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Nonreciprocal units in a number field
with an application to Oeljeklaus–Toma

manifolds

Artūras Dubickas

Abstract. In this paper we show that if a number field K contains a
nonreciprocal unit u of degree s + 2t with s positive conjugates and 2t
complex conjugates of equal moduli, where t > 2, then s = (2t+2m)q−2t
for some integers m > 0 and q > 2. On the other hand, for any s and
t > 2 related as above we construct a number field K with s real and
2t complex embeddings that contains a nonreciprocal unit u of degree
s + 2t with s positive conjugates and 2t complex conjugates of equal
moduli. From this, for any pair of integers s > 1, t > 2 satisfying s 6=
(2t+2m)q−2t we deduce that the rank of the subgroup of units U whose
2t complex conjugates have equal moduli is smaller than s and, therefore,
for any choice of an admissible subgroup A of K the corresponding
Oeljeklaus–Toma manifold X(K,A) admits no locally conformal Kähler
metric.
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1. Introduction

Let throughout K be a number field of degree d = [K : Q] with s > 0
real embeddings σ1, . . . , σs into C and 2t complex embeddings

σs+1, σs+1, . . . , σs+t, σs+t

into C, so that d = s + 2t. Here, for each i = 1, . . . , t the embedding
σs+i : K → C is defined as σs+i(a) = σs+i(a) for every a ∈ K, where z
stands for the complex conjugate of z ∈ C. Let O∗K be the group of units in
the ring of integers of K. Put

UK := {u ∈ O∗K : σi(u) > 0 for every i = 1, . . . , s}

for a subgroup of O∗K consisting of units whose real conjugates are all posi-
tive.

Consider the logarithmic representation of units l : O∗K → Rs+t given by

l(u) := (log |σ1(u)|, . . . , log |σs(u)|, 2 log |σs+1(u)|, . . . , 2 log |σs+t(u)|).

By the Dirichlet’s unit theorem, l(UK) is a full discrete lattice in the subspace

S :=

{
(x1, . . . , xs+t) ∈ Rs+t :

s+t∑
i=1

xi = 0

}
of Rs+t. Equivalently (see, e.g., [13] and [20]), one can choose s + t − 1
multiplicatively independent units in UK , say u1, . . . , us+t−1, such that every

other unit in UK can be written as wuk11 . . . u
ks+t−1

s+t−1 with a root of unity w ∈ K
and some k1, . . . , ks+t−1 ∈ Z. From now on, assume that s > 1. Then the
projection P : S → Rs given by the first s coordinates is surjective. Thus,
there are subgroups A of rank s in UK such that P(l(A)) is a full discrete
lattice in Rs. Throughout, such a subgroup A will be called admissible for
K. An admissible subgroup A for K is generated by s units u1, . . . , us ∈ UK
such that the matrix

M(u1, . . . , us) := (log |σj(ui)|)16i,j6s
has rank s, so that these units are multiplicatively independent.

The results of this paper are motivated by some applications to the so-
called locally conformal Kähler complex manifolds X (according to Vaisman
[29], such a manifold is defined as a Hermitian manifold whose metric is
conformal to a Kähler metric in some neighborhood of every point) and the
corresponding study of locally conformal Kähler metrics (LCK metrics) on
X (see, e.g., [3], [4], [17], [19], [28], [29], [30]). In [16], Oeljeklaus and Toma
introduced some compact complex manifold X(K,A) associated to a number
field K and to an admissible subgroup A for K. These manifolds were
named as Oeljeklaus–Toma manifolds and have many interesting properties
(see the recent papers of Battisti and Oeljeklaus [1], Kasuya [14], Ornea
and Verbitsky [18], Verbitsky [32], Vuletescu [33], etc.). In particular, it is
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known that if an Oeljeklaus–Toma manifold X(K,A) admits an LCK metric
then for all u ∈ A we have

|σs+1(u)| = · · · = |σs+t(u)|

(see the proof of Proposition 2.9 in [16]). Since the numbers σs+i(u) and
σs+i(u) are complex conjugate, the previous condition can be written in the
form

(1) |σs+1(u)| = |σs+1(u)| = · · · = |σs+t(u)| = |σs+t(u)|.

In the appendix of this paper (written by Laurent Battisti), it is shown (see
Theorem 8) that the Oeljeklaus–Toma manifold X(K,A) admits an LCK
metric if and only if for all u ∈ A the condition (1) holds (which is stronger
than just the ‘only if’ condition that was proved in the previous result in
[16]).

This raises the following natural question: are there s multiplicatively in-
dependent units u1, . . . , us in UK such that (1) holds for each u = u1, . . . , us?
Such units would generate an admissible subgroup A forK and a correspond-
ing manifold X(K,A) with LCK metric. The answer is ‘yes’ for s > 1 and
t = 1 (so far this is the only known case with a positive answer) and ‘no’ for
s = 1 and t > 2 (see Proposition 2.9 in [16]). It is not clear whether or not
there are some cases with s, t > 2 when the answer is positive. Vuletescu [33]
has shown recently that the answer is ‘no’ for 1 < s < t. Below, we will show
that the answer is ‘no’ for any s that is not of the form (2) below. In particu-
lar, for t > 2 this implies a negative answer for 1 < s < 2t and also for s odd.
Unfortunately, the second statement of Theorem 1 shows that for all other s
the field K may contain a nonreciprocal unit. This leaves the problem open
for some special pairs s, t > 2 satisfying (2), since our construction gives
only one nonreciprocal unit in UK instead of s multiplicatively independent
units.

