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The signature of rational links

Khaled Qazaqzeh, Isam Al-Darabsah
and Aisheh Quraan

Abstract. We give an explicit formula for the signature of any rational
link in terms of the denominators of the canonical continued fraction of
its slope.
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1. Introduction

Goeritz defined some algebraic invariants of a knot type from a quadratic
form that is obtained from a diagram of the given knot in [G]. The knot
signature, however, is defined later by Trotter in [T] using a different no-
tion of quadratic form. Murasugi in [M1] generalizes the work of Trotter
for the case of links. The authors of [GL] defined a quadratic form that si-
multaneously generalizes the forms of Goeritz and Murasugi and relate the
signature of this form to the signature of links. In particular, they describe
a combinatorial way to calculate the signature of a given link from any link
diagram.

Many people have computed this invariant for families of links. In partic-
ular, Shinohara in [Sh] has computed the signature of any rational link with
slope α

β in terms of α and β. Later, the authors of [GJ] have computed the

signature of the Goeritz matrix of any rational link. The signature of the
Goeritz matrix is one of the two terms to compute the signature of any link.
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The other term (the correction term) has been computed in [GJ] in many
cases for rational links. The work in [GJ] is in terms of the denominators of
any continued fraction of the slope of the given rational link.

In this paper, we give a formula to compute the signature of any rational
link in terms of the denominators of the canonical continued fraction of the
its slope that is given in the following theorem:

Theorem 1.1. For the rational link L with canonical continued fraction
[b1, b2, . . . , bn] of its slope α

β , we have

σ(L) = σ(G)− µ(D)

=

n−1
2∑
i=1

b2i + 1−
n∑
i=1

δibi,

where δi is defined recursively in Lemma 4.4 and Proposition 4.5.

The above theorem generalizes the work of the authors in [GJ] and it
gives another formula other than the one in [Sh] to compute the signature
of any rational link in terms of the denominators of the canonical continued
fraction of its slope.

The idea of computing the correction term in this paper can be applied
to compute the correction term of links of braid index 3 that is one of the
two terms of computing the signature.

Finally, we give a code for the above formula using Mathematica and we
provide a table of knots of Rolfsen’s table in [BM] with their signature. We
use the formula in the above theorem to confirm the signature of these knots.

2. Rational links and continued fraction

A continued fraction of the rational number α
β is a sequence of integers

b1, b2, . . . , bn such that

α

β
= b1 +

1

b2 +
1

. . .+
1

bn

.

The integers bi are called the denominators of the continued fraction of
the rational number α

β . This continued fraction of α
β will be abbreviated by

[b1, b2, . . . , bn].
A diagram of a rational link can be constructed from the denominators

of any continued fraction of its slope that is a rational number of a pair of
relatively prime integers α, β with |αβ | > 1 and β > 0 by closing the 4-braid

σb11 σ
−b2
2 σb31 . . . in the manner shown in Figure 1, where σ1, σ2 are shown

in Figure 2 and the multiplication is defined by concatenating from left to
right. It is well known that for odd numerator α this diagram represents a
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knot and for even numerator α it represents a two component link. A link
diagram obtained from this construction is a diagram of the rational link
Lα/β and it is characterized by the following theorem due to Schubert [S].

Figure 1. The closure of the 4-braid based on n being odd
or even respectively

Figure 2. The 4-braids σ1, σ
−1
1 , σ2, and σ−12 respectively

Theorem 2.1. Two rational links Lα/β and Lα′/β′ are equivalent if and
only if

α = α′,

and β±1 ≡ ±β′(modα).

It is sufficient to consider the case when the number of denominators of
the continued fraction n is odd and bi ≥ 1 for i = 1, 2, . . . n as a result of
the following lemma.

Lemma 2.2. There exists a canonical choice of continued fraction of α
β > 1

of positive integers with n odd and bi ≥ 1 for i = 1, 2, . . . , n.
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Proof. We start with the rational number α
β > 1 such that gcd(α, β) = 1

and α > β > 0. Now we can apply the Euclidean algorithm to get

α = βb1 + q1, 0 < q1 < β

β = q1b2 + q2, 0 < q2 < q1

q1 = q2b3 + q3, 0 < q3 < q2

...

qn−3 = qn−2bn−1 + qn−1, 0 < qn−1 < qn−2

qn−2 = qn−1bn.

Now we have

α

β
=
βb1 + q1

β
= b1 +

1
q
q1

= b1 +
1

q1b2+q2
q1

= b1 +
1

b2 + q1
q2

= · · · = b1 +
1

b2 +
1

b3 +
1

. . . +
1

bn

.

