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Arithmetic dynamics on smooth cubic
surfaces

Solomon Vishkautsan

Abstract. We study dynamical systems induced by birational auto-
morphisms on smooth cubic surfaces defined over a number field K. In
particular we are interested in the product of noncommuting birational
Geiser involutions of the cubic surface. We present results describing the
sets of K and K̄-periodic points of the system, and give a necessary and
sufficient condition for a dynamical local-global property called strong
residual periodicity. Finally, we give a dynamical result relating to the
Mordell–Weil problem on cubic surfaces.
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1. Introduction

In this article we study arithmetic dynamics on smooth cubic surfaces
over a number field K. The setup is quite simple: Take X/K a smooth
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cubic surface over a number field K, and f a birational automorphism of X,
also defined over K. A dynamical system is induced by applying iterations
of f to points in X(K) or X(K̄) (where K̄ is the algebraic closure of K).
Such a dynamical system is an example of an arithmetic-geometric dynamical
system (described formally in Section 3). We are interested in two questions:
What can be said about the K- and K̄-periodic points of f? What can be
said about the interplay between global dynamics over K and local dynamics
when the system is reduced modulo p, for all but finitely many primes p in
K’s ring of integers?

In particular, we focus on dynamical systems induced by a simple type
of birational automorphism on smooth cubic surfaces, defined by taking
the composition of two Geiser involutions of the cubic surface (see Sec-
tion 4). Such automorphisms are examples of Halphen twists (cf. Brown
and Ryder[6], Blanc and Cantat [4]). By a theorem of Manin ([14, Exam-
ple 39.8.4]), the composition of two Geiser involutions is of infinite order
in the group of birational automorphisms of the cubic surface, and has the
nice property of preserving an elliptic fibration of the cubic surface (by pre-
serve we mean that every fiber is mapped to itself under the birational
automorphism). Even for this simple type of birational automorphisms,
the dynamical properties are not entirely trivial and deserve to be studied
carefully.

A complication in studying the dynamics of a birational map ϕ of an
algebraic variety X is the locus of indeterminacy Z(ϕ), the set of points
where the map ϕ is not defined. Even worse is the fact that the set of points
on the variety whose iterations under ϕ land in Z(ϕ), which we denote by
Z∞(ϕ), can a priori be the set of all rational points of X defined over K̄.
A recent result by Amerik [1, Corollary 9] states that this in fact cannot
happen, but does not guarantee any periodic points lying outside of this
set. We also need to define what we mean by periodic points in this setup,
since for example for a birational involution ϕ of the projective plane, the
image of a point can be undefined for the first iteration of ϕ, but fixed under
the second iteration. We do not wish to consider points of this type to be
periodic, so in this article we will only consider a point to be periodic if it
lies outside of Z∞(ϕ).

An arithmetic-geometric dynamical system D (such as the one induced by
a birational automorphism of a smooth cubic surface) can be reduced modulo
p for all but finitely many primes p, inducing residual dynamical systems Dp

(see Section 3). In some systems, an interesting local-global behavior occurs
when the system D has no periodic points defined over K, but there exist
periodic points of bounded period modulo all but finitely many primes p,
where the bound on the periods is independent of p. We consider the more
general case, when there exist periodic points of bounded period modulo
all but finitely many primes p that are not reductions modulo p of any
periodic points overK, with the bound on the periods independent of p. This
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property was first described by Bandman, Grunewald and Kunyavskĭı [2,
Section 6], and is called strong residual periodicity. In the above-mentioned
article one can find motivating examples.

Our results in this article are as follows: Let f denote a birational auto-
morphism defined by taking the composition of two Geiser involutions on a
smooth cubic surface X. We show that the K̄-periodic points of f (lying
outside of Z∞(f)) are Zariski-dense in X(K̄) (Corollary 6.6). The set of
K-periodic points is contained in the union of finitely many fibers of the
elliptic fibration preserved by f (Corollary 6.11), and the number of these
fibers is bounded by a number depending only on the degree of the exten-
sion K/Q. We further show that if K = Q then the period of Q-periodic
points is bounded by 12, and cannot equal 11 (Theorem 6.12). The fibers
containing all periodic points can be found using a sequence of recursively
defined polynomials that relate to division polynomials of elliptic curves.
We define and use these polynomials to study local-global dynamics of the
system and provide a necessary and sufficient condition for strong resid-
ual periodicity (Theorem 7.6). Finally, we provide a result relating to the
Mordell–Weil problem on cubic surfaces (see Section 8): We prove that un-
der mild conditions, the set of periodic points of f is finitely generated by
tangents and secants (Theorem 8.2). We also call the reader’s attention to
the very useful Lemma 3.9, which proves that group translations are never
strongly residually periodic.

Let us briefly describe the structure of the article: In Sections 2–4 we
provide the notations and preliminaries required to prove our results. In
Section 5 we describe the dynamics of a product of Geiser involutions. In
Section 6 we present a method for counting periodic fibers of such birational
automorphisms. In Section 7 we prove a necessary and sufficient condition
for strong residual periodicity of a product of Geiser involutions. In Section 8
we discuss the Mordell–Weil problem on cubic surfaces. In Section 9 we
provide examples illustrating the various results of the article.

Acknowledgments. This article contains some of the results from the au-
thor’s Ph.D. thesis under the joint advisorship of Tatiana Bandman and
Boris Kunyavskĭı of Bar-Ilan University. Their tremendous help and advice
during the writing of the dissertation and this article are greatly appreci-
ated. The author also thanks (in chronological order) Michael Friedman,
Igor Dolgachev and Serge Cantat for fruitful correspondence and discus-
sions relating to this article and its results. The author gratefully thanks
the referee for his helpful comments and corrections.

2. Notations

Notation 2.1.

• K is a number field, and K̄ its algebraic closure.
• OK is the ring of integers of K.
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• p is a prime ideal in OK .
• Op is the localization of OK at the prime p.
• mp is the maximal ideal in Op.
• κp is the residue field of the prime p (i.e., Op/mp).
• L(x, y) is the projective line going through two distinct points x, y

in P3.
• P(x, y, z) is the projective plane through noncollinear x, y, z ∈ P3.
• Tx(S) is the tangent plane at x for a smooth projective surface S in
P3.

Definition 2.2. Given a rational map ϕ : X → Y between quasiprojective
varieties X,Y , the domain of ϕ is the largest open subset of X for which
the restriction of ϕ is a morphism. The complement of the domain is called
the locus of indeterminacy (or indeterminacy set), and is denoted by Z(ϕ).

Notation 2.3. Let ϕ be a dominant rational self-map ϕ : X → X of a
projective variety X ⊂ PN

k . For an integer n ≥ 1 we denote

Zn(ϕ) =
n−1⋃
i=0

ϕ−i(Z(ϕ)).

We remark that Zn(ϕ) 6= Z(ϕn) (e.g., Zn(ϕ) may be an infinite set for a
rational map ϕ from a smooth projective surface, but Z(ϕn) is finite, since
the locus of indeterminacy of such a map has codimension ≥ 2). We also
denote

Z∞(ϕ) =
∞⋃
n=1

Zn(ϕ) =
∞⋃
i=0

ϕ−i(Z(ϕ)).

Thus, Z∞(ϕ) is the set of all points whose orbit intersects the locus of
indeterminacy Z(ϕ) (the Zariski-closure of this set is called the extended
indeterminacy set, cf. Diller [10, Definition 2.1]).