2. Main results

Recall that an algebraic number α is called reciprocal if α−1 is its conjugate
over Q and nonreciprocal otherwise. The main result of this paper is the
following:

Theorem 1. If a number field K of degree d = s+2t over Q with s real and
2t complex embeddings, where t > 2, contains a nonreciprocal unit u ∈ UK
of degree d whose 2t nonreal algebraic conjugates satisfy (1) then for some
integers m > 0 and q > 2 we have

(2) s = (2t+ 2m)q − 2t.

On the other hand, if s and t > 2 satisfy (2) with some integers m > 0 and
q > 2 then there is a number field K with s real and 2t complex embeddings
that contains a nonreciprocal unit u ∈ UK of degree d = s+2t satisfying (1).
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In general, the situation when a number field K contains a nonreciprocal
unit u ∈ UK as described in Theorem 1 happens very rarely. If, for instance,
the Galois group Gal(F/Q), where F is the normal closure of K over Q,
is ‘large’ (say the group Gal(F/Q) acts on d conjugates of α ∈ K as a full
symmetric group Sd which is the ‘generic’ situation, by an old result of van
der Waerden ([31]), then the equality (5) below cannot hold (see, e.g., [27]).
Hence, such fields K do not contain units with the required properties.

From Theorem 1 we shall derive the following:

Theorem 2. Let K be a number field of degree d = s + 2t over Q with s
real and 2t complex embeddings, where s > 1 and t > 2 are not of the form
(2). Then the rank of the subgroup U of UK of units satisfying (1) is smaller
than s and, therefore, for any choice of an admissible subgroup A for K the
Oeljeklaus–Toma manifold X(K,A) has no LCK metric.

This implies the main result of [33], where the same conclusion as that of
Theorem 2 has been proved under the assumption 1 < s < t.

In the next section we shall give some auxiliary results. The proof of
Theorem 1 is then given in Sections 4 and 5. In Section 5 one can also find
an explicit example corresponding to the case s = 4, t = 2, m = 0 and q = 2
of Theorem 1. In Section 6 we shall give the proof of Theorem 2. Finally,
in an appendix Laurent Battisti gives the proof of his Theorem 8 and using
an alternative (geometrical) approach derives Theorem 2 from Theorem 1
as well.

3. Auxiliary results

An algebraic integer α > 1 is called a Perron number if all of its conjugates
over Q are less than α in absolute value. In particular, a Perron number is
a Pisot number if its conjugates over Q (if any) are less than 1 in absolute
value. We shall use totally positive Pisot units (Pisot numbers that are units
whose algebraic conjugates are all positive) in Lemma 5 and subsequently
in the proof of Theorem 1.

A version of the next lemma appears in [26]. Its proof is based on the
argument of applying an automorphism of the Galois group that maps an
algebraic number to its maximal (or minimal) conjugate which leads to a
contradiction. This simple argument also plays a crucial role in the papers
[7], [9], [27]. Below, we shall give a proof of the next lemma, since a similar
argument appears several times in this paper as well.

Lemma 3. Let α or α−1 be a Perron number of degree d > 3, and let
α1, α2, α3 be any three distinct conjugates of α. Then α2

1 6= α2α3.

Proof. Assume that α2
1 = α2α3. Let F be the normal closure of Q(α) over

Q. Take an automorphism of the Galois group of F/Q which maps α1 to
α. It maps α2, α3 to some conjugates αi 6= αj of α, different from α, and
so it maps the equality α2

1 = α2α3 into the equality α2 = αiαj . However,
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the modulus of its left hand side is greater than the modulus of its right
hand side if α is Perron number (resp. smaller if α−1 is a Perron number),
a contradiction. �

Corollary 4. Suppose that a unit u ∈ UK satisfying (1) has 2t′ > 0 distinct
complex conjugates and s distinct real ones. Then none of its real conjugates
has the same modulus as the complex (nonreal) one.

Proof. There is nothing to prove if s = 0. Assume that s > 0. If one of
the real conjugates of u, say, α1 > 0 has the same modulus as the complex
(nonreal) conjugate α2 then α2

1 = α2α2. Here, α1, α2, α2 are distinct. By
Lemma 3, none of the conjugates of u (and of u−1) is a Perron number.
This happens only if there are no other positive conjugates of u except for
α1. Thus, s = 1 and all the conjugates of u lie on the circle |z| = α1. Since
u is a unit, the radius of the circle must be 1, so that u = α1 = 1. Hence,
deg u = 1, contrary to deg u = s+ 2t′ > 2. �

We remark that an alternative proof of Corollary 4 can be given by ap-
plying the results of Boyd [2] and Ferguson [12].

A standard construction of Pisot numbers in a real field gives Pisot num-
bers but not Pisot units [23]; see also [11] for a construction of a dense set
of Pisot numbers in a given field with very small conjugates and [6] for a
contruction of Pisot units. In the proof of Theorem 1 we shall need the
following result (which is also of independent interest):

Lemma 5. For each number field L, each constant c > 1 and each integer
q > 2 there is a totally positive Pisot unit β > c of degree q whose minimal
polynomial over Q is irreducible in the ring L[x].