In this way we get a unique continued fraction [b1, b2, . . . , bn] with bn ≥ 2
since qn−1 < qn−2. Finally, if n is even then [b1, b2, . . . , bn − 1, 1] is the con-
tinued fraction with odd number of denominators. This continued fraction is
unique as a result of the applying the Euclidean algorithm at each step. �

Definition 2.3. The unique continued fraction obtained using the above
lemma will be called the canonical continued fraction of α

β and the diagram

obtained from the canonical continued fraction will be called the canonical
diagram of the rational link whose slope is α

β . It is easy to see that the

canonical diagram is alternating.

Remark 2.4. The motivation behind the above definition and lemma is the
work of the authors in [KL, Section. 2] for rational tangles.

3. The Gordon–Litherland formula of the link signature

We recall the Gordon–Litherland formula for link signature that was first
introduced in [GL]. We color the regions of the complement of the diagram
D of the oriented link L in R2 in a checkerboard fashion and denote the white
regions by R0, R1, . . . , Rm. To each crossing c that is incident to two distinct
white regions, we assign an incidence number µ(c) and type as shown in the
Figure 3.

Let G be the associated symmetric integral Goeritz matrix of the diagram
D that was first defined in [G] as follows:
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Figure 3. Incidence numbers and types of crossings

For any 0 ≤ i 6= j ≤ m, let

gij = −
∑

c∈Ri∩Rj

µ(c), and gii = −
∑
i 6=j

gij .

Then G is the symmetric m×m matrix with entries gij for 1 ≤ i, j ≤ m.
We set

µ(D) =
∑

c of type II

µ(c).

Finally, the Gordon–Litherland formula for the link signature is

(1) σ(L) = σ(G)− µ(D),

where σ(G), µ(D) is the signature of G and correction term of the diagram
D of L respectively.

4. Main results

For this section, we let L to be the rational link with slope α
β of canonical

continued fraction [b1, b2, . . . , bn]. We only consider the case with α
β > 1

since the signature of the mirror image of any link is the opposite of the
signature of the original link. Also, we let D the canonical diagram of the
rational link L. Now, we color the regions of the diagram D such that the
outside region is black and the most bottom region is white and numbered
R0 and the other white regions are numbered from left to right. Now we
state the main theorem of this paper whose proof covers the rest of this
section.

Theorem 4.1. For the rational link L, we have

σ(L) = σ(G)− µ(D)

=

n−1
2∑
i=1

b2i + 1−
n∑
i=1

δibi,

where δi is defined recursively in Lemma 4.4 and Proposition 4.5.
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We divide this section to two subsections the first to compute the signa-
ture of the Goeritz matrix, σ(G), and the second is to compute the correction
term, µ(D).

4.1. The signature of the Goeritz matrix σ(G). In this subsection
we want to compute the signature of the Goeritz matrix using the above
coloring. It is easy to see that in this case we have the number of white

regions m + 1 =
∑n−1

2
i=1 b2i + 2. The following lemma gives us the general

form of the matrix G for the canonical rational link diagram.

Lemma 4.2. The associated Goeritz matrix of the canonical diagram D is
an m ×m square symmetric matrix with upper and lower diagonal entries
are −1, the entries of the main diagonal are

b1 + 1, 2, 2, . . . , 2︸ ︷︷ ︸
(b2−1)−times

, b3 + 2, 2, 2, . . . , 2︸ ︷︷ ︸
(b4−1)−times

, . . . , bn + 1

and the other entries are 0.

Proposition 4.3. If A is an l× l square symmetric matrix with upper and
lower diagonal entries are −1, a11 > 1, aii ≥ 2 for 2 ≤ i ≤ l, and the
other entries are 0, then A has signature equal to l. In particular, the above
Goeritz matrix has signature equal to m.

Proof. We use induction on l. We form the unimodular matrix B that

consists of two blocks the first block is the 2×2-matrix

(
1 0
1
a11

1

)
and the

second block is the (l−2)× (l−2) identity matrix. Now the product BABT

yields a matrix with the same signature by using Sylvester law in [SJ] that
consists of two blocks the first is the matrix of only one entry a11, and the
second matrix is an (l−1)× (l−1)-matrix that satisfies the same conditions
stated in the proposition. Now the result follows by applying the induction
hypothesis on the second block since a22 − 1

a11
> 1. �

4.2. The correction term µ(D). The set of all crossings in the canonical
diagram D forms a partition of n elements such that i-th element of this
partition contains all the crossings that form σbi1 if i is odd and σ−bi2 if i
is even in the braid form. It is easy to see that all crossings that belong
to the same element of the partition will have the same type according to
Figure 3. Moreover, the type of all crossings in the i-th element of the
partition depends on the types of the crossings in the (i− 2)-th and (i− 1)-
th elements of the partition. To simplify things, we use the notation δi = 1
if the crossings of the i-th element of the partition is of type two and in the
other case δi = 0. Now using this notation, we can give a recursive relation
that defines the type of the crossings in the i-th element of the partition in
the following lemma:
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Figure 4. The closure of the diagram D when σL = (23)

