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Operator algebras associated to integral
domains

Benton L. Duncan

ABSTRACT. We study operator algebras associated to integral domains.
In particular, with respect to a set of natural identities we look at the
possible nonselfadjoint operator algebras which encode the ring struc-
ture of an integral domain. We show that these algebras give a new class
of examples of semicrossed products by discrete semigroups. We inves-
tigate the structure of these algebras together with a particular class of

representations.
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Recently, in [4] and [9] the notion of a regular C*-algebra associated to an
integral domain was introduced as a generalization of a construction due to
Cuntz, [3]. In these papers the authors associate to an integral domain R a
C*-algebra by considering the regular representation of R acting on £2(R).
In addition they show that the C*-algebras so constructed are universal
with respect to a collection of identities that encode information about the
integral domain.

One can view an integral domain as an additive group together with an
action on the additive group given by multiplication by nonzero elements of
the ring. This suggests that an important viewpoint for studying operator
algebras associated to integral domains is through the use of crossed prod-
ucts. More importantly, since crossed products are well understood many of
the significant results can be made brief through the technology of crossed
products.
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For this paper we wish to investigate the operator algebras with slightly
less restrictive identities imposed by only natural ring-theoretic constraints.
This gives rise to operator algebras with a more natural crossed product
structure. However since the multiplication in a ring need not act as au-
tomorphisms on the additive group, crossed products are not entirely ap-
propriate. To avoid this we use the nonselfadjoint operator algebras where
possible. This goes back to a construction of Arveson and Josephson [1]
which was generalized by Peters in [11]. This semicrossed product is a non-
selfadjoint operator algebra which encodes the same dynamics as the crossed
product but does not require that the action on a topological space be via
homeomorphisms.

While one may worry that we lose too much information when we lose
the s-structure of the C*-algebra, in recent work [5] it was shown that the
semicrossed products of Peters in fact encode the action of a continuous self
map on a topological space in a manner which is unique up to conjugacy
of the map. This is even true when the map is not a homeomorphism and
hence unlike with C*-algebras the nonselfadjoint operator algebras can be
used as a topological invariant.

It is these motivating examples which have led us to study the semicrossed
product algebras in the context of integral domains. In this paper we have
defined the universal operator algebra associated to an integral domain (note
the different conditions we require from those of Cuntz and Li). We then
study the situation in the case that our integral domain is a field. Here
the semicrossed product and the crossed product coincide and we can use
standard results for crossed products to prove facts about the algebra. After
viewing the case of the integral domain being a field we focus on the situation
where this may not be true. Here the semicrossed product technology is
necessary, however similar results carry through. After defining the requisite
notion of semicrossed product and proving some first results in the context
of integral domains we prove some results which show that the algebras thus
defined are distinct from the algebras studied by Peters. We then study the
question of semisimplicity of the algebra. In the last section we analyze what
we call unitary representations of an integral domain R. We show that every
such representation factors through a regular unitary representation.

We describe some standard notation we intend to use. If R is an integral
domain we write Q(R) for the field of quotients. We write R, for the
additive group of R. This group is a locally compact discrete group. We
denote the Pontryagin dual of a group G by G. We refer the reader to [8]
for details on the construction of the Pontryagin dual.

The author would like to thank Jim Coykendall and Sean Sather-Wagstaff
for helpful discussions about and examples of integral domains.
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1. Universal algebras of integral domains

Let R be an integral domain. Given a Hilbert space H we define an
isometric representation of R to be a collection of isometries
{S, € B(H):re R*}
together with unitaries
{U" € B(H):n € R}
that satisfy the relations:
(1) S;S¢ = Sy for all r,t € R*.
(2) UMU™ = U™ ™ for all m,n € R.
(3) U™S, = S,U™ for all r € R*,n € R.
If the S, are unitaries for all » € R* then we say that the representation

is a unitary representation.
We present first two examples:

Example (The regular representation of an integral domain). Let H be
equal to ¢*(R), with e, denoting the characteristic function of {¢} C R.
Define operators U™ and S, as follows:

ur Z Cebq | = Z Cq€q+n

qeR gER
Sy E quq = E quTQ'
geER qeER

It is not difficult to see that {U™} and {S,} give rise to an isometric repre-
sentation of R.

