ′)) =
∑

γ′∈Γ(G4)\{4}

ω(γ′)a2(ϕ(f)(γ′)).

Note that

Γ(G4) \ {4} =
⋃

γ∈Γ(GY )

Φ−1(γ).

Then, by Proposition 3.1, we see that

∑
γ′∈Γ(G4)\{4}

ω(γ′)a2(ϕ(f)(γ′)) =
∑

γ∈Γ(GY )

 ∑
γ′∈Φ−1(γ)

ω(γ′)a2(ϕ(f)(γ′))


=

∑
γ∈Γ(GY )

 ∑
γ′∈Φ−1(γ)

ω(γ)a2(f(γ))


=

∑
γ∈Γ(GY )

ω̃(γ)a2(f(γ)). �

Proof of Theorem 1.8. By Corollary 1.5, there exists a map

ω : Γ(K3,3,1,1)→ Z

such that for any element g in SE(K3,3,1,1),

(3.2)
∑

γ′∈Γ(K3,3,1,1)

ω(γ′)a2(g(γ′)) ≥ 1.

Let G be a graph which is obtained from K3,3,1,1 by a single 4Y -exchange
and ω̃ the map from Γ(G) to Z as in (3.1). Let f be an element in SE(G).
Then by Lemma 3.2 and (3.2), we see that∑

γ∈Γ(G)

ω̃(γ)a2(f(γ)) =
∑

γ′∈Γ(K3,3,1,1)

ω(γ′)a2(ϕ(f)(γ′)) ≥ 1.

By repeating this argument, we have the result. �

Remark 3.3. In Theorem 1.8, the proof of the existence of a map ω is
constructive. It is also an interesting problem to give ω(γ) for each element
γ in Γ(G) concretely.
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4. Rectilinear spatial embeddings of K3,3,1,1

In this section, we give a proof of Theorem 1.9. For an element f in
RSE(G) and an element γ in Γk(G), the knot f(γ) has stick number less
than or equal to k, where the stick number s(K) of a knot K is the minimum
number of edges in a polygon which represents K. Then the following is well
known.

Proposition 4.1 (Adams [A], Negami [Ne]). For any nontrivial knot K,
it follows that s(K) ≥ 6. Moreover, s(K) = 6 if and only if K is a trefoil
knot.

We also show a lemma for a rectilinear spatial embedding of P7 which is
useful in proving Theorem 1.9.

Lemma 4.2. For an element f in RSE (P7),∑
γ∈Γ7(P7)

a2(f(γ)) ≥ 0.

Proof. Note that a2(trivial knot) = 0 and a2(trefoil knot) = 1. Thus by
Proposition 4.1, a2(f(γ)) = 0 for any element γ in Γ5(P7) and a2(f(γ)) ≥ 0
for any element γ in Γ6(P7). Moreover, by Corollary 2.3, we have

(4.1)
∑

λ∈Γ
(2)
3,4(P7)

lk(f(λ))2 ≥ 1.

Then Theorem 2.2(2) implies the result. �

Proof of Theorem 1.9. Let f be an element in RSE(K3,3,1,1). Since Gx
and Gy are isomorphic to P7, by Lemma 4.2, we have

(4.2)
∑

γ∈Γ7(Gx)

a2(f(γ)) ≥ 0,
∑

γ∈Γ7(Gy)

a2(f(γ)) ≥ 0.

Then by Corollary 1.5 and (4.2), we have∑
γ∈Γ8(K3,3,1,1)

a2(f(γ)) ≥
∑

γ∈Γ7(Gx)

a2(f(γ)) +
∑

γ∈Γ7(Gy)

a2(f(γ))

+
∑
γ∈Γ′6

a2(f(γ)) +
∑

γ∈Γ5(K3,3,1,1)
{x,y}6⊂γ

a2(f(γ)) + 1

≥ 0 + 0 + 0 + 0 + 1

= 1. �

Remark 4.3. All of knots with s ≤ 8 and a2 > 0 are 31, 51, 52, 63, a square
knot, a granny knot, 819 and 820 (Calvo [C]). Therefore, Theorem 1.9 implies
that at least one of them appears in the image of every rectilinear spatial
embedding of K3,3,1,1. On the other hand, it is known that the image of
every rectilinear spatial embedding of K7 contains a trefoil knot (Brown
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[B], Ramı́rez Alfonśın [RA], Nikkuni [N]). It is still open whether the image
of every rectilinear spatial embedding of K3,3,1,1 contains a trefoil knot.
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