Proof. Consider the polynomial

(3) H(x) := (−x)q + kq−1(−x)q−1 + · · ·+ kq−1kq−2 . . . k1(−x) + 1,

where k1 < k2 < · · · < kq−1 is a rapidly increasing sequence of positive
integers; for example, kj+1 > k2j for j = 1, . . . , q − 2 and k1 is large enough.

(This construction is similar in spirit to that of Lemma 3 in [6].) Then
H(0) = 1 > 0 and H(1/k1) < 0. Also, it is easy to see that the sign
of H(2kj) is the same as that of (−1)j+1. Indeed, inserting x = 2kj into
H(x) we see that among the two largest terms kq−1 . . . kj+1(−2kj)

j+1 and
kq−1 . . . kj+1kj(−2kj)

j the first one is greater in absolute value. Similarly,
the sign of H(kj/2) is the same as that of (−1)j . So in each of the q intervals
(0, 1/k1) and (kj/2, 2kj), where j = 1, . . . , q − 1, there is a root of the
polynomial H. Consequently, the polynomial G(x) = xqH(1/x) reciprocal
to H has q − 1 roots in the interval (0, 1) and one root β in (k1,∞). As
degG = q, this polynomial must be irreducible in Z[x], since the product of
any number of its roots without β is of modulus smaller than 1. Therefore,
β > k1 is a totally positive Pisot unit of degree q.
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Note that the polynomial (3) is linear in kq−1, so the polynomial (3), as a
polynomial in two variables H(x, kq−1), is irreducible in the ring L[x, ad−1].
Indeed, otherwise the polynomials (−x)q + 1 and

H1(x) :=
H(x)− (−x)q − 1

kq−1
= (−x)q−1+kq−2(−x)q−2+· · ·+kq−2 . . . k1(−x)

must have a common factor in L[x]. Hence, (−x)q + 1 and H1(x) must have
a common root. However, this is not the case, since the roots of (−x)q + 1
are roots of unity whereas the modulus of lowest term in H1 is greater than
the sum of the moduli of the other terms for any x of modulus 1. Thus, by
Hilbert’s irreducibility theorem (see Theorem 46 on p. 298 in [24]), for some
positive integer k∗q−1 > kq−1 the polynomial H(x, k∗q−1) is irreducible in the

ring L[x], and so the polynomial G(x, k∗q−1) = xqH(1/x, k∗q−1) is irreducible

in L[x] too. �

For any u1, . . . , us ∈ UK we write

S(u1, . . . , us) := {uk11 . . . ukss : k1, . . . , ks ∈ N ∪ {0}}
for the multiplicative semigroup generated by u1, . . . , us.

Lemma 6. Let u1, . . . , us be some s > 1 multiplicatively independent units
in UK satisfying (1). Then either Q(u1, . . . , us) is a proper subfield of K or
UK contains s multiplicatively independent units v1, . . . , vs ∈ S(u1, . . . , us),
each of degree d = [K : Q].

Proof. Assume that Q(u1, . . . , us) = K (otherwise there is nothing to
prove). Suppose S(u1, . . . , us) does not contain s multiplicatively inde-
pendent units of degree d each. Choose multiplicatively independent units
v1, . . . , vs ∈ S(u1, . . . , us) satisfying Q(v1, . . . , vs) = K for which the sum
D := deg v1 + · · · + deg vs is the largest possible. If D = sd we are done.
In case D < sd, we will show that D can be increased, and so arrive to a
contradiction.

Without restriction of generality we may assume that h := deg v1 < d.
Then s > 1 and for some vj with j > 2, say for v2, we have v2 /∈ Q(v1), since
otherwise Q(v1, . . . , vs) = Q(v1) is a proper subfield of K. Now, replace the
set v1, v2, . . . , vs by the set v1v

p
2 , v2, . . . , vs, where p is an integer that will

be chosen later. The latter set is also multiplicatively independent, all of its
elements belong to S(u1, . . . , us) and also

Q(v1v
p
2 , v2, . . . , vs) = Q(v1, v2, . . . , vs) = K.

In order to complete the proof it remains to show that

(4) deg v1v
p
2 > h = deg v1

for some large positive integer p.
It is clear that v1, v2 > 0, since v1, v2 ∈ S(u1, . . . , us) and u1, . . . , us > 0.

If all the conjugates of v2 are of equal moduli then, as v2 is a unit, they
all lie on the circle |z| = 1. Hence, v2 = 1, which is a contradiction to
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v2 /∈ Q(v1). It follows that not all conjugates of v2 have the same modulus.
Since v2 ∈ S(u1, . . . , us), and the units u1, . . . , us satisfy the condition (1),
the unit v2 satisfies (1) as well. Consequently, either the largest positive
conjugate of v2 (it can be v2 itself) is a Perron number or a reciprocal of the
smallest positive conjugate of v2 is a Perron number.