3. Preliminaries on arithmetic-geometric dynamical systems

In this section, we recall the definitions and properties of arithmetic dy-
namical systems. We follow Silverman [24, Section 1], Hutz [12, Section 2]
and Bandman, Grunewald and Kunyavskĭı [2, Section 6] unless otherwise
stated.

Definition 3.1. Let K be a number field. A triple D = (X,ϕ, F ) is called
an arithmetic-geometric dynamical system over K (or K-dynamical system
or AG dynamical system) if:

• X is an algebraic K-variety.
• ϕ : X → X is a dominant K-endomorphism (or a dominant K-

rational self-map; note that in this case we allow the function in the
dynamical system to be partially defined).
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• F ⊂ X(K) is a subset of rational points which we call the forbidden
set of the dynamical system D (the forbidden set will include points
the dynamical behavior of which we wish to ignore, cf. Remark 3.7
below).

The dynamics are induced by the components of the system D: we study
iterations ϕn(x) for points x ∈ X(K̄). We are particularly interested in
periodic points, i.e., points x ∈ X(K̄) \Z∞(ϕ) such that ϕn(x) = x for some
positive integer n. The minimal such n is called the exact period of x.

Definition 3.2. Let OK be the ring of integers of a number field K. A
triple D = (X,Φ,F) is called an OK-dynamical system if:

• X is an OK-scheme of finite type.
• Φ : X → X is a dominant OK-endomorphism (or a dominant OK-

rational self-map).
• F ⊂ X(OK) is the forbidden set of the dynamical system D (cf.

Remark 3.7 below).

Definition 3.3. We say that an OK-dynamical system D = (X,Φ,F) is an
integral model of the K-dynamical system D = (X,ϕ, F ) if:

• X×OK
K = X (this means X is the generic fiber of X).

• The restriction of Φ to the generic fiber of X coincides with ϕ.
• ρ(F) = F, where ρ : X(OK)→ X(K) is the restriction to the generic

fiber.

Definition 3.4. Consider a K-AG dynamical system D = (X,ϕ, F ) and an
integral model D = (X,Φ,F), as described in the previous section. Let p be
a prime of OK . Then:

• Xp, the special fiber of X at p, is called the reduction of X modulo
p. We have Xp = X×OK

κp.
• Let ρp : X → Xp be the reduction map (restriction to the special

fiber). The image of a ∈ X(OK) under ρp is the reduction modulo p
of a.
• ϕp : Xp → Xp, the restriction of Φ to the special fiber over p, is

an endomorphism (or rational self-map) of κp-schemes. This is the
reduction of ϕ modulo p.
• Fp = ρp(F) ⊂ Xp(κp) is the reduction of the forbidden set F.

We call the triple Dp = (Xp, ϕp, Fp) the residual system of D modulo p.

Definition 3.5. Let D = (X,ϕ, F ) be a K-AG dynamical system such that
X is a smooth and proper K-variety and ϕ is a dominant endomorphism.
Let D = (X,Φ,F) be an integral model. Then for a place p of K we say
X has good reduction at a prime p if Xp is a smooth and proper scheme;
we say that ϕ has good reduction at a prime p if ϕp extends to a dominant
κp-morphism. If both X and ϕ have good reductions modulo p, we say that
D has good reduction modulo p.
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Let us recall some important facts about good reduction: A smooth pro-
jective variety X defined over a number field K has good reduction at all
but finitely many primes of OK (see Hindry and Silverman [11, Proposi-
tion A.9.1.6]). A similar statement is true for a morphism of a projective
variety defined over a number field K (see Hutz [13, Proposition 1]). For
a prime p of good reduction of a dynamical system D, reduction modulo
p commutes nicely with a morphism, i.e., ρp(ϕ

n(a)) = ϕn
p (ρp(a)) (see Hutz

[12, Theorem 7]). Therefore we can discuss the reductions of orbits, etc.

Definition 3.6. Let D = (X,ϕ, F ) be a K-AG dynamical system, and let
Dp = (Xp, ϕp, Fp) be the reduction of D modulo p with respect to some
integral model. Let a ∈ Xp(κp) \ Fp be a periodic point of ϕp. Let `p(ϕ, a)
be the orbit size of a. Set `p := min{`p(ϕ, a)} where the minimum is taken
over all a. If there are no periodic points in Xp(κp) \Fp, we set `p =∞. Let
M denote the collection of primes p such that `p = ∞. Let N = {`p}p 6∈M .
We say that a K-dynamical system D = (X,ϕ, F ) or an OK-dynamical
system D = (X,Φ,F) is residually aperiodic if the set M is infinite, residually
periodic if M is finite, and strongly residually periodic (SRP) if the sets M
and N are both finite. We denote by SRP(n) a dynamical system that is
strongly residually periodic with minimal periods bounded by an integer n
for all but finitely many primes.

Remark 3.7. Usually we will take the forbidden set F ⊂ X(K) to be the
set of all periodic points in X(K) (or the Zariski-closure of this set), so that
SRP describes the situation where we have bounded residual periods that
cannot be explained by periodic points in X(K). In case ϕ is rational, we
include Z∞ in F so that we can exclude points with bad dynamics.

Given a dynamical system D = (X/K,ϕ, ∅) (for now we ignore the forbid-
den set), one can ask about the orbit size of a point a ∈ X(K) when reduced
modulo p. If a ∈ X(OK) is periodic of exact period n, then the orbit size
of ρp(a) divides n (cf. Hutz [12, Theorem 1]). If a is of an infinite orbit, we
would expect that when reducing the point modulo primes p, the reduced
point ρp(a) will have periods that grow together with the cardinality of κp.
This is a direct corollary from a theorem of Silverman (see [24, Theorem 2]):

Corollary 3.8 (Corollary to Silverman’s Theorem). Let D = (X,ϕ, F ) be
an AG dynamical system, and let a ∈ X(K) \ Z∞ be a point of an infinite
orbit. Then the residual periods of a are unbounded over the primes in OK .

From the corollary we see that strong residual periodicity cannot be ex-
plained by one global point of infinite orbit, and in fact we can deduce from
Silverman’s theorem that it cannot be explained by a finite set of points of
infinite orbit in X(K). The corollary allows us to prove the following simple
yet useful lemma:
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Lemma 3.9. Let G/K be an algebraic group over a number field K, and
let D be the dynamical system induced by the group translation ϕg(x) = gx,
for some element g ∈ G(K) of infinite order. Then D is not SRP.

Proof. The iterations of ϕg are very simple: ϕn
g (x) = gnx. We see that the

following are equivalent:

(a) There exists a periodic point x ∈ G(K) of exact period n.
(b) The element g is of finite order n.
(c) The element g is a periodic point of ϕg of exact period n: i.e.,

ϕn
g (g) = g

(and n ≥ 1 is the minimal positive integer satisfying this).
(d) The map ϕg is of finite order n in the automorphism group of the

underlying variety of G/K.

Now, if g is of infinite order in G/K, then by the properties above it is of
infinite orbit, and we can use the corollary to Silverman’s Theorem (Corol-
lary 3.8) to see that the ϕg-periods of g modulo primes p are unbounded over
the primes. This means that the minimal periods are unbounded (because
the equivalent conditions above are also relevant for the reduced system Dp

when there is good reduction), so that ϕg is not SRP. �

4. Preliminaries on cubic surfaces

In order to study arithmetic dynamics on smooth cubic surfaces, we need
to recall several classical geometric properties and theorems related to them.

