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Projectors on the intermediate algebraic
Jacobians

Charles Vial

Abstract. Let X be a complex smooth projective variety of dimen-
sion d. Under some assumptions on the cohomology of X, we construct
mutually orthogonal idempotents in CHd(X ×X) ⊗Q whose action on
algebraically trivial cycles coincides with the Abel–Jacobi map. Such a
construction generalizes Murre’s construction of the Albanese and Pi-
card idempotents and makes it possible to give new examples of varieties
admitting a self-dual Chow–Künneth decomposition as well as new ex-
amples of varieties having a Kimura finite-dimensional Chow motive.
For instance, we prove that fourfolds with Chow group of zero-cycles
supported on a curve (e.g., rationally connected fourfolds) have a self-
dual Chow–Künneth decomposition. We also prove that hypersurfaces
of very low degree are Kimura finite-dimensional.
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Introduction

Let X be a smooth projective variety of dimension d over an algebraically
closed field k ⊂ C. The Chow group CHi(X) of cycles of dimension i on X is
the Q-vector space generated by i-cycles on X modulo rational equivalence.
Given ∼ an equivalence relation on cycles, CHi(X)∼ denotes those cycles
which are ∼ 0. In this paper, ∼ will either be algebraic, homological or
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numerical equivalence. All three equivalence relations agree on zero-cycles
and are spanned by the zero cycles of degree zero.

Being able to exhibit cycles in CHd(X ×X) with appropriate action on
the homology of X is essential to Grothendieck’s theory of pure motives. As
discussed for instance in [11], being able to exhibit cycles in CHd(X × X)
which are idempotents is a prerequisite to the understanding of Chow groups
as part of the framework of the Bloch–Beilinson–Murre philosophy. Roughly
speaking, such a framework predicts that the Chow groups of X should be
controlled by the cohomology of X. In this paper we address a question
of a slightly different nature as whether the Chow groups of X dictate its
Chow motive. Of course, we do not answer such a question in generality.
However, we completely answer this question in the case when the Chow
groups of X are generated by the Chow groups of zero-cycles of curves.
For this purpose we construct appropriate idempotents in CHd(X × X).
In the spirit of the BBM philosophy, work of Esnault and Levine [6] (and
Jannsen [11] in the case of points) shows that if the Chow groups of X
are generated by the Chow groups of curves, then the cohomology of X
is generated by the cohomology of curves. Here, as a consequence of the
construction of appropriate idempotents, we show that if the Chow groups
of X are generated by the Chow groups of curves, then not only is the
cohomology of X generated by the cohomology of curves but the Chow
motive of X is generated by the Chow motives of curves (see Theorem 4
below). In particular, this complements Esnault and Levine’s theorem by
showing that the Chow motive of X is finite-dimensional in the sense of
Kimura [14]. The basic properties of pure motives are explained in [20] and
the (covariant) notations we use are those of [12].

Murre [17] constructed mutually orthogonal idempotents Π1 and Π2d−1

in CHd(X × X) called respectively the Albanese projector and the Picard
projector. Such idempotents satisfy the following properties.

• Π1 = tΠ2d−1.
• (Π1)∗H∗(X) = H1(X) and (Π2d−1)∗H∗(X) = H2d−1(X).
• (Π1)∗CH∗(X) = (Π1)∗CH0(X) ∼= AlbX(k)⊗Q.
• (Π2d−1)∗CH∗(X) = CHd−1(X)hom

∼= Pic0
X(k)⊗Q.

Scholl [20] then showed that it is possible to modify slightly the con-
struction of these idempotents in order to, in addition, have a Lefschetz
isomorphism:

• The map ι∗ι
∗ : (X,Π2d−1, 0) → (X,Π1, d − 1) is an isomorphism

of Chow motives. Here ι : C → X is a smooth linear section of
dimension one of X.

In this paper, we wish to generalize Murre’s construction in the following
sense: we wish to construct mutually orthogonal idempotents Π2i+1,i in
CHd(X×X) which, in homology, define projectors on the largest sub-Hodge
structure of H2i+1(X) generated by the H1’s of curves. Here Hk(X) :=
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Hk(X(C),Q) which is isomorphic to H2d−k(X(C),Q). We offer two different
constructions.

The first construction is explained in the first section. It is defined for
all smooth projective varieties X but we cannot show that the idempotents
constructed there act appropriately in homology without making some as-
sumptions on X. In some sense the idempotents constructed there lift the
largest sub-motive of a curve contained in the numerical motive of X. What
is needed is Jannsen’s semi-simplicity theorem [10] in order to produce idem-
potents modulo numerical equivalence, and then a lifting property from nu-
merical equivalence up to rational equivalence (Proposition 1.1).

The second construction, which is much more precise, gives the required
idempotents but depends on an assumption on the cohomology of X which
we describe below. Let us define N iH2i(X) to be the image of the rational
cycle class map cli : CHi(X)→ H2i(X) and

N iH2i+1(X) :=
∑

im
(
Γ∗ : H1(C)→ H2i+1(X)

)
,

where the sum runs through all smooth projective curves C and through all
correspondences Γ ∈ CHi+1(C ×X). The use of the notation N iH2i+1(X)
is not arbitrary since it can be shown that this sub-group of H2i+1(X) is
spanned by those classes that vanish in the open complement of some sub-
variety of X of dimension i+1. The group N iH2i+1(X) is thus the last step
of the coniveau filtration on H2i+1(X).

Given an integer i, the assumption we need on X in order to construct
the idempotent that we will denote Πi,bi/2c is that the cup product pairing
H2d−i(X)×Hi(X)→ Q restricts to a nondegenerate pairing

N b(2d−i)/2cH2d−i(X)×N b(i)/2cHi(X)→ Q.

We begin the second section by showing in Lemma 2.1 that such pairings
are nondegenerate for a large class of varieties. Lemma 2.1 also shows that
these pairings are expected to be nondegenerate for all smooth projective
varieties if one believes in Grothendieck’s standard conjectures.

The construction of the projectors Π2i,i is unsurprising and is usually used
to extract the Néron–Severi group NSi(X) out of CHi(X):

Theorem 1. Let i be an integer. Assume that the pairing

Nd−iH2d−2i(X)×N iH2i(X)→ Q

is nondegenerate. Then there exist idempotents

Π2i,i,Π2d−2i,d−i ∈ CHd(X ×X)

such that:

• Π2i,i = tΠ2d−2i,d−i.
• (Π2i,i)∗H∗(X) = N iH2i(X).
• CHi(X)hom = ker

(
Π2i,i : CHi(X)→ CHi(X)

)
.
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• The Chow motive (X,Π2i,i, 0) is isomorphic to (L⊗i)⊕di where di =
dimN iH2i(X).
• If 2i ≥ d there is a Lefschetz isomorphism of Chow motives

(X,Π2i,i, 0)→ (X,Π2d−2i,d−i, 2i− d)

given by intersecting 2i − d times with a smooth hyperplane section
of X.

We now turn to the construction of the projectors Π2i+1,i. In particular,
our construction gives a motivic interpretation of the Abel–Jacobi map to
the algebraic part of the intermediate Jacobians. Write Jai (X) for the image
of the Abel–Jacobi map AJi : CHi(X)Zalg → Ji(X(C)), it is an algebraic torus
defined over k.

Theorem 2. Let i be an integer. Assume that the pairing

Nd−i−1H2d−2i−1(X)×N iH2i+1(X)→ Q
is nondegenerate. Then there exist idempotents Π2i+1,i and Π2d−2i−1,d−i−1

in CHd(X ×X) such that:

• Π2i+1,i = tΠ2d−2i−1,d−i−1.
• (Π2i+1,i)∗H∗(X) = N iH2i+1(X).
• We have

ker
(
AJi : CHi(X)alg → Jai (X)(k)⊗Q

)
= ker

(
Π2i+1,i : CHi(X)alg → CHi(X)alg

)
.

