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Asymptotic average shadowing property
on nonuniformly expanding maps

Alireza Zamani Bahabadi

Abstract. In this paper, we investigate the relationships between as-
ymptotic average shadowing property for nonuniformly expanding maps
with some notions in dynamical systems. We prove that if nonuniformly
expanding (NUE) map f has asymptotic average shadowing property
(AASP), then f is transitive and weakly mixing. Finally as a remark
we show that if the C2 diffeomorphism f is NUE and AASP then it has
a unique SRB measure.
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1. Introduction

Topologically transitive systems have been studied extensively by many
authors, see, e.g., [7, 20, 5, 4, 8, 21, 1, 14, 13, 11, 22]. Gu [9] introduced a
new shadowing property, the asymptotic average shadowing property (ab-
breviated AASP), which is similar to the asymptotic pseudo orbit tracing
property in shadowing way, and studied the relation between the AASP and
transitivity. In fact he proved that a L-hyperbolic homeomorphism with the
average shadowing property is topologically transitive.

AASP and its relations with other dynamical properties in dynamical
systems have been studied extensively by many researchers, e.g., [16, 10, 12,
15, 17, 18]. In this paper we study nonuniformly expanding maps and show
that such maps with asymptotic average shadowing property are transitive.
We show in Remark 2 below that if the C2 local diffeomorphism f is NUE
with AASP, then f has a unique SRB measure.
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2. Some basic terminology

Let (X, d) be a compact metric space and let f be a self-homeomorphism
of X. A sequence {xn}n∈Z is called an orbit of f if for each n ∈ Z we have
xn+1 = f(xn) and we call it a δ-pseudo-orbit of f if for each n ∈ Z, we have

d(f(xn), xn+1) ≤ δ.

The homeomorphism f is said to have the shadowing property if for
each ε > 0 there exists δ > 0 such that every δ-pseudo-orbit {xn}n∈Z is
ε-shadowed by the orbit {fn(y) : n ∈ Z}, for some y in X, i.e., for all n ∈ Z
we have

d(fn(y), xn) < ε.

For δ > 0 a sequence {xi}∞i=0 in X is called a δ-average-pseudo-orbit of
f if there exists a positive integer N = N(δ) such that for all n ≥ N and
k ∈ N we have

1

n

n−1∑
i=0

d(f(xi+k), xi+k+1) < δ.

A map f is said to have average shadowing property if for every ε > 0
there is, δ > 0 such that every δ-average-pseudo-orbit {xi}∞i=0 is ε-shadowed
in average by the orbit of some point y ∈ X, that is

lim sup
n7→∞

1

n

n−1∑
i=0

d(f i(y), xi) < ε.

Denote by Nε(x) the open ball with center x and radius ε. A sequence
{xi}∞i=0 in X is called an asymptotic-average pseudo orbit of f if

lim
n7→∞

1

n

n−1∑
i=0

d(f(xi), xi+1) = 0.

A sequence {xi}∞i=0 is said to be asymptotically shadowed in average by
the point z in X if

lim
n 7→∞

1

n

n−1∑
i=0

d(f i(z), xi) = 0.

We say that f has AASP if any asymptotic-average pseudo orbit of f ,
asymptotically shadowed in average by some point z in X.

The homeomorphism f is said to be topologically transitive if for any two
nonempty open sets U, V , there is an integer l such that f l(U) ∩ V 6= ∅. It
is said to be weakly mixing if f × f is topologically transitive. A map f is
said to have the specification property if for any ε > 0 there exists L > 0
such that for every n ∈ N and every finite sequence y1, y2, . . . , yn ∈M , any
natural numbers a1 ≤ b1 < a2 ≤ b2 < · · · < an ≤ bn with ai − bi−1 ≥ L and
2 ≤ i ≤ n, there is a point z ∈ M such that d(fk(z), fk(yi)) < ε, for every
1 ≤ i ≤ n and ai ≤ k ≤ bi.
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3. Nonuniformly expanding

Let M be a C∞ compact manifold with a Riemannain metric d and let
f : M −→ M be a homeomorphism which is a C1 locally diffeomorphism.
If there is a Riemannian metric ‖.‖ on TM and λ > 1 such that

‖Dfn(x)v‖ ≥ λn‖v‖

for every x ∈M and v ∈ TxM , then f is called expanding.
We say that f is nonuniformly expanding on a set H ⊂ M if there is

λ > 0 such that for every x ∈ H,

lim inf
n−→∞

1

n

n−1∑
j=0

log ‖Df(f j(x))−1‖ < −λ.