Example (The regular unitary representation of an integral domain). Let
K be equal to ¢*(Q(R)), with e, denoting the characteristic function of
{¢} € Q(R). We use the same formulas to define U™ and S,. Notice this
time however that for all r, g’; is onto and hence a unitary. (To see this
notice that S, (eq) = eq for every ¢ € Q(R)).

An importantrpoint to notice is that H C K and further H is an invariant
subspace for the collections {/S\;} and {ﬁ?l} Further S, = PH§;|H for all r
and U™ = Pﬂmm For this reason we call this representation the reqular
unitary representation of R.

We let A(R) be the norm closed operator algebra generated by unitaries
{u™ : n € R} and isometries {s, : r € R*} which is universal for isometric
representations of R. We will denote the elements of A(R) with lower case
letters to distinguish from a representation of R for which we will use upper
case letters.

We notice some initial facts about the algebra A(R).
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Lemma 1. A(R) is unital with u° = s;.

Proof. Let {U",S,} be an isometric representation of R. Then notice that
Up is an idempotent unitary, hence 1 = UiUp. Then Uy = 1-Uy = USUE =
UsUyp = 1. A similar argument yields the same result for S;. Since this

is true for an arbitrary isometric representation of R, the result follows for
A(R). O

Lemma 2. If r is invertible then s, is a unitary with s; = s,-1.

Proof. This follows from the previous lemma since S,5,-1 = 51 = S,-1.5,,
for any isometric representation of R. (]

It follows that if R is a field then A(R) is a C*-algebra. In addition, in
this case, the regular representation is a unitary representation. In fact we
have the following:

Proposition 1. R is a field if and only if every isometric representation is
a unitary representation.

Proof. This comes from the fact that for the regular representation (S,)*
is in the algebra if and only if r is invertible. (]

Finally we can see that A(R) is functorial for ring monomorphisms since
if there is a ring monomorphism from R; to Ry then any isometric repre-
sentation Re will give rise to an isometric representation of Rj.

Proposition 2. A(R) is functorial in the sense that if m : Ry — Rg is a
unital ring monomorphism then there is an induced completely contractive
representation 7 : A(R1) — A(R2).

2. The universal C*-algebra for a field

We now analyze the case where R is a field. Here any isometric represen-
tation is, in fact, a unitary representation. We let (R,) denote the additive
group in R. Notice that R* acts on C*(Ry) as x-automorphisms via the
mapping ay(U™) = UM where U" is the unitary in C*(R,) corresponding
ton € (R4+). This allows us to rewrite A(R) as a crossed product.

Proposition 3. Let R be a field, then A(R) = C*(R4) x R*.

Proof. We begin by noting (see [2, I1.10.3.10]) that since C*(R4) is unital
and R* is discrete we have C*(Ry) C C*(R4+) x R* via a representation
mo and there is a natural map pg : R* — C*(R, x) x R*. Together (o, po)
give rise to a covariant representation of the triple (C*(R4), R*, «).

Now analyzing the covariance conditions that define C*(R4) x R* we see
that po(r)mo(n)po(r)* = mo(rn). For each n, my(n) is a unitary and for each
r, po(r) is a unitary and hence the natural covariant representation my X po
gives rise to a unitary representation of R, and hence there is a completely
contractive representation ¢ : A(R) — C*(R4+) X R*.
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Next notice that any unitary representation of A(R) gives rise to a co-
variant representation of (C*(R4), R*, «) and hence ||z| < ||c(z)| so that ¢
is faithful.

Since C*(R4) and R* are both abelian we have that the universal norm
on the crossed product C*(R4) x R* coincides with the reduced norm [12,
Theorem 7.13]. In addition, we have that the algebra A(R) is nuclear [12,
Corollary 7.18], when R is a field. We next analyze the regular representation
of A(R) where R is a field.