We briefly recall the group structure on absolutely irreducible cubic plane
curves (cf. Manin [14, Chapter I, Section 1, page 7] and Silverman [25,
Chapter III, Section 2]). Let C be an absolutely irreducible cubic curve in
the projective plane P2, defined over a field k. Let Cns(k) denote its set
of nonsingular rational points over k. Assuming Cns(k) 6= ∅, we define a
binary composition law ◦ : Cns(k) × Cns(k) → Cns(k), by setting x ◦ y for
x 6= y to be the third point of intersection of the line L = L(x, y) with the
curve C. If x = y then we take L to be the tangent to C at x. We can then
turn Cns(k) into a group by choosing an element u ∈ Cns(k) and defining
xy := u ◦ (x ◦ y) for x, y ∈ Cns(k). With this multiplication, Cns(k) is an
abelian group with unit u . If C is smooth, this gives the usual composition
law on elliptic curves, and we denote it by x+ y.

Similarly, we can define a composition law ◦ : S(k̄) × S(k̄) → S(k̄) on a
smooth cubic surface S ⊂ P3

k defined over a field k (cf. Manin [14, Chapter
I, Section 1, page 7]). This composition is only partially defined. Given two
distinct points x, y ∈ S(k̄) such that L(x, y) does not lie on S, we define
x ◦ y to be the third point of the intersection of the line L(x, y) with S (this
line has three points of intersection with S, by Bezout’s theorem). We note
that this operation is commutative but not necessarily associative.
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Definition 4.1. A point x ∈ S(k̄) on a smooth cubic surface S/k is a good
point if it does not lie on the union of the lines of S×k k̄ (recall that there are
27 lines over k̄ on a smooth cubic surface, cf. Shafarevich [21, Chapter IV,
Section 2.5, Theorem]). An unordered pair of distinct points x, y ∈ S(k̄) is
called a good pair if the line containing these points is not tangent to S×k k̄
and does not intersect the union of the lines on S ×k k̄ in P3 (cf. Manin [14,
Chapter V, Section 33.6]).

It is clear from the definition that a pair of distinct points x, y ∈ S(k̄) on
a smooth cubic surface is a good pair if and only if x◦y is defined, the three
points x, y and x ◦ y are distinct and all three of them are good.

The Geiser involution of a smooth cubic surface S through a point x ∈
S(k), is a map tx : S → S sending each y ∈ S(k̄) to x ◦ y, when defined
(cf. Brown and Ryder [6, Section 2.2] and Corti, Pukhlikov and Reid [7,
Section 2.6]). We define tx for absolutely irreducible cubic curves in the
same way. It is clear that tx is a birational involution (it is generally not
defined at x itself). A theorem of Manin [14, Theorems 33.7, 33.8] says that
the Geiser involutions together with the Bertini involutions and the projec-
tive automorphisms generate Bir(S) for a minimal smooth cubic surface S
defined over a perfect nonclosed field. Some other useful properties of the
Geiser involution are that tx(y) = ty(x) for a good pair x, y, and its locus of
indeterminacy is Z(tx) = {x}. Also, tx is an automorphism when restricted
to S \ Cx, where Cx = Tx(S) ∩ S.

Theorem 4.2. Let C ⊂ P2 be an absolutely irreducible plane cubic curve
defined over a field k. Then:

(a) The product of any two Geiser involutions txty is a group translation:
Given the choice of a group structure on the nonsingular points on
the cubic curve, then for any nonsingular point z ∈ Cns(k̄) we get
txty(z) = (y−x)+z (or txty(z) = x−1yz if the group is multiplicative.

(b) For any x, y, z ∈ C we have txtytz = tw, where w = y ◦ (x ◦ z).

Proof. See the proof of Theorem 2.1 in Manin [14]. �

Theorem 4.3. Let S be a smooth cubic surface over a perfect field k, and
let x, y ∈ S(k) be a good pair. Then the birational map txty is of infinite
order in Bir(S).

Proof. See Manin [14, Example 39.8.4]. �

We recall some facts about hyperplane sections of a smooth surface S in
P3 defined over a perfect field k. If H is a hyperplane in P3, then a point
x ∈ S ∩ H is singular (on S ∩ H) if and only if H = Tx (here S ∩ H is
viewed scheme-theoretically, since the intersection may not be reduced, cf.
Beltrametti et al. [3, Chapter 3, Section 1.8]). For a smooth cubic surface S
in P3 we know that any hyperplane section will be one of the following (see
Reid [20, Chapter 7, Section 1, Proposition]):



ARITHMETIC DYNAMICS ON SMOOTH CUBIC SURFACES 9

(a) an absolutely irreducible smooth plane cubic curve;
(b) a cuspidal plane cubic;
(c) a nodal plane cubic;
(d) an absolutely irreducible conic and a line;
(e) three distinct lines.

By using these properties it is easy to prove the following list of statements
about hyperplane sections of cubic surfaces:

Proposition 4.4. Let S ⊂ P3 be a smooth cubic surface over a perfect field
k.

(a) The point x ∈ S(k̄) is a good point if and only if the curve

Cx = Tx(S) ∩ S
is absolutely irreducible.

(b) Let x, y be distinct good points on S. Then Cx and Cy do not have
any common components.

(c) Let x, y be a good pair on S. Then any plane H ⊂ P3 passing through
x, y intersects S in an absolutely irreducible cubic curve C, and the
three (distinct) points x, y, z in L(x, y) ∩ S are nonsingular on C.

5. Dynamics of a product of Geiser involutions

In this section we study the global dynamics of a product of two Geiser
involutions txty, where x, y is a good pair on S. We will show that the dy-
namics of txty are determined by its restrictions to the fibers of the elliptic
fibration preserved by txty. Using Theorem 4.2 we see that txty restricts to
a group translation on the nonsingular points of each fiber, making the dy-
namics of txty particularly easy to study. As a slight disclaimer, we mention
that some of the proofs in this section are classical in nature, so no origi-
nality is claimed here (other than applying them to the dynamical setting).
Our main results in this section are Proposition 5.5, characterizing the pe-
riodic fibers of exact period n, and Proposition 5.8, proving the existence of
K̄-periodic points lying outside of Z∞(txty).

Proposition 5.1. Let S be a smooth cubic surface, and x, y a good pair.
Let H be a hyperplane going through x, y. Let C be the hyperplane section
H∩S (absolutely irreducible by Proposition 4.4). Then C is invariant under
txty and the restriction of txty to C is a group translation on Cns.

Proof. That C is invariant is clear from the definition of tx and txty is a
group translation by Theorem 4.2. �

Let S ⊂ P3 be a smooth cubic surface over a perfect field k. An elliptic
fibration on S is a rational map ϕ : S → B defined over k, such that
the geometric generic fiber is birational to a curve of genus 1. For a field
k of characteristic 0 the base of an elliptic fibration must be of genus 0
and has a rational point, so it is isomorphic to P1(see Brown and Ryder
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[6, Section 1] for the definition, and a proof of the last statement). Given
a good pair x, y on S, we can define an elliptic fibration by taking the
pencil of planes through the line L = L(x, y): we choose two distinct planes
H1 = {f = 0}, H2 = {g = 0} passing through L (where f, g are linear
forms); then the rational map ϕ = (f, g) is an elliptic fibration. We call
such a fibration the linear fibration associated with the good pair x, y. The
following is immediate from Proposition 5.1.

Proposition 5.2. Let S ⊂ P3 be a smooth cubic surface. Given a good pair
x, y on S, the fibers of the linear fibration through x, y are invariant under
the birational automorphism txty.

From Proposition 5.1 and the proof of Lemma 3.9, we see that the only
fibers containing periodic points are those for which txty restricts to a group
translation of finite order (aside from the singular points of the singular
fibers, which we will show to be fixed points). Denote by Fixed(ϕ) the set
of fixed points of a rational map ϕ, then:

Proposition 5.3. Let x, y be a good pair on a smooth cubic surface S over
a perfect field k, then Fixed(txty) = Fixed(tx) ∩ Fixed(ty).