A C1 local diffeomorphism f is said to be nonuniformly expanding (NUE)
if it is nonuniformly expanding on a set of full Lebesque measure.

Definition 1. For σ < 1, we say that n is a σ-hyperbolic time for a point
x ∈M if for all 1 ≤ k ≤ n,

Πn−1
j=n−k‖Df(f j(x))−1‖ ≤ σk.

The following Propositions A and B can be obtained from [2, Lemma 5.2
and 5.4] (see Remark 1).

Proposition A. For 0 < σ < 1, there exists δ > 0 such that if n is a
σ-hyperbolic time for x, then there exists a neighborhood Vn of x such that:

(1) fn maps Vn diffeomorphically on to the ball of radius δ around fn(x).
(2) For all 1 ≤ k < n and y, z ∈ Vn, we have

d(fn−k(y), fn−k(z)) ≤ σ
k
2 d(fn(y), fn(z)).

A σ-hyperbolic times for x ∈ M is said to have positive frequency, if
there is some θ > 0 such that for large n ∈ N there are l ≥ θn and integers
1 ≤ n1 < n2 < · · · < nl ≤ n which are σ-hyperbolic times for x, in fact we
have

1

n
#{0 < k < n : k is a hyperbolic time for x} > θ.

Proposition B. Assume that f is NUE. Then there are 0 < σ < 1 and
θ > 0 (depending only on λ in the definition NUE and the map f) such that
the frequency of σ-hyperbolic times for a set H of full Lebesgue measure is
greater than θ.

Remark 1. By Lemma 5.4 in [2], there is positive frequency for any x ∈ H,
where H is a set for which NUE is defined. In [2], Alves et al defined NUE
for positive measure and so H has positive measure. But here we defined
NUE for almost every point of M and so H has full Lebesgue measure.
Therefore Proposition B can be obtained from Lemma 5.4 in [2].
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Theorem 1. If C1 local diffeomorphism f is NUE and AASP, then f is
transitive.

Proof. Let U and V be arbitrary nonempty open subsets of M . Let H be
the set of full measure on which f is nonuniformly expanding. Since every
nonempty open subset has positive Lebesgue measure so H ∩ U 6= φ and
H ∩ V 6= φ. Consider x ∈ H ∩ U and y ∈ H ∩ V . Let ε > 0 be such that
Nε(x) ⊂ U and Nε(y) ⊂ V . There exists ξ > 0 such that if d(e, z) < ξ then
d(f−1(e), f−1(z)) < ε.

By Proposition B, there are 0 < σ < ξ
D (where D is the diameter of M)

and θ > 0 such that the frequency of σ-hyperbolic times for the set H is
greater than θ, and by Proposition A, there exists δ > 0 such that if nx and
ny are σ-hyperbolic time for x and y respectively, then there exists neigh-
borhoods Vnx of x and Vny of y such that fnu maps Vnu diffeomorphically
on to the ball of radius δ around fn(u) for u ∈ {x, y}. We use the method of
Gu in [9] to construct an asymptotic average pseudo orbit, as follows. Let

{wi} =
{
x, y, x, y, x, f(x), y, f(y), . . . , x, f(x), . . . , f2

k−1−1(x), y,

f(y), . . . , f2
k−1−2(y), f2

k−1−1(y), . . .
}
.