Proposition 4. Let R be a field, then the regular representation of A(R) is
faithful.

Proof. This follows from analyzing the regular representation of C* (R4 ) X4
R*, which is faithful since R* is amenable. In effect, we take the left regular
representation of C*(R,) acting on ¢?(Ry) and add to this the action of
R* via x-automorphisms. This is exactly the construction of the regular
representation of R and hence the two coincide. O

Other facts about A(R) can also be explained using the crossed product
machinery. To do this we remind the reader that the Pontryagin dual of a
locally compact abelian group G is the abelian group

G={p:G—>T}
with identity denoted idg the trivial homomorphism idg(g) = 1.
Proposition 5. For a field R the algebra A(R) is not simple.

Proof. Notice that C*(Ry) = C(R,) where (R, ) is the Pontryagin dual of
the locally compact abelian group (R4 ). Notice that the x-automorphisms
ay, induce a homeomorphism & on (}/?1) which has a fixed point for each A;
in particular, ax(idg, ) = idg, for all A. It follows that there is a nontrivial
invariant ideal in C*(R4) for the action by R* and hence, see [12, Section

3.5] there is a nontrivial induced ideal in C*(Ry) x R*. O

We can, however completely describe the ideal structure of A(R) in the
case of a field.

Theorem 1. A(R) is x-isomorphic to C® A where A is a simple C*-algebra.
In fact, A is -isomorphic to Co((Ry) \ {0}) x R*.

Proof. We use the nontrivial invariant ideal from the previous proposition.
In particular, since C*(R;) = C(Ia) let 7 be the multiplicative linear
function given on C(R) by evaluation at 0. Further, if we let @y be the
induced homeomorphism on (E:r) given by the x-automorphism «) for all
A € R*. The induced representation, 7 is a multiplicative linear functional
and hence has range C. Hence, A(R) = C @ ker 7. We now wish to describe
. So let o : Co(]/%:) — Co((éjr) \ {idr, }) be the restriction mapping.
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Further, if A € R* then &), the homeomorphism on é:r induced by the
automorphism «), then the range of o is invariant under a) and hence
there is a map 7 : Co((R4) \ {ifr.}) ¥ R* — kerm. But since R* acts

transitively on (éjr) \ {idg, } the crossed product Co((]fir) \ {idr, }) ¥ R*
is simple and hence the map 7 must be an isomorphism. ([l

3. Semicrossed products for discrete semigroups

The preceding construction suggests that for non-field integral domains
the crossed product may be replaced by a semicrossed product. We quickly
outline the relevant construction referring to [11] for motivation and to [7]
for more information about this semicrossed product.

Given a compact Hausdorff space X we say that a semigroup S acts on X
via continuous maps if for each s € S there is a continuous map 75 : X — X
with 75 0 73 = 7. If S is unital with identity 0 we will assume that 7 is the
identity map. Say that a pair (, S;) is an isometric covariant representation
of (X,S,7s) if 7 is a representation of C'(X) on a Hilbert space H and for
each t € S, S; is an isometry in B(H) such that Sin(f(x)) = n(f(m(x)))S;
for all x € X.

It is not hard to see that given the triple (X, S, 7s), there is a nontrivial
isometric covariant representation. The construction follows in the same
manner as in [11], we only outline the idea here. Let H = ¢*(X,S) where
this latter Hilbert space is sequences indexed over elements of S with entries
from x, with canonical basis {es}. Define 7 : C(X) — B(H) by n(f(x)) =
(f(7s(x)))ses. Then set Si(es) = esr and extend by linearity. Then (m, S¢)
is an isometric covariant representation of (X, .S, 7s).

We say that the universal operator algebra generated by all isometric
covariant representations of (X, S, 1) is the semicrossed product of X by S
via 7. We denote this algebra as C'(X) x, S.