• The Chow motive (X,Π2i+1,i, 0) is isomorphic to h1(Jai (X))(i).
• If 2i + 1 ≥ d there is a Lefschetz isomorphism of Chow motives

(X,Π2i+1,i, 0)→ (X,Π2d−2i−1,d−i−1, 2i+ 1−d) given by intersecting
2i+ 1− d times with a smooth hyperplane section of X.

These generalize Murre’s construction of the Albanese and Picard projec-
tors (Π1,0 and Π2d−1,d−1 respectively) because in the cases i = 0 or i = d−1

we have N0H1(X) = H1(X) and Nd−1H2d−1(X) = H2d−1(X). The pairing
Nd−i−1H2d−2i−1(X)×N iH2i+1(X)→ Q is thus just the cup product pairing
between H2d−1(X) and H1(X) and is always nondegenerate.

Finally Lemma 2.1 shows that the above pairings are all nondegener-
ate for curves, surfaces, abelian varieties, complete intersections, uniruled
threefolds, rationally connected fourfolds and any smooth hyperplane sec-
tion, product and finite quotient thereof. For those varieties X for which
those idempotents can be constructed for all i we can show, thanks to the
Gram–Schmidt process of Lemma 2.12, that it is possible to choose the
idempotents of Theorems 1 and 2 to be pairwise orthogonal:

Theorem 3. If the pairings N b(2d−i)/2cH2d−i(X) × N bi/2cHi(X) → Q are
nondegenerate for all i then the idempotents of Theorems 1 and 2 can be
chosen to be pairwise orthogonal.
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The second section is then devoted to the proof of these theorems.
In the third section, we compute the Chow motive of those varieties whose

Chow groups are all representable. We say that CHi(X)alg is representable
if there exists a curve C and a correspondence Γ ∈ CHi+1(C×X) such that
CHi(X)alg = Γ∗CH0(C)alg. We show that if X is a variety whose Chow
groups are all representable then the pairings

N b(2d−i)/2cH2d−i(X)×N bi/2cHi(X)→ Q

are nondegenerate for all i. We then use Theorems 1, 2 and 3 to compute
the Chow motive of varieties having representable Chow groups. Informally,
Esnault and Levine [6] showed that if the Chow groups of a variety X are
all representable then the cohomology of X is generated by the cohomology
of curves. Conversely Kimura [14] proved that if the cohomology groups of
X are generated by the cohomology of curves and if the Chow motive of X
is finite dimensional (See [14] for a definition) then the Chow groups of X
are representable. Here we prove a stronger statement:

Theorem 4. Let k ⊆ C be an algebraically closed field. Let X be a smooth
projective variety of dimension d over k. Write XC := X×Spec k Spec C and
bj := dimHj(X). The following statements are equivalent.

(1) h(X) = 1 ⊕ h1(AlbX) ⊕ L⊕b2 ⊕ h1(Ja1 (X))(1) ⊕ (L⊗2)⊕b4 ⊕ · · · ⊕
h1(Jad−1(X))(d− 1)⊕ L⊗d.

(2) The cycle class maps cli : CHi(X) → H2i(X) and the rational
Deligne cycle class maps clDi : CHi(XC) → HD2i(X,Q(i)) are sur-
jective for all i and h(X) is finite-dimensional.

(3) The rational Deligne cycle class maps clDi : CHi(XC)→ HD2i(X,Q(i))
are injective for all i.

(4) The Chow groups CHi(XC)alg are representable for all i.

Esnault and Levine [6] proved that if the total Deligne cycle class map of
X is injective then it is surjective. Theorem 4 gives thus a better insight to
the link between injectivity and surjectivity of cycle class maps.

The proof of the theorem goes as follows. The first statement is certainly
the strongest, i.e., it implies the three others. The equivalence (3) ⇔ (4)
is certainly known but we couldn’t find a reference for (4) ⇒ (3), so we
include a proof in §3.2. The proof relies on a generalized decomposition of
the diagonal and was essentially written in [6]. The implication (2)⇒ (4) is
due to Kimura and appears in [14, Theorem 7.10]. Our main input is then a
proof of (4) ⇒ (1) which settles the theorem and which we give in §3.3. For
sake of completeness we also give a direct proof of (2) ⇒ (1) in §3.1 using
our projectors Π2i,i and Π2i+1,i.

As an immediate corollary we get the following theorem, which is a gen-
eralization of a result by Jannsen [11, Th. 3.6] who proved that if the total
cycle class map of X is injective then it is surjective. Theorem 5 was also
proved by Kimura [15].
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Theorem 5. Let k ⊆ C be an algebraically closed field. Let X be a smooth
projective variety of dimension d over k. The following statements are equiv-
alent.

(1) h(X) =
⊕d

i=0(L⊗i)⊕b2i.
(2) The rational cycle class map cl : CH∗(XC) → H∗(X) is surjective

and h(X) is finite-dimensional.
(3) The rational cycle class map cl : CH∗(XC)→ H∗(X) is injective.
(4) The Chow groups CHi(XC) are finite-dimensional Q-vector spaces

for all i.

Again this theorem makes more precise the link between injectivity and
surjectivity of cycle class maps.

In the fourth and last section we are interested in using our construction
of idempotents to give new examples of varieties for which we can compute
explicitly a Chow–Künneth decomposition of the diagonal. Such examples
include 3-folds X satisfying H2(X,Ω1

X) = 0 (e.g., Calabi–Yau 3-folds), ra-
tionally connected 4-folds, and 4-folds admitting a rational map to a curve
with rationally connected general fiber.

We are also interested in giving new examples of varieties whose Chow
motives are finite-dimensional in the sense of Kimura [14]. These will be
given by smooth hyperplane sections of hypersurfaces covered by a fam-
ily of linear projective varieties of dimension bn/2c in Pn+1. These were
considered by Esnault, Levine and Viehweg [7] and also subsequently by
Otwinowska [18] and include hypersurfaces of very small degree, e.g., cubic
5-folds, 5-folds which are the smooth intersection of a cubic and a quadric
and 7-folds which are the smooth intersection of two quadrics. Other exam-
ples are given by rationally connected threefolds, a case which was treated
by Gorchinskiy and Guletskii in [8].

Let us mention that the construction given in the first section is used in
[21] to prove a generalization of the implication (4) ⇒ (1) in Theorem 4 to
the case of Chow motives with representable Chow groups. The proof given
there does not involve any cohomology theory, except implicitly through the
use of Jannsen’s semi-simplicity theorem whose proof requires the existence
of a “good” cohomology theory. In [22], we prove Murre’s conjectures for the
varieties considered in §4. We also refer to [22, §2] for some statements that
do not involve the cohomology (or the Chow groups) of X in all degrees.

Acknowledgements. Thanks to Burt Totaro for useful comments.

1. A first construction

1.1. The coniveau filtration on numerical motives. Let k be any field
and X a smooth projective variety over k of dimension d. We refer to [12,
§7.1] for the definition of pure motives in a covariant setting. Chow mo-
tives are pure motives with rational coefficients for rational equivalence and
numerical motives are pure motives with rational coefficients for numerical
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equivalence. The category of Chow motives over k is denoted M and the
category of numerical motives over k is denoted M̄. The reduction modulo
numerical equivalence of a cycle γ ∈ CHk(X) is denoted γ̄. A fundamen-
tal result of Jannsen [10] states that the category of numerical motives is
abelian semi-simple. In particular if f : N → M is a morphism of numeri-
cal motives with M = (X, p, n), Jannsen’s theorem gives the existence of a
correspondence π ∈ Endk(M) such that im f ∼= (X,π, n).