Proof. Obviously, if w ∈ Fixed(tx) ∩ Fixed(ty), then w ∈ Fixed(txty). In
the other direction, suppose txty(w) = w. Assume w 6= x; we apply tx
to both sides of the equation and get tx(w) = ty(w) (since w 6∈ {x} =
Z(tx)). We know that tx(w) = tw(x), so that we get tw(x) = tw(y). Now,
if tw(x) 6= w, we can apply tw to both sides of the equation and get x = y,
a contradiction. Therefore, still under the assumption of w 6= x, we get
tw(x) = tx(w) = w and also ty(w) = w as required. If w = x, then we
have txty(x) = x, which implies ty(x) ∈ Cx since t−1x (x) = Cx. The points
x, y, ty(x) are collinear, and since x, ty(x) ∈ Cx, we get that y ∈ Cx as
well, which implies ty(x) = x; but then txty(x) = tx(x) is indeterminate, a
contradiction. �

Corollary 5.4. Let S, x, y be as in Proposition 5.3. Then:

(a) A point w ∈ S(k̄) is a fixed point of txty if and only if w is a singular
point of the curve C = P(x, y, w) ∩ S.

(b) The map txty has at most 12 fixed points over k̄.

Proof. (a) We saw in the proof of Proposition 5.3 that w is a fixed point
of txty if and only if x, y ∈ Cw. Therefore C = Cw, and w is singular on Cw

(by Proposition 4.4).
(b) The linear fibration π associated with x, y can be blown up at the

three points x, y, z in L(x, y) ∩ S to give a rational elliptic surface, which
only has at most 12 singular fibers (see Miranda [18, Section 1]) (Note that
no singularities on the fibers of π are resolved by the blowup, since x, y, z
are smooth on all fibers by Proposition 4.4). Each of these singular fibers is
associated with a fixed point of txty by Corollary 5.4. �
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We will say that a fiber C in the linear fibration associated with a good
pair {x, y} is a periodic fiber of period n > 0 if (txty)n is the identity when
restricted to the fiber C, and n is the minimal positive integer satisfying
this.

Proposition 5.5. Let x, y be a good pair on a smooth cubic surface S ⊂ P3

defined over a perfect field k. Let w ∈ S(k̄) \ Z∞(txty) be noncollinear with
x, y, and denote C = P(x, y, w) ∩ S. Then the following are equivalent:

(a) The point w is a periodic point of exact period n > 1 of txty.
(b) The curve C is txty-periodic of period n (which is the same as saying

txty is of order n in Aut(C)), and w is a nonsingular point of C.
(c) The point y is of order n in the group Cns(k) with x chosen to be the

unit element (the point y is nonsingular on C by Proposition 4.4).

Proof. Let w ∈ S be periodic of exact period n > 1. By Proposition 5.1,
the birational automorphism txty restricts to an automorphism of C. We
choose x to be the unit element of the group structure on Cns(k) (note that
w ∈ Cns(k) since the period of w is greater than 1, and then by Corollary 5.4
it is nonsingular), and get

(1) w = (txty)n(w) = ny + w

(see Theorem 4.2), from which we get ny = 0, meaning that the order of y
on the cubic curve is n and that (txty)n = id. If the order of txty was less
than n, we would get a contradiction to n being the exact period of w. So
we have proved that (a) implies (b) and (c). Similarly, one uses equation
(1) to prove the other implications. �

We can say more for the period n = 2:

Proposition 5.6. Let S, x, y, ϕ, w and C be as in Proposition 5.5. We
restrict ◦ to the curve C, where it is fully defined. Then the following are
equivalent:

(a) The point w ∈ S(k̄) is a periodic point of exact period n = 2 of txty.
(b) x ◦ x = y ◦ y.
(c) x ◦ x ∈ Cx ∩ Cy.

Proof. The statements (b) and (c) are equivalent, because x◦x ∈ Cy means
that the line through y and x ◦ x has a double point at y, and as this line
is contained in P(x, y, w), it must mean that this is the tangent line to C
at y, but then by definition x ◦ x = y ◦ y. The statements (a) and (b) are
equivalent since

(txty)2(w) = w ⇐⇒ 2y + w = w ⇐⇒ 2y = 0 ⇐⇒ x ◦ (y ◦ y) = x,

and we can apply x to both sides of the last equation. �

Corollary 5.7. Let S, x, y, ϕ be as in Proposition 5.5; then there are three
periodic fibers of period 2 defined over k̄, counted with multiplicity, in the
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linear fibration of S through the points x, y (and these contain all periodic
points of period 2).

Proof. We show that the period 2 fibers of ϕ are determined by the inter-
section of the line L = Tx(S) ∩ Ty(S) with S. The line L cannot lie on S,
since otherwise it lies on Tx(S) and therefore is contained in Cx = Tx(S)∩S;
but Cx is absolutely irreducible by Proposition 4.4. Therefore the line L in-
tersects S at three points (counted with multiplicity). None of these three
points are collinear with x, y (otherwise L(x, y) has a double point at both
y and x). Each point w ∈ S ∩ L then determines a fiber of the linear fibra-
tion, and on this fiber we get w = x ◦ x = y ◦ y, since L(w, x) ⊂ Tx(S) and
L(w, y) ⊂ Ty(S). The result then follows from Proposition 5.6. �

Proposition 5.8. Let S be a smooth cubic surface over a perfect field k. Let
x, y be a good pair on S, and let C be a fiber of the linear fibration through
x, y. Then:

(a) For any positive integer n, the set C(k̄) ∩ Zn(txty) is finite (see No-
tation 2.3).

(b) If C is periodic of period n, then the set C(k̄)∩Z∞(txty) is finite, and
this implies the existence of k̄-periodic points outside of Z∞(txty).

Proof. To make notations simpler, we identify all algebraic sets with their
underlying set of k̄-points. Denote f = txty, and let z be the third point
in L(x, y) ∩ S. We prove the proposition by induction on n. For n = 1
we have Z1(f) = Z(f) = {y, z}, so the assertion is true. Let n > 1, and
assume that the statement is true for any m < n. For n ≥ 2 we have
Zn(f) = Z(f) ∪ f−1 [Zn−1(f)] , so that

C ∩ Zn(f) = (C ∩ Z(f)) ∪ (C ∩ f−1 [Zn−1(f)]).

The first set in the union is finite; it remains to prove that C∩f−1 [Zn−1(f)]
is finite. It is easy to see that C ⊂ f−1 [C], so that

C ∩ f−1 [Zn−1(f)] ⊂ C ∩ f−1 [C ∩ Zn−1(f)] .

The set C ∩ Zn−1(f) is finite by the induction hypothesis, so

C ∩ Zn−1(f) ⊆ {x, y, z, A1, . . . , AK},
where A1, . . . , AK are points in C(k̄) \ {x, y, z}. The inverse image

f−1({y,A1, . . . , AK})
is finite (as can be checked readily from the definition of tx and ty), so it
remains to show that C ∩ f−1[{x, z}] is finite. Now f−1[{z}] = Cy, which
is an irreducible hyperplane section singular at y by Proposition 4.4, and
therefore has no common components with C (the curve C is irreducible
and cannot have a singularity at x, y, z by Proposition 4.4), so that their
intersection is finite. Finally, f−1[{x}] = t−1y (Cx). As before C ⊂ t−1y [C],
so that

C ∩ t−1y [Cx] ⊂ t−1y [C ∩ Cx] .
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The set C ∩ Cx is finite, so C ∩ Cx ⊆ {x,B1, . . . , BM}, where B1, . . . , BM

are points in C(k̄) \ {x, y, z} (The curve Cx does not contain y and z, since
otherwise x is a double point of L(x, y) ∩ S, which is impossible, since x, y
and z are distinct). The inverse image of {x,B1, . . . , BM} under ty is finite.
This proves (a).