As examples notice that if « is a single endomorphism of a C*-algebra
then we are in the situation described in Peter’s original work [11], where
the semigroup is Z*. For an example on the opposite end of the spectrum
we can view the semicrossed product of [6] as a semicrossed product where
the monoid is the free monoid on n generators.

Returning to an integral domain R, we let o, be the *x-endomorphism of
C*(R4+) induced by the group endomorphism given by left multiplication by
r. This gives a map from R* into the set of *-endomorphisms of C*(R.).
Notice that since we are in an integral domain each of these endomorphisms
is injective. However they are only surjective when 7 is a unit.

Proposition 6. The algebra A(R) is completely isometrically isomorphic
to the algebra C*(R4) x4 R*.

Proof. We will show that any isometric representation of R gives rise to
an isometric covariant representation of the pair (C*(R4) X, R*) and vice-
versa, hence the two algebras will be completely isometrically isomorphic.
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So let {U™ : n € R} and {S, € R*} be an isometric representation of
R. Then the map n — U™ gives rise to a representation of C*(R,), call it
7. Further the isometries S, will satisfy S,U™S; = U™ and hence the pair
(m,{Sy}) will be an isometric covariant representation of (C*(R,+), R*, «).

Let (m, {S;}) be an isometric covariant representation of (C*(R4.), R*, a).
Then {7 (u™)} is a collection of unitaries and {.S, } is a collection of isometries
that trivially satisfy the first two conditions of an isometric representation
of R. Further S,U"S} = U™ so that S, U™ = U"S, for all r € R* so that
we have an isometric representation of R. [l

Notice that in the case of the algebra A(R) for an integral domain R the
semigroup R* will always be commutative with no torsion. In addition the
semigroup R* can be viewed as a spanning cone for the group Q(R)™ (see
[10, Page 60] for the definition of a spanning cone for a group).

We can actually improve our characterization of A(R) as a semicrossed
product by looking at a more tractable semigroup. Let U(R) denote the
group of units in R. Now R* is a commutative monoid which contains
U(R) as a normal submonoid. We let M (R) denote the monoid R* /U(R).
Notice that R* C Q(R)* and further that M (R) C Q(R)*/U(R), this latter
group we call G(R).

For u € U(R) let ay, : C*(Ry) — C*(R4) be the x-automorphism in-
duced by the automorphism of (R4 ) that corresponds to left multiplication
by u. Next for r € M(R) define a covariant representation of the triple
(C*(R+),U(R),a) by B,(U™) =U™, p(S,) = Sy. This covariant represen-
tation induces a *-endomorphism of C*(Ry) x4 U(R). Hence, [ gives rise
to a map from M(R) into the set of x-endomorphisms of C*(Ry) %, U(R).

Theorem 2. The algebra A(R) is completely isometrically isomorphic to the
algebras (C*(R4+) 4o U(R)) g M(R), and the diagonal algebra A(R)NA(R)*
is isomorphic to (C*(R4) o U(R)).

Proof. We will show that any isometric representation of R gives rise to an
isometric covariant representation of the pair

(C*(R4) xa U(R), M(R))

and vice-versa, hence the two algebras will be completely isometrically iso-
morphic.

So let {U™ : n € R} and {S, : r € R*} be an isometric representation of
R. Then define a covariant representation of (C*(R4),U(R),«) by n+— U"
and r — S, for all » € U(R). This yields a representation m of C*(Ry) X,
U(R). Next notice that S\7(U™) = w(U)S, for all A\ € M(R), and S)S, =
SpSy for all r € U(R),A € M(R). Hence we have an isometric covariant
representation of (C*(R4) x4 U(R), M(R), ).

Finally we take an isometric covariant representation (7, .S) of (C*(R4) X4
U(R),M(R),3). Define U" = 7w(n) and S, = n(S,) if r € U(R), else
S, = S,. This gives rise to an isometric representation of R.
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The last result follows from Corollary 2 of [7]. O

Notice that if R is not a field U(R) does not act transitively on the
nonunital subalgebra of C*(Ry), as in the case of a field. In fact we have
the following fact.