It is thus possible to define a coniveau filtration on numerical motives
as in [1, §8] and [12, §7.7]: N jM :=

∑(
f : h̄(Y )(j) → M

)
where the

sum runs through all smooth projective varieties Y and all morphisms f ∈
Homk(h̄(Y )(j),M) and where h̄(Y )(j) denotes the numerical motive of Y
tensored j times by the Lefschetz motive.

Let us imagine for a moment that Grothendieck’s standard conjecture B
(cf. [1, 5.2.4.1]) is true. Then [1, 5.4.2.1] each numerical motive M has a
weight decomposition that we write M =

⊕
iMi. Furthermore, for weight

reasons N jMi =
∑(

f : h̄i−2j(Y )(j) → Mi

)
. Another consequence of

Grothendieck’s standard conjecture B is that if i : Z → Y is a smooth
hyperplane section of dimension i − 2j of Y then i∗ : h̄i−2j(Z) → h̄i−2j(Y )
is surjective [1, 5.2.5.1]. Therefore we have

N jMi =
∑

im
(
f : h̄i−2j(Y )(j)→Mi

)
,

where the sum runs through all smooth projective varieties Y with dimY =
i− 2j and through all morphisms f ∈ Homk(h̄i−2j(Y )(j),Mi).

1.2. The idempotents π̄2j,j and π̄2j+1,j. Let us now forget about the
standard conjectures. We know that points and curves have a weight de-
composition [1, 4.3.2]; it is therefore natural for any integer j and for any
numerical motive M to consider the following direct summands of M :

M2j,j :=
∑

im
(
f : h̄0(Spec k)(j)→M

)
,

M2j+1,j :=
∑

im
(
f : h̄1(C)(j)→M

)
,

where the first sum runs through all morphisms f ∈ Homk(h̄0(Spec k),M)
and the second sum runs through all curves C and through all morphisms
f ∈ Homk(h̄1(C),M). Thus in particular there exist for all integers j corre-
spondences π2j,j and π2j+1,j in CHd(X ×X) such that M2j,j = (X, π̄2j,j , 0)
and M2j+1,j = (X, π̄2j+1,j , 0).

1.3. A lifting property. We denote byM0 (resp.M1) the full thick sub-
category of M generated by the Chow motives of points (resp. the h1’s of
smooth projective curves over k). For a motive P ∈ M, let P̄ denote its
image in M̄. (This notation is abusive since we previously denoted numerical
motives with a bar and it is not known if all numerical motives admit a lift
to rational equivalence). Let us also write M̄0 (resp. M̄1) for the image
of M0 (resp. M1) in M̄. The functors M0 → M̄0 and M1 → M̄1 are
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equivalence of categories (see [20, Corollary 3.4]) and as such the categories
M0 and M1 are abelian semi-simple.

Proposition 1.1. Let M be an object in M0 (resp. in M1). Let N be
any motive in M. Then any morphism f : M → N induces a splitting
N = N1 ⊕ N2 with N1 isomorphic to an object in M0 (resp. in M1) and
N̄1
∼= im f̄ .

Proof. The morphism M → N induces a morphism M̄ → N̄ and it is
known that any morphism in an abelian semi-simple category is a direct
sum of a zero morphism and of an isomorphism (cf. [2, A.2.13]). Let us thus
write

M̄ = M̄1 ⊕ M̄2
f̄⊕0−−→ N̄1 ⊕ N̄2 = N̄

where f̄ is an isomorphism M̄1
∼−→ N̄1. The composition (f̄−1⊕0)◦(f̄⊕0) ∈

End(M̄) is therefore equal to the projector M̄ → M̄1 → M̄ . Let then
g : N → M be any lift of f̄−1 ⊕ 0 : N̄ → M̄ and let M1 be any lift of M̄1.
Then g ◦ f ∈ End(M). But it is a fact that End(M) = End(M̄). Therefore,
g ◦f is a projector on M1. We now claim that f ◦g ◦f ◦g defines a projector
in End(N) onto an object isomorphic to M1. Indeed,

(f ◦ g ◦ f ◦ g) ◦ (f ◦ g ◦ f ◦ g) = f ◦
(
(g ◦ f) ◦ (g ◦ f) ◦ (g ◦ f)

)
◦ g

= f ◦ (g ◦ f) ◦ g = f ◦ g ◦ f ◦ g

and we have the commutative diagram

N
g
// M

f
//

!!

N
g
// M

f
//

!!

N
g
// M

f
//

!!

N
g
// M

f
// N

M1
id //

==

M1
id //

==

M1

==

showing that indeed f ◦ g ◦ f ◦ g projects onto M1 (since it has a retraction).
�

1.4. The idempotents π2j,j and π2j+1,j. Proposition 1.1 shows that it
is actually possible to choose the correspondences π2j,j and π2j+1,j above to
be idempotents in CHd(X×X). In other words, Proposition 1.1 shows that
it is possible to define direct summands (X,π2j,j , 0) and (X,π2j+1,j , 0) of
the Chow motive h(X) of X whose reduction modulo numerical equivalence
are the direct summands M2j,j and M2j+1,j defined above.

We won’t be giving the details here but it can be shown that, if Gro-
thendieck’s Lefschetz standard conjecture B (see below for a precise state-
ment of this conjecture) is true for all smooth projective varieties, then the
idempotents π2j,j and π2j+1,j constructed here coincide modulo homological
equivalence with the idempotents Π2j,j and Π2j+1,j of §2.
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1.5. A remark about the Künneth projectors. We would like to ex-
plain how it is possible to construct cycles whose numerical classes are the
expected Künneth projectors, i.e., whose homological classes are expected
to be the projectors H∗(X) → Hi(X) → H∗(X). We proceed by induc-
tion on d = dimX. If X = Spec k, we define πX0 to be the cycle X × X
inside X × X. Suppose we have constructed projectors modulo numerical
equivalence πY0 , π

Y
1 , . . . , π

Y
2(dimY )−2 for all smooth projective varieties Y of

dimension dimY < d. Then, for all i ∈ {0, . . . , d − 1}, we define the cycle
πXi ∈ CHd(X ×X)/num to be the projector such that

(X,πXi , 0) =
⋃

f :Y→X
im
(
f∗ : (Y, πYi , 0)→ h̄(X)

)
,

where the sum runs through all smooth projective varieties Y of dimension
i and all morphisms f : Y → X. We then set

πX2d−i = tπXi , πXd = idX −
∑
i 6=d

πXi .

If Grothendieck’s standard conjecture B is true, then it can be checked that
those define the expected Künneth projectors.

2. The projectors Π2i,i and Π2i+1,i

In this section, we fix an algebraically closed field k with an embedding
k ↪→ C and we prove Theorems 1, 2 and 3. We start with a lemma which
shows that many varieties do satisfy the assumptions of these theorems.

LetX be a d-dimensional smooth projective variety over k. Let ι : H → X
be a smooth hyperplane section of X and let Γι ∈ CHd−1(H×X) be its graph
and let tΓι be the transpose of Γι. We define L := Γι ◦ tΓι ∈ CHd−1(X×X).
The hard Lefschetz theorem asserts that the map Li : Hd+i(X)→ Hd−i(X)
given by intersecting i times with H is an isomorphism for all i ≥ 0. The
variety X is said to satisfy property B if the inverse morphism is induced
by an algebraic correspondence for all i ≥ 0. It is one of Grothendieck’s
standard conjectures that all smooth projective varieties should satisfy B.

Lemma 2.1. Let i be an integer in {d, . . . , 2d}. The cup product pairing

N b(2d−i)/2cH2d−i(X) × N bi/2cHi(X) → Q is nondegenerate in either of the
following cases:

• X satisfies property B.
• N bi/2cHi(X) = Hi(X).