To prove (b), we note that any point of C not in Zn(txty) must be periodic
of period n, and therefore cannot lie in Z∞(txty); but C ∩ Zn(txty) is finite
by (a), so that C ∩ Z∞(txty) is finite as well. �

6. Division polynomials associated with linear fibration

We have seen in Section 5 that finding periodic points of txty for a good
pair x, y on a smooth cubic surface S defined over a number field K, is
equivalent to studying periodicity on the fibers of the linear fibration defined
by the points x, y (Proposition 5.2). We have also seen that for a fiber to
have periodic points of exact period n, the fiber itself must be periodic of
period n, and this is equivalent to y being of order n in the group structure
induced by choosing x as the unit element (Proposition 5.5). We want to
find all the fibers of the linear fibration that are periodic of finite period. In
order to do so we employ division polynomials of elliptic curves. We first
recall the definition and basic properties of these polynomials.

Definition 6.1. Given an elliptic curve E in Weierstrass form

y2 = x3 +Ax+B,

we associate to it the division polynomials ψn, n ≥ 0 in Z[x, y,A,B]:

ψ0 = 0, ψ1 = 1, ψ2 = 2y,

ψ3 = 3x4 + 6Ax2 + 12Bx−A2,

ψ4 = 4y(x6 + 5Ax4 + 20Bx3 − 5A2x2 − 4ABx− 8B2 −A3),

ψ2m+1 = ψm+2ψ
3
m − ψm−1ψ

3
m + 1, for m ≥ 2,

ψ2m = (2y)−1ψm(ψm+2ψ
2
m−1 − ψm−2ψ

2
m+1), for m ≥ 3.

Theorem 6.2. Let E be an elliptic curve defined over a number field K.
Then the division polynomials have the following properties (E[n] is the set
of points in E(K̄) with order dividing n):

(a) ψ2n+1, y
−1ψ2n are polynomials in Z[x,A,B].

(b) The roots of ψ2n+1 are the x-coordinates of the points in

E[2n+ 1] \ {O}.
(c) The roots of y−1ψ2n are the x-coordinates of the points in E[2n]\E[2].

Proof. See Washington [27, Chapter 3, Section 2]. �

Remark 6.3. To make the notations easier, we replace ψn for even n with
y−1ψn.
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Proposition 6.4. Let S be a smooth cubic surface defined over a number
field K, let x, y ∈ S(K) be a good pair, and denote by π : S → P1 the
linear fibration associated with the good pair x, y. There exist polynomials
γn(t) in K[t], for n ≥ 3, whose roots in K̄ lying outside a finite set B ⊂ P1

correspond to fibers of π that are txty-periodic of period ≥ 3 and dividing n.

Proof. We can ensure that the fiber at infinity is nonperiodic and nonsin-
gular. Outside this fiber π induces a cubic pencil with parameter t, whose
generic fiber is a smooth cubic curve C in the projective plane P2 over the
function field K(t). The points x, y induce two rational points (which we
still denote by x, y) on the cubic curve C. We choose x to be the unit ele-
ment of the cubic curve C, which induces an elliptic curve group structure
on C. We note that it is impossible for y on C to be of finite order when x
is chosen as unit element, since otherwise txty is of finite order in Bir(X),
contradicting Theorem 4.3.

We now use a Weierstrass transformation (see Shioda [22, Section 2]) to
map our elliptic curve (C, x) to an isomorphic elliptic curve in Weierstrass
form over K(t)

E : v2 = u3 +A(t)u+B(t).

We denote the Weierstrass transformation by ω : (C, x)→ (E,O). The point
y is mapped to a rational point on E, and we still denote this point by y.
We can ensure that the Weierstrass form E has coefficients in OK [t]: This
is done by transforming E to a minimal Weierstrass form (cf. Silverman
[25, Chapter VII, Section 1]), i.e., an isomorphic copy of E such that the
valuation of A and B is nonnegative and minimal (in its isomorphism class)
at all places of K(t); then it is possible to get rid of the denominators so
that all the coefficients of A(t) and B(t) are in OK .

There exists an open subset U ⊆ P1 such that for each t ∈ U , the spe-
cialization of the Weierstrass transformation ω to the fiber over a specific
t will remain an isomorphism of irreducible cubic curves. We include the
complement of U in B.

We now have an infinite sequence of division polynomials ψn ∈ OK [t][u],
n ≥ 3, of the elliptic curve E/K(t). We evaluate these polynomials at
the u-coordinate of the point y, and get an element γ̃n(t) in K(t). The
denominator of γ̃n depends only on y ∈ E; thus there are finitely many
values of t at which γ̃n(t) might have poles, which we include in B. We now
define γn to be the numerator of γ̃n, for n ≥ 3.

It is clear that the fibers of π lying over the roots of γn(t) not in B, are
fibers where y is of finite order 6= 2 and dividing n. Thus by Proposition 5.5
these fibers are periodic of period 6= 2 and dividing n. �

Corollary 6.5. Let S/K, x, y and π be as in Proposition 6.4. There exist
polynomials Ψn(t) in K[t], for n ≥ 3, whose roots in K̄ correspond to all
the fibers of π that are periodic under the birational map txty, of period 6= 2
and dividing n.
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Proof. We only need to check the order of y on the finite number of fibers
over the points in B. If a fiber over a point a ∈ B is nonperiodic, then we
factor out a as a root from the polynomials γn(t). If it is periodic, then we
need to make sure it appears as a root of the polynomials γn(t). It remains
to prove that the resulting polynomials have coefficients in K. This is true
because if we have a point a on whose corresponding fiber we have y of finite
order n, then the order of y on the fibers over the conjugates of a will be
the same, and therefore they will be roots of the same polynomials. �

Corollary 6.6. Under the assumptions of the last corollary, the K̄-periodic
points of txty are Zariski-dense in S(K̄).

Proof. By Corollary 6.5, there are infinitely many periodic fibers of txty
over K̄ (the polynomials Ψp,Ψq have no common roots for distinct primes
p and q). By Proposition 5.8, these fibers must contain K̄-rational points
lying outside of Z∞(txty). �

Definition 6.7. We call the polynomials Ψn, n ≥ 3 in the last corollary the
division polynomials of the smooth cubic surface S with respect to the good
pair x, y (this definition is nonstandard). We now define the 1st and 2nd
division polynomials:

(1) Ψ1(t) is defined to be the discriminant of Weierstrass form E/K(t)
from the proof of Proposition 6.4.

(2) Ψ2(t) is defined to be the numerator of the v coordinate of the point
y on E/K(t).

Proposition 6.8. Let S be a smooth cubic surface defined over a number
field K, and let x, y ∈ S(K) be a good pair.

(a) The roots of Ψ1 in K̄ correspond to the fibers of π that contain fixed
points of txty. This polynomial is of degree at most 12.

(b) The roots of Ψ2 in K̄ correspond to the fibers of π that are periodic
of period 2. This polynomial is of degree at most 3.

Proof. (a) The discriminant of a cubic curve in Weierstrass form is 0 if and
only if the curve is singular. A point w on the surface S is fixed under txty if
and only if the fiber C = P(x, y, w) ∩ S is singular, by Corollary 5.4. There
are at most 12 fixed points of txty on the surface S, by Corollary 5.4, which
explains the degree.