It is easy to see that for 2k ≤ n < 2k+1,

lim
n−→∞

1

n

i=n∑
i=−n

d(f(wi), wi+1) <
2(k + 1) ·D

n
,

where D is the diameter of X. Hence

lim
n−→∞

1

n

i=n∑
i=−n

d(f(wi), wi+1) = 0.

Thus, the sequence ({wi}0<i<∞) is an asymptotic average-pseudo-orbit of
f . Hence it can be asymptotically shadowed in average by the orbit of f
through some point z in X, that is,

lim
n7→∞

1

n

n−1∑
i=0

d(f i(z), wi) = 0.

Claim. There exist infinitely many σ-hyperbolic times nx such that corre-
sponding to every nx there is a positive integer mx such that

d(fmx(z), fnx(u)) < δ

(u ∈ {x, y}).

Using the claim there are σ-hyperbolic times nx and ny for x and y re-
spectively such that

d(fmx(z), fnx(x)) < δ

and
d(fmy(z), fny(y)) < δ,
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for some positive integers mx,my.
Notice that fnu maps Vnu diffeomorphically on to the ball of radius δ

around fn(u) for u ∈ {x, y}. By Proposition A(2), for all c, e ∈ Vnu , (u =
x, y)

d(f(c), f(e)) ≤ σ
n−1
2 d(fn(c), fn(e)) < σ

n−1
2 D < ξ.

So d(c, e) < ε. This show that Vnx ⊂ U and Vny ⊂ V , hence we have

fmu(z) ∈ fnu(Vu),

for u = x, y.
This shows that for some integer l, f l(U)∩V 6= φ. Since U, V are arbitrary

hence f is transitive. �

Proof of Claim. Suppose on the contrary that there is a positive integer
N such that for all σ-hyperbolic time k > N ,

d(f i(z), fk(x)) > δ

for any i > 0.
Then it would be obtained that for large n,

1

n

n−1∑
i=0

d(f i(z), wi) ≥
δ

n
#{N < k < n : k is a hyperbolic time for x} > δθ.

So

lim inf
n7→∞

1

n

n−1∑
i=0

d(f i(z), wi) ≥ δθ,

which contradicts with AASP. �

Theorem 2. If the C1 local diffeomorphism f is NUE with AASP, then f
is weakly mixing.

Proof. This is easy to see that if f is NUE and has AASP, then f × f is
also NUE and has AASP. So Theorem 1 implies that f × f is topologically
transitive. This means f is weakly mixing. �

It is very difficult to study whether or not a concrete example has the
asymptotic average shadowing. It is well-known that for the maps with the
shadowing property the specification property and AASP are equivalent [15].
So if a map has the shadowing property, but does not have the specification
property, then it does not have the average shadowing property. But it is
very difficult to study whether a map has the shadowing property and does
not have the specification property, even for the maps on an interval in R. As
an application of the main result of our paper (Theorem 1) we will now give
some examples of nonuniformly expanding maps that are not transitive. By
our main result such maps do not have the asymptotic average shadowing.
We emphasize that in these examples it is not difficult to determine that
the maps are not transitive and are NUE, although it is not easy to see by
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definition that they do not have the asymptotic average shadowing. So our
main result can be useful in studying the maps with the AASP.

Example A. Let f : [0, 1] −→ [0, 1] be given as follows: f(0) = 0, f(1/6) =
1/2, f(1/3) = 0, f(2/3) = 1, f(5/6) = 1/2, and f(1) = 1.

1

1

2

0

5

6

1

3

1

1

6

2

3

1

2

Let I0 = [0, 1/2] and I1 = [1/2, 1]. We can easily see from above figure
that f(I0) = I0 and f(I1) = I1. So f is not transitive. Moreover for any
point x in [0, 1]\{1/6, 1/3, 2/3, 5/6}, by the above figure, |(fn)′(x)| = 3n

therefore f is NUE . By Theorem 1, f is not AASP.

Example B. Let f : [0, 1] −→ [0, 1] be given as follows: f(0) = 1/2,
f(1/4) = 1, f(3/4) = 0, and f(1) = 1/2.