Lemma 4.4. For i ≥ 3, we have

δi =


δi−2 + 1 (mod 2), if bi−1 is odd, i− 1 is even and δi−1 is odd,

δi−2 + 1 (mod 2), if bi−1 is odd, i− 1 is odd and δi−1 is even,

δi−2, otherwise.

Proof. Let D
′

be the associated link diagram obtained by the canonical
continued fraction of n denominators with the i-th denominator equal to 1
if bi is odd and 2 if bi is even. It is easy to see that δi can be computed
from the diagram D

′
. The crossings in the i − 2, i − 1, i-th elements of the

above partition of the crossings for the diagram D
′

formed by only three
arcs. Now the above recursive relation follows by considering all possible
orientations on these three arcs and all possible values of the i− 2, i− 1 and
the i-th denominators of the diagram D

′
. �

We want to compute the value of the correction term µ(D) for the canon-
ical diagram D in terms of the denominators of the canonical continued
fraction of α

β . It is worth mentioning that any crossing of the i-th element

of the partition in the canonical diagram D of type two will add one to the
correction term µ(D) according to the above coloring and Figure 3 in both
cases of i being odd or even.

The value of µ(D) depends on an associated permutation σL ∈ S3 on the
set {1, 2, 3}. This permutation is defined in terms of the denominators of
the canonical continued fraction by 1 0 0

0 0 1
0 1 0

b1 0 1 0
1 0 0
0 0 1

b2

. . .

 1 0 0
0 0 1
0 1 0

b2k+1
 1

2
3

=

 σL(1)
σL(2)
σL(3)

.
Another way of defining this permutation is given by

σL = (23)b2k+1(12)b2k(23)b2k−1 . . . (12)b2(23)b1 ,

with multiplication in S3 defined from left to right.
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Proposition 4.5. The correction term of the canonical diagram is

µ(D) =

n∑
i=1

δibi

with:

(1) δ1 = δ2 = 1 if σL = (1), (123), (23) or (12).
(2) δ1 = 0, δ2 = 1 if σL = (13), or (132) and b1 is even.
(3) δ1 = 0, δ2 = 0 if σL = (13), or (132) with b1 is odd.

In all of the above cases, δi is as defined in Lemma 4.4 for i ≥ 3.

Proof. We prove the case where σL = (23). In this case the canonical
diagram of the rational link will be connected as in Figure 4. We choose
the orientation in all cases in a way where the top arc always goes from
right to left and if the diagram has two components then we can assume the
orientation on the bottom arc goes from right to left since these two arcs
will belong to different components.

It is clear to see that the crossings of the first two elements of the above
partition are of type two. Now we use Lemma 4.4 to compute the correction
term µ(D). �

5. Examples and computer talk

In this section, we work out some examples and at the end we give the
code that computes the signature for some of the rational knots in Rolfsen’s
table (see [BM] for that table).

Example 5.1. We compute the signature of the knot 84 in Rolfsen’s table.
It is known that the slope of this rational knot is 19

5 with canonical continued
fraction is given by b1 = 3, b2 = 1, and b3 = 4. Hence we have σ84 = (123)
with δ1 = δ2 = 1, and δ3 = 0. Now we have µ(D) = 4 and σ(G) = 2.
Therefore, we obtain σ(84) = −2.

Example 5.2. We compute the signature of the rational link L whose slope
is 75

29 with canonical continued fraction is given by b1 = 2, b2 = 1, b3 = 1, b4 =
2, b5 = 2, b6 = 1, and b7 = 1. Hence we have σL = (123) with δ1 = δ2 = 1
and δi = 0 for i = 3, 4, 5, 6, 7. Now we have µ(D) = 3 and σ(G) = 5.
Therefore, we obtain σ(L) = σ(G)− µ(D) = 5− 3 = 2.