(b) A point on an elliptic curve in Weierstrass form is of order 2 if and
only if its v coordinate is 0. By Proposition 5.7 there are at most 3 curves
of period 2. �

Notation 6.9. Let S be a smooth cubic surface defined over a number field
K, let x, y ∈ S(K) be a good pair and let Ψn be the division polynomials
associated with x, y. For n ≥ 1 define the polynomials

Φn(t) = Ψn(t)
∏

d|n,d>2

Ψd(t)−1.
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The roots of Φn(t), n ≥ 2, in K̄ correspond to periodic fibers of π of exact
period n.

Proposition 6.10. Let S be a smooth cubic surface defined over a number
field K and let x, y ∈ S(K) be a good pair.

(a) For the case K = Q, the polynomials Φn(t) do not have roots in Q
for n > 12 or n = 11.

(b) For a general number field K there exists a positive integer N such
that Φn(t) does not have roots in K for n > N . The bound N depends
only on the degree of the extension K/Q.

Proof. (a) Mazur’s torsion theorem [16, Theorem 8] lists the possible Q-
rational torsion subgroups of elliptic curves over Q. The maximal order
of an element of finite order is bounded by 12. If Φn(t) has a root in Q
for n > 12, then the fiber over this root is an elliptic curve over Q with a
rational point of order n, a contradiction.

(b) Merel’s torsion theorem (see Merel [17, Corollary]), guarantees a
bound on the order of the K-rational torsion subgroup that depends only
on the degree of the field extension. An explicit bound on the order of the
torsion subgroup can be found in Parent [19, Corollary 1.8] (this bound is
exponential in the degree of the extension of K/Q). �

Corollary 6.11. Let S be a smooth cubic surface defined over a number
field K and let x, y ∈ S(K) be a good pair. The set of all periodic points of
txty in S(K) is contained in a finite number of fibers of π.

Proof. All periodic points must be contained in the fibers of the linear fi-
bration lying over the K-roots of the polynomials Ψn. Therefore, by Propo-
sition 6.10, there are only finitely many fibers that can contain K-periodic
points. �

Theorem 6.12. Under the assumptions of Proposition 6.10, for K = Q the
birational automorphism txty can only have Q-periodic points of exact period
1, . . . , 10, 12. For a general number field K, the birational automorphism txty
can only have periodic points of exact period bounded by a number depending
only on the degree of the extension K/Q.

The division polynomials of the linear fibration give us an effective method
for “finding” all K-periodic points of a birational automorphism txty:

(1) First we find the K-roots of all division polynomials up to the bounds
described in the proof of Proposition 6.10.

(2) For the nonsingular periodic fibers, we can then use algorithms to find
the generators of the Mordell-Weil of the elliptic curve (cf. Cremona
[8, Chapter 3, Section 5]).

(3) We can parametrize the periodic points on the singular periodic
fibers.

(4) For each periodic fiber, we can find all the points in Z∞(txty) in a
finite number of steps (see Proposition 5.8).
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7. SRP on cubic surface

We are now ready to prove some results about strong residual periodicity
of the AG dynamical system of type D = (S, txty, F ) on a smooth cubic
surface S defined over a number field K, whose global dynamics were de-
scribed in the previous two sections. We take the forbidden set F to be
union of the Zariski-closure of the set of all periodic points in X(K) and the
set of K-rational points in Z∞(txty). In this section we prove two sufficient
conditions for SRP, and then we prove that when put together, they are
necessary and sufficient.

Proposition 7.1. Let S be a smooth cubic surface defined over a number
field K and let x, y ∈ S(K) be a good pair. If there exists a fiber C, defined
over K, of the linear fibration through the good pair x, y ∈ S(K) such that
the set of K-rational points C(K) is finite, then D = (S, ϕ = txty, F ) is
strongly residually periodic.

Proof. The curve C must be smooth, since absolutely irreducible singular
cubic curves with a rational point are rational, and therefore have infinitely
many rational points. The point y must be of finite order in the group
induced by choosing x as the unit element on C. All points in C(K), outside
of Z∞(txty), are txty-periodic with period equal to the order of y. Denote
by N the order of y in C(K). To prove the proposition we will show that
for primes p for whom the cardinality of κp is large enough, there exists a
point w ∈ Cp(κp) that satisfies:

(1) The point w is not a reduction of any periodic point in the Zariski-
closure of the subset of periodic points in S(K).

(2) The point w is not a reduction of any point in Z∞(ϕ).
(3) The point w is not in Z∞(ϕp) (in particular w is defined under ϕN

p ,
and is therefore a periodic point of period at most N).

We restrict ourselves to primes p where the system D has good reduction.
In particular the elliptic curve E = (C, x) is reduced to an elliptic curve
Ep = (Cp, xp). We can then use Hasse’s theorem on elliptic curves (see
Silverman [25, Thm V.1.1]) to guarantee that the number of rational points
in Cp(κp) is as large as we desire. We can thus guarantee that for all but
finitely many primes p there exists a point w ∈ Cp(κp) such that w is not a
reduction of any point in C(K). The Zariski-closure of the subset of periodic
points in S(K) is contained in a finite number of fibers of the linear fibration
through x, y, so that it is enough to choose p such that Cp intersects the
reductions of the other fibers only at the points {x, y, z} = L(x, y)∩S (this
is true for any prime p such that κp is large enough). This proves (1).

We proved in Proposition 5.8 that the intersection of C(K̄) with Z∞(ϕ)
is finite. We use this and the same reasoning as in the previous paragraph
to prove (2).

The set Z∞(ϕp) is the set of points whose orbit intersects Z(ϕp). Now,
Z(ϕp) ⊆ {yp = ρp(y), zp = ρp(z)}, so that any point v ∈ Cp(κp) not in
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Z(ϕp) that lies in Z∞(ϕp), satisfies nyp + v = yp or nyp + v = zp, for some
integer 1 ≤ n ≤ N . Rewriting this, we get v = (1 − n)yp or v = zp − nyp,
for some integer 1 ≤ n ≤ N . In other words, there are at most 2N points
in Cp(κp) ∩ Z∞(ϕp). The bound 2N is independent of the prime p, and
therefore for primes p such that κp is large enough, we can find points in
Cp(κp) that are not in Z∞(ϕp), so that (3) is proved. �

Remark 7.2.

(i) The order of y on C(K) is bounded by Theorem 6.12.
(ii) See Example 9.1 for a dynamical system satisfying the conditions of

Proposition 7.1.

Proposition 7.3. Let S be a smooth cubic surface defined over a number
field K and let x, y ∈ S(K) be a good pair. The minimal periods of the
residual systems of D = (S, ϕ = txty,F) are bounded (as in Definition 3.6)
if and only if there exists a positive integer N such that the polynomial
ΘN (t) = Φ1(t) · · ·ΦN (t) (see Notation 6.9) has a root modulo all but finitely
many primes p.