1

1

2

0

1

4

1

2

3

4

1

Let I0 = [0, 1/2] and I1 = [1/2, 1]. We see that f2(I0) = I0 and f2(I1) =
I1. So f2 is not transitive. Moreover by above figure, similar the above
example f2 is NUE. Therefore by Theorem 1, f2 is not AASP so f is not
AASP. Note that if f has AASP, then for any psitive integer fn has AASP.

4. SRB measure

Let µ be a Borel probability measure on M , invariant for f . We say that
µ is a SRB measure if for a positive Lebesgue measure set H and any point
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x ∈ H we have

lim
n−→∞

1

n

n−1∑
j=0

ϕ(f j(x)) =

∫
ϕdµ,

for any continuous map ϕ : M −→ R. We denote by B(µ), the basin of µ,
as the set of those points x ∈M for which the above formula holds.

By the Birkhoff ergodic theorem every ergodic probability measure which
is absolutely continuous with respect to the Lebesgue measure is a SRB
measure.

The following lemma and theorem are proved in [2].

Lemma. Let G ⊂M be with positive Lebesgue measure such that f is NUE
on G. Then there exists some disk ∆ with radius δ such that m(∆ \G) = 0.

Theorem A. Assume that f is NUE. Then there are ergodic absolutely
continuous probability measures µ1 . . . µp whose basins cover a full Lebesgue
measure subset of M . Moreover, if µ is an invariant probability measure,
then there are α1 ≥ 0, . . . , αe ≥ 0 such that α1 + · · · + αe = 1 and α1µ1 +
· · ·+ αeµe = µ.

Remark 2. If the C2 local diffeomorphism f is NUE and AASP, then f
has a unique SRB measure.

Indeed since f is NUE Theorem A implies that there are ergodic ab-
solutely continuous probability measure µ1 . . . µp whose basins cover a full
Lebesgue measure subset of M . Assume that there are two distinct ergodic
measure µ1 and µ2. Since B(µ1) and B(µ2) are positively invariant sets, then
by the above lemma there are disks ∆1 and ∆2 such that m(∆i \B(µi)) = 0,
i = 1, 2. The transitivity of f and the invariance of B(µ1) and B(µ2) imply
that m(B(µ1) ∩ B(µ2)) > 0. Since distinct ergodic measures have disjoint
basins we have a contradiction. This shows that f has a unique SRB mea-
sure.

A continuous map f from a compact metric space M to itself is said to
be P-chaotic if f has the shadowing property and periodic points of f are
dense in M .

Example C. Let f : [0, 1] −→ [0, 1] be the tent map which is defined by

f(x) =

{
2x 0 ≤ x ≤ 1

2

2− 2x 1
2 ≤ x ≤ 1.

Example 2.12 in [3] shows that f is P-chaotic and so is topologically mixing
[3, Corollary 3.4]. By [6], f has the specification property. Hence by [15], f
has AASP. On the other hand for any x ∈ (0, 1) \ 1

2 ,

lim inf
n−→∞

1

n

n−1∑
j=0

log ‖Df(f j(x))−1‖ = lim inf
n−→∞

1

n

n−1∑
j=0

− log(2) = − log(2).

So f is NUE. Therefore by Remark 2, f has a unique SRB measure.
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Example D. Let g : [0, 1] −→ [0, 1] be quadratic map which is defined by

g(x) = 4x(1− x).

We can see easily that the tent map f and g are topologically conjugate by
h(y) = sin2(πy2 ). Since conjugacy persevere AASP so g has AASP. Example
6.3 in [19] shows that g is NUE. Therefore g has a unique SRB measure.

Acknowledgments. I would like to thank professor Bahman Honary for
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References

[1] Akin, Ethan; Auslander, Joseph; Berg, Kenneth. When is a transitive map
chaotic? Convergence in ergodic theory and probability (Columbus. OH, 1993), 25–
40. Ohio State Univ. Math. Res. Inst. Publ., 5, de Gruyter, Berlin, 1996. MR1412595
(97i:58106), Zbl 0861.54034.
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