In particular the pairing Nd−1H2d−1(X)×N0H1(X)→ Q is nondegenerate
for all X.

Proof. In the case X satisfies property B, the Hodge index theorem is a
crucial ingredient and the lemma is a special case of [22, Prop. 1.4]. The
other case is obvious. �
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Therefore the results in this section hold for curves, surfaces, abelian
varieties, complete intersections, uniruled threefolds, rationally connected
fourfolds and any smooth hypersurface section, product or finite quotient
thereof. All those varieties satisfy property B. Lemma 3.1 shows that the
results in this section also hold for varieties for which some cycle class map
is surjective.

2.1. Setup. We are given a smooth projective variety X over k of dimen-
sion d. By definition N iH2i(X) coincides with the image of the cycle class
map CH2i(X) → H2i(X). For each integer i, let di = dimQN

iH2i(X) and
let Pi be the disjoint union of di copies of Spec k. Notice that di > 0 be-
cause N iH2i(X) always contains the (d− i)-fold intersection of a hyperplane
section. We then fix Γ2i ∈ CHi(Pi ×X) such that

(Γ2i)∗ : H0(Pi)
'−→ N iH2i(X)

is bijective. This amounts to fixing a basis of

N iH2i(X) = im (cli : CHi(X)→ H2i(X)).

For each integer i, we also fix a smooth projective curve (not necessarily
connected) Ci and a correspondence Γ2i+1 ∈ CHi+1(Ci ×X) such that

(Γ2i+1)∗H1(Ci) = N iH2i+1(X).

Let Ci,l be the connected components of Ci and for all l let zi,l be a
rational point on Ci,l. Up to composing Γ2i+1 with the correspondence
∆Ci −

∑
l

(
{zi,l} × Ci,l + Ci,l × {zi,l}

)
∈ CH1(Ci × Ci), we can and we will

assume moreover that

(Γ2i+1)∗H0(Ci) = (Γ2i+1)∗H2(Ci) = 0.

In order to establish the Lefschetz isomorphism of Theorems 1, 2 and 3
we will make use of the following easy lemma.

Lemma 2.2. Let i be an integer in {d + 1, . . . , 2d} and assume that the

cup product pairing N b(2d−i)/2cH2d−i(X) × N bi/2cHi(X) → Q is nondegen-

erate. Then Li−d : Hi(X) → H2d−i(X) maps isomorphically N bi/2cHi(X)

to N b(2d−i)/2cH2d−i(X).

Proof. The nondegeneracy assumption says in particular that the two Q-
vector spaces N bi/2cHi(X) and N b(2d−i)/2cH2d−i(X) have same dimension.
The Lefschetz isomorphism L restricts to an injective map

N bi/2cHi(X)→ H2d−i(X)

and, by definition of N , maps N bi/2cHi(X) into N b(2d−i)/2cH2d−i(X). �

Remark 2.3. In fact if the pairing N b(2d−i)/2cH2d−i(X)×N bi/2cHi(X)→ Q
is nondegenerate, then more is true. Namely, as a consequence of the Lef-
schetz isomorphisms of Propositions 2.4 and 2.8, we have that the isomor-
phism Li−d : N bi/2cHi(X) → N b(2d−i)/2cH2d−i(X) has its inverse induced
by a correspondence.
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If for an integer i such that 2i ∈ {d, . . . , 2d}, the cup product pairing
Nd−iH2d−2i(X) × N iH2i(X) → Q is nondegenerate, Lemma 2.2 makes it
possible to furthermore assume that Pi = Pd−i and Γ2d−2i = L2i−d ◦ Γ2i.

Likewise if, for an integer i such that 2i + 1 ∈ {d, . . . , 2d}, the cup
product pairing Nd−i−1H2d−2i−1(X) × N iH2i+1(X) → Q is nondegener-
ate, Lemma 2.2 makes it possible to furthermore assume that Ci = Cd−i−1

and Γ2d−2i−1 = L2i+1−d ◦ Γ2i+1.

2.2. Proof of Theorem 1. In this paragraph we consider an integer i
with 2i ≥ d and a smooth projective variety X of dimension d for which the
pairing Nd−iH2d−2i(X)×N iH2i(X)→ Q is nondegenerate.

The correspondence Γ2d−2i := L2i−d ◦ Γ2i induces by duality a bijective
map

(tΓ2d−2i)∗ :
(
Nd−iH2d−2i(X)

)∨ '−→ H0(Pi)
∨.

By the nondegeneracy assumption we may identify
(
Nd−iH2d−2i(X)

)∨
with

N iH2i(X) and identify H0(Pi)
∨ with H0(Pi). Therefore the composition

tΓ2d−2i ◦ Γ2i induces a Q-linear isomorphism H0(Pi)
'−→ H0(Pi). It is then

clear that there exists a correspondence γ2i ∈ CH0(Pi × Pi) such that γ2i ◦
tΓ2d−2i ◦ Γ2i acts as identity on H0(Pi). Because L = tL we also have

γ2i = tγ2i.

We then set

Π2i,i := Γ2i ◦ γ2i ◦ tΓ2d−2i ∈ CHd(X ×X).

Since γ2i ◦ tΓ2d−2i ◦ Γ2i = id ∈ CH0(Pi × Pi), it is clear that Π2i,i is an
idempotent and that it induces the projector H∗(X)→ N iH2i(X)→ H∗(X)
in homology. Also, it is clear that Π2d−2i,d−i := tΠ2i,i (Notice that if 2i = d
then Πd,d/2 = tΠd,d/2) defines an idempotent which induces the projector

H∗(X)→ Nd−iH2d−2i(X)→ H∗(X) in homology. �

Proposition 2.4. The correspondence

Π2d−2i,d−i ◦ L2i−d ◦Π2i,i : (X,Π2i,i, 0)→ (X,Π2d−2i,d−i, 2i− d)

is an isomorphism of Chow motives.

Proof. Using the identities L = tL, γ2i = tγ2i, Π2d−2i,d−i = tΠ2i,i and the

fact that Π2i,i = Γ2i◦γ2i◦ tΓ2i◦ tL2i−d is an idempotent, one can easily check

that Π2i,i ◦ Γ2i ◦ γ2i ◦ tΓ2i ◦ Π2d−2i,d−i is the inverse of Π2d−2i,d−i ◦ L2i−d ◦
Π2i,i. �

Proposition 2.5. Let Π2i ∈ CHd(X ×X) be an idempotent which factors
through a zero-dimensional variety Pi as Π2i = Γ ◦ α with Γ ∈ CHi(Pi ×X)
and α ∈ CHd−i(X × Pi), and whose action on H∗(X) is the orthogonal
projection on N iH2i(X). Then the Chow motive (X,Π2i, 0) is isomorphic
to (L⊗i)⊕di.
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Proof. The cycle class map CH0(Pi) → H0(Pi) is an isomorphism. Let
π := α ◦ Γ ∈ CH0(Pi × Pi). By functoriality of the cycle class map, we see
that π is an idempotent such that (Pi, π, 0) = 1⊕di . The correspondence Γ
is an element of CHi(Pi ×X) = Homk

(
h(Pi)(i), h(X)

)
and it can easily be

checked that the correspondence Π2i ◦ Γ ◦ π ∈ Homk

(
(Pi, π, i), (X,Π2i, 0)

)
is an isomorphism with inverse π ◦ α ◦Π2i. �

Proposition 2.6. Let Q2i be a correspondence in CHd(X × X) such that
Q2i acts as the identity on N iH2i(X) and such that Q2i is supported on
X × Z with Z a sub-variety of X of dimension i. Then

CHi(X)hom = ker
(
Q2i : CHi(X)→ CHi(X)

)
.