Now we want to compute the signature of the above link by the formula
given in [Sh, Theorem. 2]. The link L is a rational link of type (α, β) with
α = 75 and β = 29. Now consider the sequence β, 2β, . . . , (α− 1)β and
take the remainder of dividing each element of this sequence by 2α to ob-
tain a remainder r such that −α < r < α. We obtain a new sequence
{r1, r2, . . . , rα−1} where ri 6= 0 for i = 1, 2, . . . , α − 1. In particular for this
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In[61]:= ClearAll@"Global ∗̀"D
Clear@rD
r =;

s = Abs@rD; Print@"s = ", sD
If@s >= 1, i = 1,

8 Print@" Enter r ≥ 1 or r−1"D, Break@D<D;
While@s ≠ Floor@sD,

8b@iD = Floor@sD, s = s − Floor@sD, If@s ≠ 0, s = 1 ê sD<;
i++

D;
b@iD = Floor@sD;
Which@i == 1,

8σ = 1 − b@iD; Print@"bH1L = ", b@iDD; Print@"σHLL = ", σD; Break@D<,
Mod@i, 2D == 1, σ = Sum@b@2 jD, 8j, 1, HHi − 1L ê 2L<D + 1,

Mod@i, 2D == 0,

8b@iD = b@iD − 1, b@i + 1D = 1, i = 1 + i, σ = Sum@b@2 ∗ jD, 8j, 1, HHi − 1L ê 2L<D + 1<
D;

A = 881, 0, 0<, 80, 1, 0<, 80, 0, 1<<;
For@j = 1, j  i, j++,

8If@Mod@j, 2D == 0,

A = A.MatrixPower@880, 1, 0<, 81, 0, 0<, 80, 0, 1<<, b@jDD,
A = A.MatrixPower@881, 0, 0<, 80, 0, 1<, 80, 1, 0<<, b@jDD

D<;D;
X = A.881<, 82<, 83<<;
Print@"X = ", XD
If@X == 883<, 82<, 81<< »» X == 883<, 81<, 82<< && Mod@b@1D, 2D == 0,

8µ = b@2D; δ@1D = 0; δ@2D = 1; For@j = 3, j  i, j++, 8δ@jD = δ@j − 2D;
If@Mod@Hj − 1L, 2D == 0 && Mod@δ@j − 1D, 2D == 1 && Mod@b@j − 1D, 2D == 1,

δ@jD = Mod@δ@jD + 1, 2D, If@Mod@Hj − 1L, 2D == 1 && Mod@δ@j − 1D, 2D == 0 &&

Mod@b@j − 1D, 2D == 1, δ@jD = Mod@δ@jD + 1, 2D, δ@jD = δ@j − 2DDD<D<D;

If@X == 883<, 82<, 81<< »» X == 883<, 81<, 82<< && Mod@b@1D, 2D == 1,

8µ = 0; δ@1D = 0; δ@2D = 0; For@j = 3, j  i, j++, 8δ@jD = δ@j − 2D;
If@Mod@Hj − 1L, 2D == 0 && Mod@δ@j − 1D, 2D == 1 && Mod@b@j − 1D, 2D == 1,

δ@jD = Mod@δ@jD + 1, 2D, If@Mod@Hj − 1L, 2D == 1 && Mod@δ@j − 1D, 2D == 0 &&

Mod@b@j − 1D, 2D == 1, δ@jD = Mod@δ@jD + 1, 2D, δ@jD = δ@j − 2DDD<D<D;

If@X == 881<, 82<, 83<< »» X == 882<, 83<, 81<< »»
X == 881<, 83<, 82<< »» X == 882<, 81<, 83<<,

8µ = b@1D + b@2D; δ@1D = 1; δ@2D = 1; For@j = 3, j  i, j++, 8δ@jD = δ@j − 2D;
If@Mod@Hj − 1L, 2D == 0 && Mod@δ@j − 1D, 2D == 1 && Mod@b@j − 1D, 2D == 1,

δ@jD = Mod@δ@jD + 1, 2D, If@Mod@Hj − 1L, 2D == 1 && Mod@δ@j − 1D, 2D == 0 &&

Mod@b@j − 1D, 2D == 1, δ@jD = Mod@δ@jD + 1, 2D, δ@jD = δ@j − 2DDD<D<D;
Do@Print@"δH", HkL, "L=", δ@kD, " bH", HkL, "L=", b@kDD, 8k, 1, j − 1<D

µ = µ + ‚
n=3

j−1

HMod@δ@nD, 2D ∗ b@nDL;