Proof. Let π : S → P1 be the linear fibration through the pair x, y. The
polynomial ΘN has roots modulo all but finitely many primes if and only if
there exist either periodic fibers of π of period at most N or fixed points for
all but finitely primes. The set of Z∞(ϕp) is bounded on periodic curves of
period at most N by a bound depending only on N , as we have seen in the
proof of Proposition 7.1. Thus for primes p such that κp is large enough,
the fiber must contain points outside Z∞(ϕp). Therefore, the condition that
there exist either periodic fibers of π of period at most N or fixed points for
all but finitely many primes, is equivalent to the boundedness of the minimal
periods of the residual systems Dp. �

Proposition 7.4. Let S be a smooth cubic surface defined over a number
field K, and let x, y ∈ S(K) be a good pair. If there exists a positive integer
N such that the polynomial ΘN (t) = Φ1(t) · · ·ΦN (t) divided by all linear
factors defined over K (i.e., all K-roots are removed), has no roots over
K, and for all but finitely many primes p the polynomial ΘN (t) has a root
modulo p, then D = (S, ϕ = txty, F ) is strongly residually periodic.

Proof. By Proposition 7.3, we know that the minimal residual periods are
bounded by N for all but finitely many primes. We need to check that our
points of minimal period modulo p are not all reductions of points from the
forbidden set.

First we check reductions ofK-periodic points. We know that the minimal
period for all but finitely many primes is at most N , and any periodic
point over K must either be of larger period than N , or belong to a fiber
corresponding to a K-root of ΘN (t). Let C be a K-periodic fiber of period
m > N , then y is of order m on C. For all but finitely many primes, the
reduction of the point y modulo p will have the same order m > N on
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the reduced fiber (cf. Silverman [25, Proposition VII.3.1]). Therefore the
reduction of such a fiber cannot give us points of period at most N (by
Proposition 5.5). Now suppose we have a fiber C of the linear fibration

that corresponds to a root a ∈ K of ΘN (t). Denote by Θ̃N (t) ∈ K[t] the
polynomial obtained from ΘN (t) after dividing by all linear factors defined

over K. Then a is not a root of Θ̃N (t). Fu rther, ρp(a) can only be a root

of Θ̃N (t) modulo p for a finite number of primes p. Therefore the fiber Cp

can only agree with the fibers lying over the roots of Θ̃N (t) modulo p for

finitely many primes p. Thus, periodic points obtained from roots of Θ̃N (t)
will not be reductions modulo p of points from the fiber C.

Finally, we check the reduction of points in Z∞(ϕ): Given a κp periodic
fiber of period at most N , it can contain only a bounded amount of periodic
points whose orbit goes through Z(ϕp). The bound for this type of points
does not depend on p but only on N . Therefore, for primes p such that κp
is large enough, there will be κp-periodic points on the fiber that are not
reductions of points from Z∞(ϕ) (the orbit of the reduction of such a point
must go through Z(ϕp)). �

Corollary 7.5. Let S be a smooth cubic surface defined over a number field
K and let x, y ∈ S(K) be a good pair. If there exists a number N such that
the polynomial ΘN (t) = Φ1(t) · · ·ΦN (t) has no roots over K, and for all
but finitely many primes p the polynomial ΘN (t) has a root modulo p, then
D = (S, ϕ = txty, F ) is strongly residually periodic.

Theorem 7.6. Let S be a smooth cubic surface defined over a number field
K and let x, y ∈ S(K) be a good pair. The system D = (X,ϕ = txty, F ) is
strongly residually periodic if and only if one of the following is true:

(a) There exists a K-fiber in the linear fibration through x, y with finitely
many rational points.

(b) There exists a positive integer N such that ΘN = Φ1 · · ·ΦN divided
by all linear factors over K, has roots modulo all but finitely many
primes p.

Proof. The if part is true by Propositions 7.1 and 7.4. If D is strongly
residually periodic, then the periods are bounded, and this means there
exists a positive integer N such that ΘN has roots modulo all but finitely
many primes (by Proposition 7.3). If we divide ΘN by all the linear factors
over K, and we have roots modulo all but finitely many primes, then the
second condition is satisfied. Otherwise strong residual periodicity must be
explained by a fiber that is defined over K, but if such a fiber has infinitely
many periodic points, then the entire fiber is in the forbidden set — therefore
if the second condition is not met the first condition must be true. �
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8. Finite generation of a subset of rational points on a
smooth cubic surface

In this section we recall the Mordell–Weil problem for cubic surfaces,
and prove a dynamical theorem in a Mordell–Weil flavor, using results we
obtained in the previous sections.

Let S be a smooth cubic surface defined over a field k. Given a subset of
points S0 ⊆ S(k) we can define recursively an increasing sequence of sets

(2) S0 ⊆ S1 ⊆ S2 ⊆ · · · ,

where Si+1 is defined by adding to Si all the points of the form w ◦ z ∈ S(k)
obtained by taking any two distinct points w, z ∈ Si. This is called drawing
secants through the points in Si. We can modify this sequence by also
including in Si+1 all the points w ∈ S(k) such that w ∈ Cx(k) (recall that
Cx = Tx(S)∩S) for some x ∈ Si. This is called drawing tangents through the
points in Si. The span of S0 (denoted by Span(S0)) by tangents and secants
(or only secants) is defined as the union of all the sets in the sequence in
(2).

Question 8.1 (The Mordell–Weil problem for cubic surfaces). Given a
smooth cubic surface S over a field k such that S(k) 6= ∅, does there exist a
finite subset S ⊂ S(k) such that Span(S) = S(k)? If so, then we say S(k) is
finitely generated.

The Mordell–Weil problem for cubic surfaces is still open, and partial
results can be found in Manin [15] and Siksek [23]. Of course, the answer
to the question may very well depend on whether we allow tangents or not,
and in fact Manin considers an alternative composition rule in the above-
mentioned article.

We proceed to prove a Mordell–Weil like theorem for the set of K-periodic
points of txty where K is a number field. In order to obtain “true” finite gen-
eration, we restrict ourselves to taking tangents only inside the nonsingular
fibers of the linear fibration associated to x and y.

Theorem 8.2. Let K be a number field, S/K a smooth cubic surface and
x, y ∈ S(K) a good pair. If there do not exist singular fibers in the linear
fibration through x, y that are periodic of finite period, then the set of K-
periodic points of the birational automorphism txty is finitely generated by
secants and tangents.

Proof. By Corollary 6.11, there are only finitely many fibers of the linear
fibration containing all periodic points. There are two types of such fibers:
the first is a singular fiber containing only one singular point, which is fixed
under txty (the rest of the points on the fiber are nonperiodic due to the
assumption in the theorem). The second is a smooth fiber that is periodic.
The first type is surely finitely generated, and the second is finitely generated
by the Mordell–Weil theorem for elliptic curves (see Silverman [25, Chapter
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VIII]). Thus we can choose a finite number of generators on each periodic
fiber, take the union with all the singular points on the singular fibers, and
we are done. �

Corollary 8.3. If K = Q in Theorem 8.2, and the resultants Res(Ψ1,Ψn) 6=
0 for n = 2, 3, 4, 6, then the set of Q-periodic points of txty is finitely gener-
ated.

Proof. The condition Res(Ψ1,Ψn) 6= 0 means there are no fibers that are
both singular and of period n (by Proposition 6.8). If a singular fiber C of
the linear fibration is periodic, then y is of finite order in the group (Cns, x).
Singular cubics over Q have group structure on Cns isomorphic to either Q+

or a subgroup of L∗, where L is a quadratic extension of Q (see Silverman
[25, Exercise III.3.5]). In either case there are no nontrivial torsion elements
of an order not in {2, 3, 4, 6}. �

Remark 8.4. We show in Example 9.4 that there exist dynamical systems
on smooth cubic surfaces where Res(Ψ1,Ψ2) = 0. Of course, this does not
mean that the consequence of the corollary is untrue for such examples (i.e.,
the set of periodic points might still be finitely generated).