In particular

CHi(X)hom = ker
(
Π2i,i : CHi(X)→ CHi(X)

)
.

Proof. By functoriality of the cycle class map, we have a commutative
diagram

CHi(X)

cli
��

// CH0(Z)

'
��

// CHi(X)

cli
��

H2i(X) // H0(Z) // H2i(X)

The composition of the two arrows of the top row is the map induced by
Q2i and the composition of the two arrows of the bottom row is the identity
on im (cli). The proposition follows easily. �

2.3. Proof of Theorem 2.

2.3.1. The Albanese and the Picard varieties. Let X be a smooth
projective variety over a field k. The Albanese variety attached to X and
denoted AlbX is an abelian variety universal for maps X → A from X to
abelian varieties A sending a fixed point x0 ∈ X to 0 ∈ A. The Picard
variety Pic0

X of X is the abelian variety parametrizing numerically trivial
line bundles on X (i.e., those with vanishing Chern class). These define
respectively a covariant and a contravariant functor from the category of
smooth projective varieties to the category of abelian varieties.

The abelian varieties AlbX and Pic0
X are dual and are isogenous in the

following way. Let C be a curve which is a smooth linear section of X. Then
the map

Ψ : Pic0
X → Pic0

C
Θ−→ AlbC → AlbX

is an isogeny, where Θ is the map induced by the theta-divisor on the curve
C.

The following proposition is essential to the construction of the idempo-
tents Π2i+1,i.
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Proposition 2.7 (cf. Th. 3.9 and Prop. 3.10 of [20]). Let Y and Z be
connected smooth projective varieties and let ζ ∈ CH0(Y ) and η ∈ CH0(Z)
be 0-cycles of positive degree. Then there is an isomorphism

Ω : Hom(AlbY ,Pic0
Z)⊗Q '−→ {c ∈ CH1(Y × Z), c(ζ) = tc(η) = 0}.

Moreover, Ω is functorial in the following sense. Let φ : Y ′ → Y and
ψ : Z ′ → Z be morphisms of varieties and let ζ ′ and η′ be positive 0-cycles
on Y ′ and Z ′ with direct image ζ and η on Y and Z. If β : AlbY → Pic0

Z is
a homomorphism, then

Ω(Picψ ◦ β) = ψ∗ ◦ Ω(β) and Ω(β ◦Albφ) = Ω(β) ◦ φ∗,
where Ω is taken with respect to the chosen 0-cycles.

2.3.2. Intermediate Jacobians. Given a smooth projective complex va-
riety X, the ith intermediate Jacobian attached to X is the compact complex
torus

Ji(X) =
H2i+1(X,C)

F iH2i+1(X,C) +H2i+1(X,Z)
.

It comes with a map

AJi : CHZ
i (X)hom → Ji(X)

defined on the integral Chow group called the ith Abel–Jacobi map which
was thoroughly studied by Griffiths [9]. In the cases i = 0 and i = dimX−1,
we recover the notions of Albanese variety and Picard variety respectively.
These intermediate Jacobians are however fairly different since they are
of transcendental nature. While the Albanese and the Picard variety are
algebraic tori, this is not the case in general for intermediate Jacobians.

Precisely, let Jalg
i denote the maximal sub-torus inside Ji(X) whose tangent

space is included in Hi+1,i(X,C). It is then a fact that Jalg
i is an abelian

variety and that

Jalg
i (X) =

N i
HH2i+1(X,C)

N i
HH2i+1(X,C) ∩

(
F iH2i+1(X,C) +H2i+1(X,Z)

)
where N i

HH2i+1(X) is the maximal sub-Hodge structure of H2i+1(X) con-
tained in Hi+1,i(X,C) ⊕ Hi,i+1(X,C). In particular, the intermediate Ja-
cobian is algebraic if and only if H2i+1(X,C) is concentrated in degrees
(i, i + 1) and (i + 1, i). As a consequence of the horizontality of normal
functions associated to algebraic cycles [9], the cycles in CHZ

i (X)hom that

are algebraically trivial map into Jalg
i (X) under the Abel–Jacobi map. The

map CHZ
i (X)alg → Jalg

i (X) is surjective if N iH2i+1(X) ⊇ N i
HH2i+1(X) (the

reverse inclusion always holds), in particular if N iH2i+1(X) = H2i+1(X). In
any case, let us write Jai (X) for the image of the map AJi : CHZ

i (X)alg →
Jalg
i (X). It is an abelian sub-variety of the abelian variety Jalg

i (X) which is

defined the same way as Jalg
i (X) with NH replaced with N . We sum this

up in the commutative diagram
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CHZ
i (X)hom

AJi // Ji(X)

CHZ
i (X)alg

AJi // //
?�

OO

Jai (X) �
�

// Jalg
i (X).
?�

OO

Finally if X is defined over an algebraically closed sub-field k of C, the
image of the composite map

CHZ
i (X)alg → CHZ

i (XC)alg → Jalg
i (XC)

defines an abelian variety over k that we denote Jai (X).

2.3.3. The projectors Π2i+1,i and Π2d−2i−1,d−i−1. Given any abelian
varieties A and B, Hom(A,B) denotes the group of homomorphisms from
A to B. Recall that the category of abelian varieties up to isogeny is the
category whose objects are the abelian varieties and whose morphisms are
given by Hom(A,B)⊗Z Q for any abelian varieties A and B. This category
is abelian semi-simple, cf. [23].

In the rest of this paragraph we consider an integer i with 2i + 1 ≥ d
and a smooth projective variety X of dimension d for which the pairing
Nd−i−1H2d−2i−1(X) × N iH2i+1(X) → Q is nondegenerate. In particular
the dual of Jad−i−1(X) identifies with Jai (X). Lemma 2.2 implies that the

correspondence L2i+1−d induces an isogeny Λ : Jai (X) → Jad−i−1(X) and

because L = tL we have Λ = Λ∨, i.e., Λ is equal to its dual.
Taking up what was said in §2.1 we have a smooth projective curve Ci over

k and correspondences Γ2i+1 ∈ CHi+1(Ci × X) and Γ2d−2i−1 := L2i+1−d ◦
Γ2i+1 ∈ CHd−i(Ci ×X) such that both maps

(Γ2i+1)∗ : H1(Ci)→ N iH2i+1(X),

(Γ2d−2i−1)∗ : H1(Ci)→ Nd−i−1H2d−2i−1(X),

are surjective and such that both maps act trivially on H0(Ci) and on
H2(Ci). The correspondence Γ2i+1 induces by functoriality of the Abel–
Jacobi map a surjective homomorphism

(Γ2i+1)∗ : AlbCi � Jai (X)

as well as a homomorphism with finite kernel

(tΓ2i+1)∗ ◦ Λ : Jai (X) ↪→ Pic0
Ci
.

By semisimplicity of the category of abelian varieties up to isogeny, there
exists α ∈ Hom(Jai (X),AlbCi)⊗Q such that (Γ2i+1)∗ ◦ α = idJa

i (X). Let us
consider

Φ := α ◦ Λ−1 ◦ α∨ ∈ Hom(Pic0
Ci
,AlbCi)⊗Q

so that

(?) (Γ2i+1)∗ ◦ Φ ◦ (tΓ2i+1)∗ ◦ Λ = idJa
i (X).
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We would now like to use Proposition 2.7 in order to give an algebraic
origin to Φ. Decomposing Ci into the disjoint union of its connected com-
ponents Ci,l, Proposition 2.7 gives a functorial isomorphism

Hom(AlbCi ,Pic0
Ci

) ⊗ Q ∼= {c ∈ CH1(Ci × Ci) / c(zi,l) = tc(zi,l) = 0}

for zi,l the rational point on Ci,l considered in §2.1. Here, Φ belongs to

Hom(Pic0
Ci
,AlbCi)⊗Q which is not quite the Hom group in the statement of

Proposition 2.7. To correct this, let Θ denote the theta-divisor of the curve
Ci. Then under the isomorphism of Proposition 2.7, Φ corresponds to a
correspondence γ2i+1 := Θ◦Γ′◦Θ−1 ∈ CH1(Ci×Ci) satisfying (γ2i+1)∗zi,l =
(tγ2i+1)∗zi,l = 0 for all l. Because Φ = Φ∨ we have

γ2i+1 = tγ2i+1.