Select the smallest ` ∈ N for which v`2 ∈ Q(v1), if such an ` exists. Take p
of the form `k+1 with large k ∈ N if ` ∈ N as above exists and take any large
p otherwise. For such p we have vp2 /∈ Q(v1). Thus, vp2 has a conjugate over
the field Q(v1) distinct from vp2 . Assume that wp2 is such a conjugate, where
w2 6= v2 are conjugate over Q. It follows that the numbers v1v

p
2 6= v1w

p
2 are

conjugate over Q. Now, consider some h automorphisms of the Galois group
of Q(v1, v2)/Q that map v1 into its h conjugates over Q. These map v2 and
w2 to some of their conjugates over Q and the pair v1v

p
2 , v1w

p
2 into some

h pairs of two distinct conjugates of v1v
p
2 . Therefore, either deg v1v

p
2 > 2h

(which finishes the proof of (4)) or the list of 2h conjugates contains some
equal elements. This means that for some two distinct conjugates of v1, say
for v1 itself and w1 6= v1, we have v1v

p
2 = w1(w

∗
2)p, where w∗2 is a conjugate

of v2 over Q. Then w∗2 6= v2.
Now, take an automorphism σ of the Galois group of Q(v1, v2)/Q that

maps w∗2 into v. (Recall that v is a conjugate of v2 which is a Perron number,
or v−1 is a Perron number.) This maps the equality v1v

p
2 = w1(w

∗
2)p into

σ(v1)σ(v2)
p = σ(w1)v

p, where σ(v1) 6= σ(w1) and σ(v2) 6= v. However,
this is impossible, since |σ(v2)| 6= v and so the modulus of the right hand
side, σ(w1)v

p, is greater (resp. smaller) than that of the left hand side,
σ(v1)σ(v2)

p, if v is a Perron number (resp. v−1 is a Perron number) and p
is large enough. �

Finally, in the proof of Theorem 2 we shall use the next lemma (which is
Lemma 1.6 in [16]):

Lemma 7. Let K ′ be a proper subfield of K and a proper extension of
Q, i.e., Q ⊂ K ′ ⊂ K, and let A ⊂ UK′ be an admissible subgroup for
K. Suppose that s′ and 2t′ are the numbers of distinct real and complex
embeddings of K ′, respectively. Then t′ is positive, s = s′ and A is admissible
for K ′.

4. The restriction on the number of real embeddings in
Theorem 1

The aim of this section is to prove (2). Take a nonreciprocal unit in UK
of degree d with conjugates

α1, . . . , αs, αs+1, αs+1, . . . , αs+t, αs+t,

satisfying (1). Then

(5) αs+1αs+1 = · · · = αs+tαs+t = β
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for some β > 0. Here, β 6= 1, since otherwise the unit α1 is reciprocal.
Thus, s > 0. We claim that the set {α1, . . . , αs, α

−1
1 , . . . , α−1s } contains a

Perron number. As the conjugates α1, . . . , αs are positive, at most one of
them can lie on the circle |z| =

√
β. If s = 1 then we are done, unless all the

conjugates of α1 lie on the circle |z| =
√
β. However, then the norm of α1 is

βd/2. In view of α1 ∈ UK we obtain β = 1, a contradiction. In the alternative
case, s > 2, we take α to be the largest number in the set {α1, . . . , αs} if
it is greater than

√
β, and the smallest one if all the conjugates of α1 lie in

|z| 6
√
β. Then α (resp. α−1) is a Perron number.

Obviously, β cannot be written as a product of two complex conjugates
of α other than given in (5), and it is not a product of a real conjugate and
a complex (nonreal) conjugate. Assume that among the real conjugates of
α there are m > 0 pairs of conjugates that multiply to β, where m = 0 if
there are no such pairs. Then, without restriction of generality (5) can be
extended to

(6) β = αs−2m+1αs−2m+2 = · · · = αs−1αs = αs+1αs+1 = · · · = αs+tαs+t.

Note that s > 2m, since otherwise the norm of α is equal to βd/2 6= 1 and α
is not a unit.

Assume that the degree of β over Q is q, and the conjugates of β are
β1 = β, β2, . . . , βq. If q = 1 then mapping αs−2m+1 to α1, we find that
α1α

′ = β for some conjugate α′ 6= α1 of α, since β 7→ β. But the pair α1, α
′

does not appear in (6), a contradiction. Hence, q > 2.
Take any automorphism σ = σj of the Galois group Gal(F/Q), where F

is the normal closure of Q(α) over Q, that maps β to βj . Then (6) (which
corresponds to σ = id) maps to

βj = σ(αs−2m+1)σ(αs−2m+2) = · · · = σ(αs−1)σ(αs)(7)

= σ(αs+1)σ(αs+1) = · · · = σ(αs+t)σ(αs+t).

Here, σ acts as a permutation of the set C := {α1, α2, . . . , αs+t, αs+t}. Con-
sider q multiple equalities (7), where j = 1, . . . , q. Evidently, each of the q
sets

Cσ := {σ(αs−2m+1), σ(αs−2m+2), . . . , σ(αs−1), σ(αs),

σ(αs+1), σ(αs+1), . . . , σ(αs+t), σ(αs+t)}

contains 2t+ 2m distinct elements. We will show that they are disjoint, so
that ∪σCσ = C.