9. Examples

In this section we present some examples, illustrating the ideas and the-
orems presented in the paper. Finding the division polynomials associated
with a good pair x, y is unreasonable without the use of a computer. We
have implemented the necessary Magma [5] functions to calculate the divi-
sion polynomials associated with the birational map txty. The code package
also contains functions that check the minimal residual periods of txty for
primes up to a given bound (this can provide an indication as to whether
a given example is SRP or not). The code can be downloaded at the au-
thor’s website http://www.wishcow.com. The results of our package can
be verified using the Magma code package provided by Brown and Ryder
[6], which can generate Geiser involutions for a smooth cubic surface. We
start with an example of a strongly residually periodic dynamical system on
a smooth cubic surface:

Example 9.1. Let S/Q be the smooth cubic surface defined by the equation

(3) S : YW 2 + Y 2Z −X3 − 4Z3 = 0.

The points x = [0 : 1 : 0 : 0], y = [0 : −2 : 1 : 0] are a good pair on
S. We denote by ϕ the birational automorphism txty on S. The forbidden
set is defined as in Section 7. We will show that the dynamical system
D = (S/Q, ϕ, F ) is SRP (3), i.e., there exists a number M such that for any
prime p > M , the dynamical system has periodic points of period 3 modulo
p.

Intersecting the hyperplane {W = 0} with S gives the cubic curve C :
Y 2Z−X3−4Z3, which is a smooth cubic. This hyperplane goes through the

http://www.wishcow.com
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points x and y, and therefore the curve C is invariant under the map txty
(see Proposition 5.1). Choosing the identity of the elliptic group structure
to be x = [0 : 1 : 0] (or more accurately, the point induced by x), we get an
elliptic curve with Weierstrass form v2 = u3 + 4. Consulting the Cremona
database of elliptic curves [9], we see that E = (C, x) is an elliptic curve with
Mordell–Weil rank 0, and the torsion subgroup is isomorphic to Z/3Z. The
three rational points are x = [0 : 1 : 0], y = [0 : −2 : 1] and z = [0 : 2 : 1].
Since the group is Z/3Z, the point y is of order 3 on the elliptic curve.
We have already seen (Proposition 5.5) that the order of y is the same as
the order of txty in the group Bir(E). Thus we get that even though txty
is of infinite order in Bir(S), it is of finite order 3 when restricted to the
hyperplane section. By Proposition 7.1 we get that the dynamical system
D is SRP(3).

Let us describe a method for constructing examples with desired dynami-
cal properties (e.g., SRP). We choose an elliptic curve E : v2 = u3 +Au+B
with particular properties, for instance with a finite number of rational
points as was done in Example 9.1. We then choose two points x, y ∈ E(K)
to play the roles of the points x, y on the surface S, and search for a smooth
surface S containing this curve. We can do this by running over surfaces of
the form

S : W ·H(X,Y, Z,W )− Y 2Z −X3 −AXZ2 −BZ3 = 0

where H is a quadratic form, and searching for ones that are smooth and in
which x, y is a good pair. Then this surface will have C = {W = 0} ∩ S as
a fiber in the linear fibration induced by x, y, and this fiber C is exactly our
curve E.

Example 9.2. We continue Example 9.1, by proving that the dynamical
system D has no periodic points over Q. We use this example to illustrate
the method of using the division polynomials of the linear fibration induced
by the good pair x, y. To find the cubic pencil of the linear fibration of S
induced by x, y, we set W = tX in equation (3). This is because the line
passing through x, y is L(x, y) = {W = 0, X = 0}. We get the cubic pencil
C : t2X2Y + Y 2Z −X3 − 4Z3 = 0.

The fiber at infinity that we have removed is X = 0, which is the curve
C∞ : YW 2 + Y 2Z − 4Z3 = 0. We bring this curve to Weierstrass form and
get E∞ : v2 = u3 − 4u. This curve can be checked in the Cremona database
[9] to have Mordell–Weil rank 0, and torsion subgroup Z/2Z × Z/2Z. All
four rational points on C∞ can be checked to be in Z∞(txty) (and therefore
are not periodic and are in the forbidden set). The point y has order 2 in
the group E∞(Q), so that by Proposition 7.1 the dynamical system D is in
fact SRP (2).

We can check that the Weierstrass form of the cubic pencil C is E : v2 =
u3 − 4t4u + 4. The discriminant of E is ∆(t) = 4096t12 − 6912. The zeros
of the discriminant, as a polynomial in t, give us 12 distinct singular fibers
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of the linear fibration, all of which are nodal cubics (the coefficient of u is
nonzero at all roots of ∆(t), see Silverman [25, Proposition III.1.4]). None
of the roots of ∆(t) are rational, so there are no fixed points of txty defined
over Q (See Corollary 5.4).

The dynamical system is SRP (1) only if the polynomial ∆ has roots
modulo all but finitely many primes p. We show this is not true. We can
check using Magma [5] that the Galois group of the polynomial ∆ has an
element of order 12. Then by the Frobenius density theorem (see Lenstra and
Stevenhagen [26, page 32]), there are infinitely many primes p for which the
polynomial ∆ remains irreducible when reduced modulo p, so that residual
periodicity cannot be explained by the fixed points.

To get a fiber of the linear fibration that is periodic of period 2, we need
the v coordinate of the point y to be 0 when evaluated at t. However, the
image of y in E is [0 : 2 : 1], so we get that outside of the fiber at ∞ there
are no fibers of period 2.

We can calculate the division polynomials Ψn, n ≥ 3 for txty. To find them
we take the division polynomials ψn for E, and evaluate them at v = 0, since
y = [0 : 2 : 1]. We only need the polynomials Ψn(t) for n ≤ 12, n 6= 11 (See
Proposition 6.10 for why we can skip Ψ11, and stop at Ψ12). The polynomials
are quite large so we do not list them here. A quick check shows that none
of these polynomials have roots in Q outside of t = 0, which is the fiber of
period 3. This means that there are no fibers of finite period n ≥ 3. As
we have checked all possibilities, we have proved that txty has no periodic
points over Q.

Example 9.3. We show an example of a dynamical system on a smooth
cubic surface that has infinitely many periodic points. Let S/Q be the
smooth cubic surface defined by the equation

(4) S : X3 − 3024XZ2 − Y 2Z − YW 2 + 81216Z3 = 0.

The points x = [0, 1, 0, 0], y = [12, 216, 1, 0] form a good pair on S. The
hyperplane section C = {W = 0} ∩ S is a fiber of the linear fibration
induced by x, y. This cubic curve has the Weierstrass form E : v2 = u3 −
3024u + 81216. This curve can be checked in the Cremona database [9] to
have Mordell–Weil rank 1, and y = (12, 216) has order 3 in the elliptic curve
E. This means that the fiber C is periodic of period 3 under txty, which
proves there are infinitely many Q-periodic points for txty on S.

Example 9.4. We show an example of a dynamical system on a smooth
cubic surface with a singular fiber in the linear fibration containing infinitely
many periodic points. This example demonstrates that the condition in
Theorem 8.2 is not redundant (in the sense that such systems exist, not that
the condition is necessary). Let S/Q be the smooth cubic surface defined
by the equation

(5) S : X3 +X2Z −XYW − Y 2Z − Z2W −W 3 = 0.
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The points x = [0, 1, 0, 0], y = [−1, 0, 1, 0] form a good pair on S. The
hyperplane section C = {W = 0} ∩ S is a fiber of the linear fibration
induced by x, y. This cubic curve has the Weierstrass form E : v2 = u3 +u2,
which is the classic nodal cubic. The point y = (−1, 0) on E is the unique
point of order 2 of this curve. This means that S has a singular curve of
period 2 under txty.
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