We now set

Π2i+1,i :=Γ2i+1 ◦ γ2i+1 ◦ tΓ2d−2i−1

=Γ2i+1 ◦ γ2i+1 ◦ tΓ2i+1 ◦ L2i+1−d ∈ CHd(X ×X).

By (?), the action of Π2i+1,i on Jai (X) is given by idJa
i (X). The fact that

Π2i+1,i defines a projector goes as follows. It is enough to prove that

γ2i+1 ◦ tΓ2i+1 ◦ Λ ◦ Γ2i+1 ◦ γ2i+1 = γ2i+1.

Thanks to Proposition 2.7, it is actually enough to prove

Φ ◦ (tΓ2i+1)∗ ◦ L2i+1−d
∗ ◦ (Γ2i+1)∗ ◦ Φ = Φ : Pic0

Ci
→ AlbCi .

This last statement follows directly from (?).
Now because Π2i+1,i acts as the identity on Jai (X) and because Γ2i+1 and

Γ2d−2i−1 act trivially on homology classes of degree 6= 1, we see that the
homology class of Π2i+1,i is the projector H∗(X)→ N iH2i+1(X)→ H∗(X).

Finally we set Π2d−2i−1,d−i−1 := tΠ2i+1,i, which is licit in the case 2d−2i−
1 = d since in this case γ2i+1 = tγ2i+1 implies Π2i+1,i = tΠ2i+1,i. It is then
straightforward that Π2d−2i−1,d−i−1 defines and idempotent that induces the

projector H∗(X)→ Nd−i−1H2d−2i−1(X)→ H∗(X). �

Proposition 2.8. The correspondence Π2d−2i−1,d−i−1 ◦ L2i+1−d ◦ Π2i+1,i :
(X,Π2i+1,i, 0)→ (X,Π2d−2i−1,d−i−1, 2i+ 1− d) is an isomorphism of Chow
motives.

Proof. Using the identities L = tL, γ2i+1 = tγ2i+1, Π2d−2i−1,d−i−1 =
tΠ2i+1,i and the fact that Π2i+1,i = Γ2i+1◦γ2i+1◦tΓ2i+1◦tL2i+1−d is an idem-
potent, one can easily check that Π2i+1,i◦Γ2i+1◦γ2i+1◦tΓ2i+1◦Π2d−2i−1,d−i−1

is the inverse of Π2d−2i−1,d−i−1 ◦ L2i+1−d ◦Π2i+1,i. �

Proposition 2.9. Let Π2i+1 ∈ CHd(X×X) be an idempotent which factors
through a curve Ci as Π2i+1 = Γ ◦ α with Γ ∈ CHi+1(Ci × X) and α ∈
CHd−i(X × Ci), and whose action on H∗(X) is the orthogonal projection
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on N iH2i+1(X). Then the Chow motive (X,Π2i+1,i, 0) is isomorphic to
h1(Jai (X))(i).

Proof. The assumption on the homology class of Π2i+1 implies that Π2i+1

acts as the identity on Jai (X) and acts as zero on H2i(X). Therefore, by
functoriality of the cycle class map, α◦Γ ∈ CH1(Ci×Ci) acts as zero on some
positive degree zero-cycle ζ on Ci. Now a consequence of Proposition 2.7
is that given two abelian varieties J and J ′ over k, there is a canonical
identification

Hom(J, J ′)⊗Q = Homk

(
h1(J), h1(J ′)

)
.

Because Π2i+1 acts as the identity on Jai (X), α ◦ Γ defines an idempotent
π ∈ End(h1(Ci)) such that (Ci, π, 0) ∼= h1(Jai (X)). The correspondence Γ
seen as a morphism of motives belongs to Homk

(
h(Ci)(i), h(X)

)
. Let us

show that

Π2i+1,i ◦ Γ ◦ π ∈ Homk

(
(Ci, π, i), (X,Π2i+1,i, 0)

)
is an isomorphism. In fact, let us show that π ◦ α ◦Π2i+1,i gives its inverse,
i.e., that

(Π ◦ Γ ◦ π) ◦ (π ◦ α ◦Π) = Π and (π ◦ α ◦Π) ◦ (Π ◦ Γ ◦ π) = π

as correspondences, where for convenience we have dropped the subscripts
“2i + 1”. But then this is obvious because Π = Γ ◦ α and π = α ◦ Γ are
idempotents. �

Proposition 2.10. Let Q2i+1 be a correspondence in CHd(X×X) such that
Q2i+1 acts as the identity on N iH2i+1(X) and such that Q2i+1 is supported
on X × Z with Z a sub-variety of X of dimension i+ 1. Then

ker
(
AJi : CHi(X)alg → Ji(X)⊗Q

)
= ker

(
Q2i+1 : CHi(X)alg → CHi(X)alg

)
.

In particular

ker
(
AJi : CHi(X)alg → Ji(X)⊗Q

)
= ker

(
Π2i+1,1 : CHi(X)alg → CHi(X)alg

)
.

Proof. The assumptions onQ2i+1 imply that the action ofQ2i+1 on CHi(X)

factors through CH1(Z̃) for some desingularization Z̃ → Z; they also imply
that the induced action of Q2i+1 on Jai (X) is the identity.

We have thus the commutative diagram

CHi(X)alg

AJi

��

A // CH1(Z̃)alg

'
��

B // CHi(X)alg

AJi

��

Jai (X)⊗Q // Pic0
Z̃
⊗Q // Jai (X)⊗Q
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where A and B are correspondences such that B ◦A = Q2i+1. The inclusion
kerAJi ⊆ ker Π2i+1,i follows from the commutativity of the diagram, which
itself is a consequence of the functoriality of the Abel–Jacobi map with
respect to the action of correspondences. The reverse inclusion ker Π2i+1,i ⊆
kerAJi follows from the fact that the composite of the two lower horizontal
arrows is the identity on imAJi = Jai (X)⊗Q. �

Remark 2.11. An interesting question is to decide whether or not the
action of an idempotent on homology determines its action on Chow groups.
For example, given idempotents π2i,i and π2i+1,i ∈ CHd(X ×X) such that
(π2i,i)∗H∗(X) = N iH2i(X) and (π2i+1,i)∗H∗(X) = N iH2i+1(X), do we have

CHi(X)hom = ker
(
π2i,i : CHi(X)→ CHi(X)

)
and

ker
(
AJi : CHi(X)alg → Jai (X)⊗Q

)
= ker

(
π2i+1,i : CHi(X)alg → CHi(X)alg

)
?

It is shown in [22] that this is the case if X is finite-dimensional in the sense
of Kimura.

2.4. Proof of Theorem 3. In this section we are given a smooth projective
variety X of dimension d for which the pairings are all nondegenerate. As
such, by Theorems 1 and 2 we can define all the idempotents Π2i,i and
Π2i+1,i. However these are not all necessarily pairwise orthogonal. We start
with the following linear algebra lemma which makes it possible to modify
the idempotents so as to make them pairwise orthogonal.