Suppose first that some set Cσ, where σ 6= id, contains a complex (nonreal)
number. Then αiαj = αkαl = βJ 6= β, where the indices i, j, k, l are distinct
and

I := {αi, αj , αk, αl} ∩ {αs+1, αs+1, . . . , αs+t, αs+t} 6= ∅.
If |I| = 1, then one side of the equality

(8) αiαj = αkαl
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is real and the other side is nonreal, a contradiction. Suppose next that
|I| = 2. If both complex numbers are on one side of (8), say on its right
hand side, then |αiαj | = |αk| · |αl| =

√
β ·
√
β = β, so αiαj = β, contrary

to αiαj = βJ 6= β. If the two complex numbers are on different sides of (8),
say αj and αl, then |αi/αk| = |αl|/|αj | =

√
β/
√
β = 1. Thus, αi = ±αk,

which is impossible in view of i 6= k and αi, αk > 0. Next, if |I| = 3
then, assuming that the remaining real conjugate in (8) is αi, we obtain
|αi| = |αk||αl|/|αj | =

√
β.Thus, αi =

√
β. Then β = α2

i = αs+1αs+1, which
contradicts Lemma 3. Finally, if |I| = 4, then all 4 conjugates of α in
(8) are complex, αj 6= αi and αl 6= αk. We have already proved that the
product of such αi and αj cannot be the product of two real conjugates
or a real and a complex conjugate. Hence, the set Cσ corresponding to βJ
(which is equal to αiαj) consists entirely of complex (nonreal) numbers. As
|Cσ| = 2t + 2m > 2t, all the complex conjugates of α must belong to Cσ.
Thus, αi ∈ Cσ, and so αiαj = αiα` with some complex (nonreal) conjugate
α`. Multiplying both sides by αiαj/β, we deduce that

α2
i = α2

iαjαj/β = αiα`αiαj/β = α`αj .

Now, if αj = α` then αi = α`, which is not the case. If otherwise αj 6= α`
then the conjugates αi, α` and αj are distinct. Then equality α2

i = α`αj is
impossible, by Lemma 3. Hence, the set I is empty.

We have thus proved that all the numbers in (8) are distinct positive
numbers. Hence, for each σ 6= id the set Cσ consists of 2t + 2m positive
conjugates of α. Assume that some positive conjugate, say α1, appears
in b > 1 sets Cσ. Then an automorphism of Gal(F/Q) that maps α1 to
αs+1 acts as a permutation of the set C and as a permutation of the set
{β1, . . . , βq}. In this way we will obtain q equalities of the type (7), where
the complex conjugate αs+1 appears b times. As b > 1, this contradicts the
fact that βJ = αiαj with complex (nonreal) αi, αj only happens once when
J = 1 and αj = αi. By the same argument, a conjugate of α cannot appear
b = 0 times in the sets Cσ. Consequently, every conjugate of α appears
exactly once in the union of q sets Cσ. Hence,

s+ 2t = d = |C| = |Cid|q = (2t+ 2m)q.

As q > 2, this finishes the proof of (2).

5. The construction of a nontrivial unit in Theorem 1

Let I(n) be the infimum among all positive numbers In with the following
property: any closed real interval of length at least In contains a full set of
conjugates of an algebraic integer of degree n. By a result of Robinson [21],
every interval of length greater than 4 contains infinitely many full sets of
conjugates of algebraic integers (see also [22]). Later, Ennola [10] proved
that such an interval contains full sets of conjugates of algebraic integers of
degree n for all n sufficiently large. Hence, for each positive ε we have I(n) <
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4 + ε for every n > n(ε). From [5] we know that I(2) = (1 +
√

5)/2 +
√

2
and it is evident that I(1) = 1. It seems very likely that every interval of
length, say 5, or even smaller (although greater than 4, by an old result of
Schur [25]) contains a full set of conjugates of an algebraic integer of degree
n for every n ∈ N. However, since no result of such type is given explicitly
in the literature, we simply put

I := max{5, sup
n∈N

I(n)}.

Therefore, every interval of length I contains a full set of conjugates of an
algebraic integer of degree n for every n ∈ N.

We claim that for any integers t > 1 and m > 0 there is an algebraic
integer γ of degree t + m with t conjugates in the interval [1, I + 1] and m
conjugates in the interval (2I,∞), say

(9) 1 6 γ = γ1 < · · · < γt 6 I + 1 < 2I < γt+1 < · · · < γt+m.

Indeed, by the definition of I, such an algebraic integer γ exists for m = 0.
To show the existence of such γ for m > 1 we can use a theorem of Motzkin
[15]. Let us take, for instance, arbitrary t points λ1 < · · · < λt in the
interval (1, I + 1) and arbitrary m − 1 points λt+1 < · · · < λt+m−1 in the
interval (2I, 2I + 1). Then, by the main result of [8], for each ε > 0 there is
a constant c(ε, λ1, . . . , λt+m−1) and a totally positive algebraic integer

γt+m > max{c(ε, λ1, . . . , λt+m−1), 2I + 1}
of degree t + m such that the numbers γ1, . . . , γt+m−1 conjugate to γt+m
over Q lie in the ε-neighborhoods of the points λ1, . . . , λt+m−1, respectively.
By taking a sufficiently small ε > 0, we see that this algebraic integer γt+m
of degree t+m with conjugates γ1 = γ, . . . , γt+m satisfies (9).

By Lemma 5, we can take a totally positive Pisot unit β of degree q > 2
such that, firstly,

(10) β = β1 >
I(I + 1)

I − 1
> 1 > β2 > · · · > βq

and, secondly, the minimal polynomial of β over Q is irreducible in the ring
Q(γ1, . . . , γt+m)[x].