Corollary 1. The diagonal is isomorphic to C ® A where
A= Cy((Ry)\idg,) x U(R).
Further, A is simple if and only if R is a field.

Proof. That A is not simple follows from the fact that U(R) does not act

—

transitively on Co(C*(G,+) \ idg, ) unless R* = U(R). O

We now prove some other facts about the relationship between the integral
domain R and the structure of the algebra A(R).

Proposition 7. A(R) = C(X) xS, where S is a monoid with no nontrivial

invertible elements if and only if the identity of R is the only unit. Further
if UR) = {1} then M(R) will not be finitely generated.

Proof. If the identity of R is the only unit, then we have
C*(Ry) x U(R) = C*(Ry)

and M (R) has no nontrivial invertible elements, else M(R) NU(R) # {1}.

Notice that if A(R) = C(X) x S where S is a monoid with no nontriv-
ial invertible elements then the diagonal algebra A(R) N A(R)* = C(X).
However, if x € U(R) with x # 1, then z ¢ M(R) and hence

Sy € C*(Ry) xU(R) = A(R)NA(R)".
But notice that S,U"™ # U"S, unless x = 1 and hence C*(R;) x U(R) is

not commutative.
Now assume U(R) = {1} and M(R) is generated by {x1,z2,...,2n}.
Then 1+ z1x2 -2, € U(S) so

ki ko

k
1+ zi20 -y = 2] 5% - - -

n

with at least one k; # 0. We will assume without loss of generality that
k1 # 0. Then 1 = zq(zox3 -+ 2y — x’flflajgz e xﬁ") which implies that z7 is
a unit yielding a contradiction. O

As a corollary we have the following.

Proposition 8. If R is a unique factorization domain and A(R) = A x Z*
where A is a C*-algebra, then A is not commutative and U(R) is not trivial.

Proof. We will assume that A is commutative and hence U(R) is trivial.
In particular A = C*(R4) = Cp(R+). Now let 21 and x2 be two irreducible
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elements of M (R), then define two two-dimensional nest representations of
A(R) by

PSR FIC R S IR
Wl(f) - |: 0 f(ldR+):| ) fi f € CO(R+)

01
WZ(S%) = [0 0:|
;i (Sy) = 0 for r # x;.

Here Z; is a homomorphism that sends every irreducible other than x; to
1 and x; to A # 1. It follows from the description of the two-dimensional
nest representations of A x Z*, see [5], that 1 = xo which contradicts the
fact that M (R) must be infinitely generated. O

It follows that if R is a unique factorization domain A(R) is never a
semicrossed product in the sense of [11] and hence this collection of algebras
presents a unique type of semicrossed product.

Notice also that if Ry and Ry are integral domains with A(R;) = A(Rs)
we are not in a position to decide that R; = Rs. Since the diagonal is not,
in general, a commutative algebra the two ingredients for such isomorphism
results in [5] (the maximal ideal space, and the collection of two dimensional
nest representations) will require some generalization before being applied
in this context. We expect the details of such a generalization will be taken
up in future work.

4. Failure of semisimplicity

We now consider the question of semisimplicity of the algebra A(R). To
address this we will need to need some information about C*(R;) which we
will obtain by considering the Pontryagin dual and its properties, we refer
the reader to [8] for proofs of the relevant facts. Recall that if G is a discrete,
locally compact, abelian Hausdorff group, then Gis a connected, compact,
Hausdorff space.

Next recall that if H is an open and closed subgroup of G then there is a
natural open continuous homomorphism of G onto H with compact kernel
Ky :={p € G: p|g = idy}. Further the kernel of this homomorphism is
trivial if and only if H = G. Now by Proposition 6 A(R) = C*(R4) x4 R*.
We have already used the fact that C*(Ry) = C (é:r) and notice that the
action of r € R* on C*(R4) given by r : s + rs induces an action 7
on C(ﬁ;) given by 7(¢)(s) = ¢(rs). We are now in a position to discuss
semisimplicity of A(R).