Lemma 2.12. Let V be a Q-algebra and let k be a positive integer. Let
π0, . . . , πn be idempotents in V such that πj ◦πi = 0 whenever j− i < k and
j 6= i. Then the endomorphisms

pi :=
(

1− 1

2
πn

)
◦ · · · ◦

(
1− 1

2
πi+1

)
◦ πi ◦

(
1− 1

2
πi−1

)
◦ · · · ◦

(
1− 1

2
π0

)
define idempotents such that pj ◦ pi = 0 whenever j − i < k + 1 and j 6= i.

Proof. Let j and i be such that j − i < k + 1 and look at

Π := πj ◦
(

1− 1

2
πj−1

)
◦ · · · ◦

(
1− 1

2
π0

)
◦
(

1− 1

2
πn

)
◦ · · · ◦

(
1− 1

2
πi+1

)
◦ πi.

Suppose first j < i. Because we have πr◦πs = 0 for all r < s, we immediately
see that Π = 0. Suppose j = i, it is also easy to see that in this case Π = πi.
Finally, suppose that i < j < i+k+1. Because πr◦πs = 0 for all r < s+k, we
can see after expanding Π that Π = πj◦πi− 1

2πj◦πi◦πi−
1
2πj◦πj◦πi = 0. �

In our case of concern, we get

Theorem 2.13. Let X be a smooth projective variety of dimension d. Let
i < d be an integer and let π0, . . . , πi ∈ CHd(X × X) be idempotents with
(πj)∗H∗(X) = Hj(X) for all 0 ≤ j ≤ i. Let π2d−j := tπj for 0 ≤ j ≤ i.
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If πr ◦ πs = 0 for all 0 ≤ r < s ≤ 2d, then the Gram–Schmidt process
of Lemma 2.12 gives mutually orthogonal idempotents {pj}j∈{0,...,i,2d−i,...2d}
with (pj)∗H∗(X) = Hj(X) and p2d−j := tpj for j ∈ {0, . . . , i, 2d− i, . . . 2d}.
Moreover, we have isomorphisms of Chow motives (X,πj) ∼= (X, pj) for all
j.

Proof. In order to get mutually orthogonal idempotents, it is enough to
apply Lemma 2.12 2i + 2 times. In order to prove the theorem, it suffices
to prove each statement after each application of the process of Lemma
2.12. Everything is then clear, except perhaps for the last statement. The
isomorphism is simply given by the correspondence pj ◦ πj and its inverse is
πj ◦ pj . �

Proposition 2.14. The projectors of Theorems 1 and 2 satisfy

• Π2i,i ◦Π2j,j = 0 for i 6= j.
• Π2i+1,i ◦Π2j+1,j = 0 for |i− j| > 1.
• Π2i+1,i ◦Π2j,j = 0 for |i− j| > 1.
• Π2i,i ◦Π2j+1,j = 0 for |i− j| > 1.

Proof. The proposition follows from looking at the dimension of
tΓ2d−i ◦ Γj . �

Proposition 2.15. The projectors of Theorems 1 and 2 satisfy

• Π2i−1,i−1 ◦Π2i+1,i = 0 for all i.
• Π2i,i ◦Π2i+1,i = 0 and Π2i+1,i ◦Π2i+2,i+1 = 0 for all i.

Proof. For the first point we have tΓ2d−2i+1◦Γ2i+1◦γ2i+1 ∈ CH2(Ci×Ci−1)
and thus there exist rational numbers al,l′ such that

tΓ2d−2i+1 ◦ Γ2i+1 ◦ γ2i+1 =
∑
l,l′

al,l′ [Ci,l × Ci−1,l′ ].

This yields (tΓ2d−2i+1 ◦ Γ2i+1 ◦ γ2i+1)∗zi,l =
∑

l′ al,l′ [Ci−1,l′ ]. By definition
of γ2i+1 we also have (γ2i+1)∗zi,l = 0 for all l. Hence al,l′ = 0 for all l and
all l′. Therefore tΓ2d−2i+1 ◦ Γ2i+1 ◦ γ2i+1 = 0.

For the second point, up to transposing it is enough to prove one of the
two equalities. Let us prove the second one. We have tΓ2d−2i−1 ◦ Γ2i+2 ∈
CH1(Pi+1 × Ci). But then, because tγ2i+1 acts trivially on zi.l ∈ CH0(Ci,l)
for all l, we see that γ2i+1 acts trivially on CH1(Ci). Therefore

γ2i+1 ◦ tΓ2d−2i−1 ◦ Γ2i+2 = 0. �

Remark 2.16. We have shown through the two previous propositions that
tΓ2d−j ◦ Γi ◦ γi = 0 for j − i < 0 and in particular that Πj,bj/2c ◦Πi,bi/2c = 0
for j − i < 0.

Remark 2.17. The missing orthogonal relations are Π2i+1,i ◦ Π2i,i = 0,
Π2i+2,i+1 ◦ Π2i+1,i = 0 or Π2i+1,i ◦ Π2i−1,i−1 = 0. There is no reason that
these should hold true for the idempotents constructed in §§2.2. and 2.3.
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Before we proceed to the proof of Theorem 3 we need a lemma.

Lemma 2.18. If i ≥ d then tΠj ◦ Li−d ◦ Πj′ = 0 for j, j′ ≥ i except in the
case i = j = j′.

Proof. Up to transposing we only have to prove tΠj ◦ Li−d ◦ Πj′ = 0 for

j′ ≥ j ≥ i not all equal. In fact it is enough to prove γj◦tΓj◦Li−d◦Γj′◦γj′ = 0

for j′ ≥ j ≥ i not all equal. The correspondence γj ◦ tΓj ◦Li−d ◦Γj′ ◦ γj′ is a
cycle of dimension j+ j′− 2i in the Chow group of Pbj′c×Pbjc, Cbj′c×Pbjc,
Pbj′c × Cbjc or Cbj′c × Cbjc depending on the parity of j and j′. Notice
that j + j′ − 2i ≥ 1, and that j + j′ − 2i = 1 implies that j′ = i + 1 and
j = i, and that j+ j′−2i = 2 implies that j and j′ have same parity (in fact
j = j′ = i+1 or j′ = j+2 = i+2). The proof that γj ◦tΓj ◦Li−d◦Γj′ ◦γj′ = 0
in each of these cases is then similar to the cases treated in the proof of the
previous proposition. �

Proof of Theorem 3. We proceed by induction on k ≥ 0 to prove prop-
erty Pk: There exist idempotents Πi ∈ CHd(X × X) for 0 ≤ i ≤ 2d such
that:

• Πj ◦Πi = 0 if j − i < k and j 6= i.
• Π2i satisfies the properties listed in Theorem 1 for all i.
• Π2i+1 satisfies the properties listed in Theorem 2 for all i.
• The Πi’s satisfy the conclusion of Lemma 2.18.

Clearly if property P2d+1 holds, then the idempotents Πi are mutually
orthogonal. (Actually it is enough to settle P3 by Remark 2.17). If we set
Πi := Πi,bi/2c, we see thanks to Theorems 1 and 2, Remark 2.16 and Lem-
ma 2.18 that property P0 holds. Let us suppose that property Pk holds and
let us prove that Pk+1 holds.

We set

Pi :=
(

1− 1

2
Π2d

)
◦
(

1− 1

2
Π2d−1

)
◦ · · · ◦

(
1− 1

2
Πi+1

)
◦Πi ◦

(
1− 1

2
Πi−1

)
◦ · · · ◦

(
1− 1

2
Π0

)
.

By Lemma 2.12, these define idempotents such that Pj◦Pi = 0 if j−i < k+1
and j 6= i. It remains to check that Pi enjoys the same properties as Πi.