Set

(11) k := d(1 + I−1)βe > (1 + I−1)β > (1 + I−1)
I(I + 1)

I − 1
> I + 1 > 6.

Consider the polynomial

H(x, βj) :=

t+m∏
i=1

(x2 − γi(k − βj)x+ β2j ).

If j > 1 then the discriminant of each quadratic factor in H(x, βj) is
positive. Indeed, using (9), (10) and (11), we obtain

(γi(k − βj))2 − 4β2j > (k − βj)2 − 4β2j > (6− 1)2 − 4 > 0.
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Since γi(k−βj) > 0, the factor x2− γi(k−βj)x+β2j has two positive roots.

Hence, the polynomial H(x, βj) has 2t+ 2m positive roots.
We claim that for j = 1 the polynomial

H(x, β1) =
t+m∏
i=1

(x2 − γi(k − β)x+ β2)

has 2m positive roots and 2t complex roots lying on the circle |z| = β.
Indeed, this time the discriminant

∆i := (γi(k − β))2 − 4β2

is positive for i = t + 1, . . . , t + m. To see this, we use k − β > β/I and
γi > 2I which gives

(γi(k − β))2 − 4β2 > γ2i (β/I)2 − 4β2 > 4I2(β/I)2 − 4β2 = 0.

Thus, the quadratic polynomial x2 − γi(k− β)x+ β2 has two positive roots
for every i = t+ 1, . . . , t+m.

Similarly, we may check that ∆i is negative for i = 1, . . . , t. Indeed, by
(9), (10) and (11),

(γi(k − β))2 − 4β2 6 (I + 1)2(d(1 + I−1)βe − β)2 − 4β2

< (I + 1)2(β/I + 1)2 − 4β2

< (I + 1)2(2β/(I + 1))2 − 4β2 = 4β2 − 4β2 = 0,

where the inequality β/I + 1 < 2β/(I + 1) follows from (10). Consequently,
for each i = 1, . . . , t the roots of x2 − γi(k − β)x+ β2 are

γi(k − β)±
√

(γi(k − β))2 − 4β2

2
.

These are complex conjugate numbers lying on the circle |z| = β. Thus,
H(x, β1) has 2m positive roots and 2t complex roots all lying on the circle
|z| = β.

Summarizing, we conclude that the polynomial

(12) P (x) :=

q∏
j=1

H(x, βj) =

q∏
j=1

t+m∏
i=1

(x2 − γi(k − βj)x+ β2j ) ∈ Z[x]

has (2t+ 2m)(q − 1) + 2m = (2t+ 2m)q − 2t positive roots and 2t complex
roots.

We next show that the polynomial P (x) of (12), of degree d = s + 2t,
where s = (2t+2m)q−2t, is irreducible in Z[x]. Let α be one of its complex
roots, say

α =
γ(k − β) + i

√
4β2 − (γ(k − β))2

2
,
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where i =
√
−1, β = β1 and γ = γ1. Assume that ` := degα < 2(t + m)q

and consider the set of conjugates of α, say α1 = α, α2, . . . , α`. Evidently,

α =
γ(k − β)− i

√
4β2 − (γ(k − β))2

2

is a conjugate of α over Q, so both α and α belong to the set {α1, . . . , α`}.
Let F be the Galois closure of Q(β, γ) over Q and G := Gal(F/Q). Note

that the numbers βj , j = 1, . . . , q, are conjugate over Q(γ), since, by the
choice of β, the minimal polynomial of β is irreducible in the ring Q(γ)[x].
Thus, given any j in the range 1 6 j 6 q, there is an automorphism σ ∈
G that fixes γ and maps β 7→ βj . This automorphism maps the factor
x2 − γ(k − β)x+ β2 to the factor x2 − γ(k − βj)x+ β2j , so it takes the pair

of roots of the first quadratic polynomial, α = α1(γ, β), α = α2(γ, β), to
the pair of roots α1(γ, βj), α2(γ, βj) of the second quadratic polynomial. In
particular, this implies that these four roots are conjugate over Q for each
j = 1, . . . , q.

Next, map γ to γi, where i is one of the indices 1, . . . , t+m. This automor-
phism of G takes β to some βJ and x2−γ(k−β)x+β2 to x2−γi(k−βJ)x+β2J .
Hence, their roots α1(γ, β), α2(γ, β) and α1(γi, βJ), α2(γi, βJ) are conju-
gate over Q. Furthermore, by the same argument as above and the fact
that the minimal polynomial of βJ is irreducible in Q(γi)[x], the roots
of x2 − γi(k − βJ)x + β2J (namely α1(γi, βJ), α2(γi, βJ)) and the roots of
x2−γi(k−βr)x+β2r (say α1(γi, βr), α2(γ, βr)) are conjugate over Q for any
indices J, r in the range 1 ≤ J, r 6 q. Thus, we conclude that all (2t+ 2m)q
roots of the polynomial P defined in (12) are conjugate over Q.

Hence, ` = degα can be smaller than degP = 2(t + m)q only if α is a
multiple root of P . However, if α is equal to another complex root α′ of P
corresponding, say to γi 6= γ and β (which is the only possibility to get a
complex root), then

α+ α = γ(k − β) = γi(k − β) = α′ + α′.