Theorem 3. The algebra A(R) is semisimple if and only if R is a field.

Proof. Clearly if R is a field then since A(R) is a C*-algebra then A(R) is
semisimple. For the converse we will assume that R is not a field and show
that A(R) has a nilpotent ideal (similar to the idea in [6]).
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So let 7 € R* be a nonzero nonunit. Then notice that H, := {rz : z € R}
is a normal, open and closed, proper subgroup in (R;). Now consider a
nontrivial homomorphism ¢ in ﬁ:r such that ¢|g. = 1. Notice that 7(¢) =
idg, . Now since ]/%1 is Hausdorfl there exists open sets U and V such that
¢ € Uandid € V with UNV = . Now let f be a nonzero function in C’(E:L)
with support in @~ (V) N U such that f(y) # 0. Now consider the nonzero
element S,f € A(R). Notice that for any A € A(R) we have (AS,.f)? =
AS,fAS,f = ABS?(f o7)f = 0. It follows that the ideal generated by S, f
is a nontrivial nilpotent ideal and hence it must be contained in the radical
of A(R), so that A(R) is not semisimple. O

5. Unitary representations of R
Finally we wish to analyze the unitary representations of A(R).

Lemma 3. There is a canonical completely contractive representation
i: AR) = C*(Q(R)).

Proof. As R C Q(R) the inclusion map provides an isometric representa-
tion of R inside C*(Q(R)) and hence the induced map on A(R) is completely
contractive. O

Proposition 9. Let 7w : A(R) — B(H) be a unitary representation. There
exists a x-representation 7, : C*(Q(R)) — C*(w(A(R)) which is onto and
satisfies Tr o i(x) = w(x) for all x € A(R).

Proof. Since 7 is a unitary representation we know that n(s,) = T; is a
unitary for all » € R*. For all [g] € Q(R)* we define 77'(3[3]) = T,T;.
q

We also define fr(u[%]) = T,VPT;. We need only show that the unitaries
T,T; and T,VPT; satisfy the relations for Q(R) and hence the induced
representation 7, will be the required *-representation.
Notice first that 7,7, = T,T, and T, Ty = 1,71, since 7 is a unitary
representation of A(R). It then follows that
T,T; =1, T,T,T,
=T, T,T,T;
=T,T,
for all ¢,p € R*. It follows that ﬁ(S[ﬂ])ﬁ(S[Q]) = fr(s[M}) for all [EL] and
a1 a2 ara2 o
(2] in Q(R).
Next notice that VPT, = T;VP? and T;'V? = VPIT 7 and hence

p1* P2 P1q2\/q1P2 ok
T4,V quTqQV TQZ—quT(DV 1% quTq2
_ P1g2+q1p2
- Tq1q2v Tqup-

In other words ﬁ(u[%])fr(u[%}) = ﬁ(u[%H[%}).
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Next we have that
(21

#(u QI])ﬁ(s[%]) = T, VT T, T,

= sz TJQ TQ1 TQ2 ypip Tq*Q Tf;

_ * p1p2*
- Tp2 TQ2 Tth q2 Vv qu q2

— (s (ul 1))

Hence the C*-algebra generated by the T, and V" satisfies the relations for
Q(R). We call the induced representation 7.
Finally we note that 7 0i(sp) = 7 (s[%]) =T,T7 =T, for all p € Q* and

Trot(u") = 7x (u[%]) =NV, 1} =V, for all n € R and hence 7, 0i(z) = 7(x)
for all z € A(R). O

It would follow that if every isometric representation of R dilated to a
unitary representation (as for example the regular representation does), then
we could identify the C*-envelope of A(R) as a crossed product, since the
canonical representation ¢ would be completely isometric. We do not think
this is likely since this does not even work in the case of C'(X) x4 Z* where
« is a non-surjective continuous mapping, see [6].
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