Print@"σHGL = ", σD
Print@"µHDL = ", µD
Print@"σHLL = ", σ − µD

Figure 5. The Mathematica program
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Slope Continued fraction σK σ(G) µ(D) σ(L) Crossings type knot

3 b1 = 3 (23) 1 3 -2 δ1 = 1 31

5 b1 = 5 (23) 1 5 -4 δ1 = 1 51

5
2 b1 = 2, b2 = 1, b3 = 1 (132) 2 2 0 δ1 = 0, δ2 = 1, δ3 = 1 41

7 b1 = 7 (23) 1 7 -6 δ1 = 1 71

7
2 b1 = 3, b2 = 1, b3 = 1 (13) 2 0 2 δ1 = 0, δ2 = 0, δ3 = 0 52

9 b1 = 9 (23) 1 9 -8 δ1 = 1 91

9
2 b1 = 4, b2 = 1, b3 = 1 (132) 2 2 0 δ1 = 0, δ2 = 1, δ3 = 1 61

11 b1 = 11 (23) 1 11 -10 δ1 = 1 111

11
2 b1 = 5, b2 = 1, b3 = 1 (13) 2 0 2 δ1 = 0, δ2 = 0, δ3 = 0 72

11
3 b1 = 3, b2 = 1, b3 = 2 (123) 2 4 -2 δ1 = 0, δ2 = 1, δ3 = 0 62

13
2 b1 = 6, b2 = 1, b3 = 2 (132) 2 2 0 δ1 = 0, δ2 = 1, δ3 = 1 81

13
3 b1 = 4, b2 = 2, b3 = 1 (23) 3 7 -4 δ1 = 1, δ2 = 1, δ3 = 1 73

13
5 b1 = 2, b2 = 1, b3 = 1 (123) 3 3 0 δ1 = 1, δ2 = 1, δ3 = 0 63

b4 = 1, b5 = 1 δ4 = 0, δ5 = 0

15
2 b1 = 7, b2 = 1, b3 = 1 (13) 2 0 2 δ1 = 0, δ2 = 0, δ3 = 0 92

15
4 b1 = 3, b2 = 1, b3 = 3 (13) 2 0 2 δ1 = 0, δ2 = 0, δ3 = 0 74

Table 1. Knot table
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case, we have

{iβ} = {29, 58, 87, 116, 145, 174, 203, 232, 261, 290, 319, 348, 377, 406, 435,

464, 493, 522, 551, 580, 609, 683, 667, 696, 725, 754, 783, 812, 841, 870,

899, 928, 957, 986, 1015, 1044, 1073, 1102, 1131, 1160, 11189, 1218,

1247, 1276, 1305, 1334, 1363, 1392, 1421, 1450, 1479, 1508, 1537, 1566,

1595, 1624, 1653, 1682, 1711, 1740, 1769, 1798, 1827, 1856, 1885, 1914,

1943, 1972, 2001, 2030, 2059, 2088, 2117, 2146}
Therefore, we have the the sequence of remainders respectively as follows:

{ri} = {29, 58,−63,−34,−5, 24, 53,−68,−39,−10, 19, 48,−73,−44,−15, 14,

43, 72,−49,−20, 9, 38, 67,−54,−25, 4, 33, 62,−59,−30,−1, 28, 57,

− 64,−35,−6, 23, 52,−69,−40,−11, 18, 47,−74,−45,−16, 13, 42,

71,−50,−21, 8, 37, 66,−55,−26, 3, 32, 61,−60,−31,−2, 27, 56,−65,

− 36,−7, 22, 51,−70,−41,−12, 17, 46}.

Finally using [Sh, Theorem. 2], the signature of L is equal to twice of the
number of negative entries minus the total number of entries in the above
set of remainders which is 76− 74 = 2.

Remark 5.3. We like to mention that the formula in [Sh, Theorem. 2]
appears in [M2, Theorem. 9.3.6] but with the opposite sign.

We think that the fundamental time estimate in performing any algorithm
that codes our formula is logarithmic time since the number of iterations to
find the canonical continued fraction is less than or equal five times the
number of digits of β according to Lamé’s Theorem [M, Page. 21]. While
the fundamental time estimate in performing any algorithm that codes the
formula of Shinohara in [Sh] is polynomial time since we need to apply the
Euclidean algorithm r-times.

Finally, we apply the above code for some of the knots in Rolfsen’s table
in [BM] and we show the details of the computations in the Table 1. The
original code in Mathematica can be obtained from the site:

https://drive.google.com/file/d/0ByaasUUX-ykfZEFGS21DTWNyZjQ/edit?usp=sharing.
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