This yields γ = γi, a contradiction. The proof of Theorem 1 is now com-
pleted.

We conclude this section with an example which shows that the unit

α : = 15 + 5
√

2 + 6
√

3 + 2
√

6 +

√
310 + 222

√
2 + 276

√
3 + 120

√
6

= 74.724635 . . .
(13)

is a nonreciprocal unit of degree 8 with 4 real conjugates and two pairs of
complex conjugates of equal moduli. This corresponds to the case K = Q(α)
and s = 4, t = 2, m = 0, q = 2 in equality (2) of Theorem 1.

Take a quadratic algebraic integer γ = 3−
√

2 with conjugate γ′ = 3+
√

2
and a quadratic Pisot unit β := 7+4

√
3 with conjugate β′ = 7−4

√
3. Then

the conditions (9) and (10) are satisfied with I = 5. Evidently, the minimal
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polynomial of β is irreducible in the ring Q(γ, γ′)[x] = Q(
√

2)[x]. By (11),
we obtain k = 17. Hence, H(x, β) is the product of the polynomials

x2 − (3−
√

2)(10− 4
√

3)x+ 97 + 56
√

3

and

x2 − (3 +
√

2)(10− 4
√

3)x+ 97 + 56
√

3.

Thus, H(x, β) is equal to

x4−(60−24
√

3)x3+(1230−448
√

3)x2−(1788+1032
√

3)x+18817+10864
√

3.

Similarly, H(x, β′) equals

x4−(60+24
√

3)x3+(1230+448
√

3)x2−(1788−1032
√

3)x+18817−10864
√

3.

Now, calculating the product H(x, β)H(x, β′) we find the polynomial (12)

P (x) =x8 − 120x7 + 4332x6 − 86664x5 + 1311590x4 − 10994952x3

+ 75494124x2 − 19704x+ 1,

which is irreducible in Z[x]. It has four positive roots

0.000068 . . . , 0.000192 . . . , 26.844323 . . . , 74.724635, . . .

where the last one is the root α defined in (13), which is the larger of the
roots of the quadratic factor x2 − (3 +

√
2)(10 + 4

√
3)x+ (7− 4

√
3)2 and is

the largest positive root of P , and two pairs of complex conjugate roots

6.779783 . . .± i12.166732 . . . , 2.435606 . . .± i13.713594 . . .

on the circle |z| = β = 7 + 4
√

3 = 13.928203 . . . .

6. Proof of Theorem 2

Consider the subgroup U of UK of units satisfying (1). If U has rank at
least s then it contains s multiplicatively independent units u1, . . . , us. In
particular, u1 /∈ Q. Suppose first that K ′ := Q(u1, . . . , us) is a proper sub-
field of K. Note that K ′ is a proper extension of Q, since u1 /∈ Q. Applying
Lemma 7 we find that K ′ has s real and 2t′ > 0 complex embeddings. By
Corollary 4, the conjugates of u1 have at least s + 1 distinct moduli. Note
that the restrictions of the embeddings σ1, . . . , σs of K to K ′ are the real
embeddings of K ′. Hence, the list

σ1(u1), . . . , σs(u1), σs+1(u1), σs+1(u1), . . . , σs+t(u1), σs+t(u1)

contains at least s + 1 numbers with distinct moduli. Since the last 2t
numbers in this list have the same modulus, the first s must have distinct
moduli. Now, as σ1(u1) appears in the list exactly k = (s+ 2t)/(s+ 2t′) > 1
times and k ∈ N, it must appear at least once among the last 2t numbers of
the list. However, then the number of distinct moduli in the list is at most
s, a contradiction.
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It remains to consider the alternative case when Q(u1, . . . , us) = K. Then,
by Lemma 6, the semigroup S(u1, . . . , us) contains s multiplicatively inde-
pendent units v1, . . . , vs of degree d each. Since v1, . . . , vs ∈ S(u1, . . . , us)
and the units u1, . . . , us satisfy the condition (1), the units v1, . . . , vs must
satisfy (1) as well. In particular, this implies that the matrix

M = M(v1, . . . , vs) := (log |σj(vi)|)16i,j6s

has rank s. However, by Theorem 1, the units v1, . . . , vs of degree d must
be reciprocal. Hence, for each i = 1, . . . , s the product over real embeddings∏s
j=1 σj(vi) is equal to 1. Thus, the columns of the matrix M are linearly

dependent, which implies that the rank of M is smaller than s. (This is also
true for s = 1 when M is the 1 × 1 matrix with entry 0.) Therefore, the
rank of U is smaller than s. This completes the proof of Theorem 2, by the
result of Oeljeklaus and Toma [16] stated in Section 1. (See also a stronger
result given in Theorem 8 of the Appendix.)

Acknowledgements. I thank Professor Oeljeklaus for communicating the
problem to me and sending several relevant papers. I also thank the referee,
who pointed out several inaccuracies in the paper.

Appendix (by Laurent Battisti1)

This appendix has two objectives. First, we prove a criterion for detect-
ing OT-manifolds admitting a locally conformally Kähler metric and in the
second part we give an alternative proof of Theorem 2 by using a geometric
property of OT-manifolds (namely, their non-Kählerianity). In what follows,
we keep the notation defined in the introduction of the main article.

A complex manifold X is said to admit an LCK metric if there exists a

closed positive (1, 1)-form ω̃ on the universal cover X̃ of X and a represen-
tation ρ : π1(X) → R>0 such that for all g ∈ π1(X), one has g∗ω̃ = ρ(g)ω̃.
This notion was introduced by Vaisman in [28]. See also the introduction of
the main article for further references on the subject.

In the case of an OT-manifold X(K,A), its fundamental group is (up
to isomorphism) the semi-direct product AnOK and its universal cover is
Hs × Ct. In [16] (proof of Proposition 2.9) and in [33] the authors prove
that if an OT-manifold X(K,A) admits an LCK metric then one has ρ(g) =
|σs+1(u)|2 = ... = |σs+t(u)|2 for all g = (u, a) ∈ A n OK . It turns out that
this relation between the absolute values of the complex embeddings of the
elements of A is in fact a characterization:

1Fakultät für Mathematik, Raum NA 4/26, Ruhr-Universität Bochum, Bochum D-
44780, Germany and Aix-Marseille Université, CNRS - LATP - UMR 7353, 39, Rue F.
Joliot-Curie, Marseille F-13013, France.
laurent.battisti@rub.de and laurent.battisti@yahoo.com



NONRECIPROCAL UNITS IN A NUMBER FIELD 271

Theorem 8. An OT-manifold X(K,A) admits an LCK metric if and only
if the following holds:

(14) for all u ∈ A, |σs+1(u)| = ... = |σs+t(u)|.

Proof. We only need to check that this condition is sufficient. Let X(K,A)
be an OT-manifold with A satisfying condition (14) and define the following
real function on Hs × Ct:

ϕ(z) :=

 s∏
j=1

i

zj − zj

 1
t

+

t∑
k=1

|zs+k|2.

This definition of ϕ is very natural: when t = 1, this function is the same
as the function F defined in [16], example p. 169.

It is enough to prove that it is a Kähler potential on Hs × Ct. For this,
we will see that the matrix (∂zp∂zqϕ1) is positive definite, where we set

ϕ1(z) =
(∏s

j=1
i

zj−zj

) 1
t
. For all q ∈ {1, ..., s}, one has:

∂zqϕ1(z) =
1

t

1

zq − zq
ϕ1,

and for all p ∈ {1, ..., s}, one has:

∂zp∂zqϕ1(z) =


1

t2
−1

(zp − zp)(zq − zq)
ϕ1 if p 6= q

1

t2
(1 + t)

−1

(zp − zp)2
ϕ1 if p = q.

Hence, (∂zp∂zqϕ1) =
1

t2
ϕ1B where the matrix B is

B =


(1+t)
4y21

1
4y1y2

· · · 1
4y1ys

1
4y2y1

(1+t)
4y22

· · · 1
4y2ys

...
1

4ysy1
1

4ysy2
· · · (1+t)

4y2s

 ,

and zj = xj + iyj for all j ∈ {1, ..., s+ t}. As in [19], we notice that B is the
sum of a diagonal positive definite matrix and a positive semidefinite one.
Hence, B is positive definite.

Now, let ω0 := i∂∂ϕ and for all g = (u, a) ∈ AnOK set ρ(g) := |σs+1(u)|2.
First, notice that because u is a unit we have

(σ1(u)...σs(u))(|σs+1(u)|2...|σs+t(u)|2) = 1.
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Then, write

∂∂(ϕ ◦ g)(z) =
1

(σ1(u)...σs(u))
1
t

∂∂ϕ1(z)

+ ∂∂
t∑

k=1

|σs+k(u)zs+k + σs+k(a)|2

= ρ(g)∂∂ϕ1(z) + ρ(g)∂∂
t∑

k=1

|zs+k|2

= ρ(g)∂∂ϕ(z).

We now obtain the following equalities:

g∗ω0 = g∗(i∂∂ϕ) = i∂∂(ϕ ◦ g) = iρ(g)∂∂(ϕ) = ρ(g)ω0.

This concludes the proof. �

Recall that in [16], the authors showed that no OT-manifold admits a Kähler
structure (this is Proposition 2.5, loc. cit.). Using this fact, we now see how
to prove Theorem 2.

Assume that K is a number field of degree d = s+ 2t with t > 2 and with
s not being of the form (2). We now suppose that the rank of the subgroup
U of UK of units satisfying equation (1) is at least (therefore, equal to) s
and we want to show that this leads to a contradiction.

First, notice that l(U) has a trivial intersection with the kernel of the
projecting map P : S → Rs, where l and P are defined in the introduction
of the main article. Thus, U is an admissible subgroup of UK . Now, consider
the OT-manifold X(K,U); it admits an LCK metric by Theorem 8. As a
consequence of Theorem 1, all the elements of U are reciprocal. In particular,
|σs+j(u)| = 1 for all u ∈ U and for all j ∈ {1, ..., t}.

Let ω be a Kähler form on Hs × Ct giving rise to an LCK metric on
X(K,U). For all g = (u, a) ∈ U nOK , one has g∗ω = |σs+1(u)|2ω (see the
paragraph before Theorem 8), which simplifies as g∗ω = ω. The form ω
being invariant under the action of A n OK , it descends to a Kähler form
on X(K,U). This implies that X(K,U) is a Kähler manifold, which is the
desired contradiction.
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