It is straightforward from the formula that we have tPi = P2d−i. It is also
straightforward that Pi induces the projector

H∗(X)→ N bi/2cHi(X)→ H∗(X)

in homology.
Let us now consider an integer i ≥ d and prove that the Lefschetz corre-

spondence Li−d induces an isomorphism of Chow motives

(X,Pi, 0)→ (X,P2d−i, i− d).
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In fact, we are going to show that tPi ◦Li−d ◦Pi admits Pi ◦Γi ◦ γi ◦ tΓi ◦ tPi
as an inverse, i.e., that

(Pi ◦ Γi ◦ γi ◦ tΓi ◦ tPi) ◦ (tPi ◦ Li−d ◦ Pi) = Pi

and
(tPi ◦ Li−d ◦ Pi) ◦ (Pi ◦ Γi ◦ γi ◦ tΓi ◦ tPi) = tPi.

Because L = tL and γi = tγi, the second equality is the transpose of the
first one. Therefore it is enough to establish the first equality. Thanks to
Remark 2.16 we have Πj ◦ Γi ◦ γi = 0 for all j < i and by transposing
γi ◦ tΓi ◦ tΠj = 0 for all j < i. Expanding Pi, we therefore see that

Pi ◦ Γi ◦ γi ◦ tΓi ◦ tPi =
(

1− 1

2
Π2d

)
◦ · · · ◦

(
1− 1

2
Πi+1

)
◦Πi ◦ Γi ◦ γi

◦ tΓi ◦ tΠi ◦
(

1− 1

2
tΠi+1

)
◦ · · · ◦

(
1− 1

2
tΠ2d

)
.

On the other hand, Lemma 2.18 implies that

tPi ◦ Li−d ◦ Pi =
(

1− 1

2
tΠ0

)
◦ · · · ◦

(
1− 1

2
tΠi+1

)
◦ tΠi ◦ Li−d

◦Πi ◦
(

1− 1

2
Πi−1

)
◦ · · · ◦

(
1− 1

2
Π0

)
.

Put altogether, this gives

(Pi ◦ Γi ◦ γi ◦ tΓi ◦ tPi) ◦ (tPi ◦ Li−d ◦ Pi)

=
(

1− 1

2
Π2d

)
◦ · · · ◦

(
1− 1

2
Πi+1

)
◦Πi ◦ Γi ◦ γi ◦ tΓi

◦ tΠi ◦ Li−d ◦Πi ◦
(

1− 1

2
Πi−1

)
◦ · · · ◦

(
1− 1

2
Π0

)
.

By Proposition 2.4 if i is even and by Proposition 2.8 if i is odd, we have
Πi ◦Γi ◦γi ◦ tΓi ◦ tΠi ◦Li−d ◦Πi = Πi. This finishes the proof of the Lefschetz
isomorphism.

Let us now prove that the Pi’s satisfy the conclusion of Lemma 2.18. A
careful look at the proof of Lemma 2.18 shows that it is enough to show
that Pj factors through Γj ◦ tγj if Πj does. This can be read immediately
from the formula defining Πj .

If the projectors Π2i factor through a 0-dimensional variety and if the pro-
jectors Π2i+1 factor through a curve for all i, then it is clear from the formula
that so will the projectors P2i and P2i+1. On the one hand, Proposition 2.6
gives CHi(X)hom = ker

(
P2i : CHi(X) → CHi(X)

)
and Proposition 2.10

gives

ker
(
AJi : CHi(X)alg → Jai (X)⊗Q

)
=ker

(
P2i+1 : CHi(X)alg → CHi(X)alg

)
.

On the other hand, Proposition 2.5 shows that (X,P2i, 0) is isomorphic
to (L⊗i)⊕di and Proposition 2.9 shows that (X,P2i+1, 0) is isomorphic to
h1(Jai (X))(i). Alternately, the conclusion of Theorem 2.13 gives these iso-
morphisms of Chow motives. �
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3. Representability of Chow groups and finite-dimensional
motives

Given a smooth projective complex variety X of dimension d, its ith

Deligne cohomology group HDi (X,Z(p)) is the (2d − i)th hypercohomology
group of the complex ZD(d− p) given by

0→ Z ·(2iπ)d−p

−−−−−−→ OX → Ω1
X → · · · → Ωd−p−1

X → 0.

In other words,

HDi (X,Z(p)) = H2d−i(X,ZD(d− p)).

Deligne cohomology comes with a cycle map clDi : CHZ
i (X)→ HD2i(X,Z(i))

defined on the integral Chow group CHZ
i (X) which is functorial with respect

to the action of correspondences and fits into an exact sequence

0→ Ji(X)→ HD2i(X,Z(i))→ Hdg2i(X)→ 0

where Hdg2i(X) denotes the Hodge classes in H2i(X,Z) and Ji(X) is Grif-
fiths’ ith intermediate Jacobian. As proved in [5, Prop. 1], the following
diagram with exact rows commutes

(3.1) 0 // CHZ
i (X)hom

AJi
��

// CHZ
i (X)

clDi
��

// CHZ
i (X)/hom

cli
��

// 0

0 // Ji(X) // HD2i(X) // Hdg2i(X) // 0.

The homomorphism cli : CHZ
i (X)/hom → Hdg2i(X) is always injective by

definition of homological equivalence. In particular the functoriality of the
Deligne cycle class map implies the functoriality of the Abel–Jacobi map
with respect to the action of correspondences.

Lemma 3.1. Let i be an integer such that d ≤ 2i ≤ 2d.

• If the map cl : CHi(X)→ H2i(X) is surjective then

H2i(X) = N iH2i(X) and H2d−2i(X) = Nd−iH2d−2i(X).

• If the map clD : CHi(X)→ HD2i(X) is surjective then

H2i+1(X) = N iH2i+1(X) and H2d−2i−1(X) = Nd−i−1H2d−2i−1(X).

Proof. If the map cl : CHi(X) → H2i(X) is surjective then by definition
H2i(X) = N iH2i(X). Because the Lefschetz isomorphism

L2i−d : H2i(X)→ H2d−2i(X)

is induced by a correspondence we also see that

H2d−2i(X) = Nd−iH2d−2i(X).
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Now suppose that the map clD : CHi(X) → HD2i(X) is surjective. A
simple diagram chase in Diagram (3.1) shows that the Abel–Jacobi map

AJi : CHi(X)hom → Ji(X)⊗Q

is then surjective. The Griffiths group Griffi(X) being countable, this is

possible only if Ji(X)⊗Q = Jalg
i (X)⊗Q. Therefore we have

Ji(X)⊗Q = Jai (X)⊗Q

and hence H2i+1(X) = N iH2i+1(X). Again because the Lefschetz isomor-
phism L2i−d+1 : H2i+1(X) → H2d−2i−1(X) is induced by a correspondence
we also see that H2d−2i−1(X) = Nd−i−1H2d−2i−1(X). �

3.1. From finite-dimensionality to representability: proof of (2) ⇒
(1) in Theorem 4. First we need a standard lemma.

Lemma 3.2. Let N be a finite-dimensional Chow motive. If its homology
groups H∗(N) vanish then N = 0.

Proof. The homology class of idN ∈ Endk(N) is then 0. Kimura [14, Prop.
7.2] proved that if a Chow motive N is finite-dimensional then the ideal of
correspondences in Endk(N) which are homologically trivial is a nilpotent
ideal. Hence idN is nilpotent, i.e., idN = 0. �

Proof of (2) ⇒ (1). Lemma 3.1 shows that Hi(X) = N bi/2cHi(X) for all
i. Therefore by Lemma 2.1 the pairings

N bi/2cHi(X)×N b(2d−i)/2cH2d−i(X)→ Q

are all nondegenerate. Theorems 1, 2 and 3 then show that

A := 1⊕ h1(AlbX)⊕ L⊕b2 ⊕ h1(Ja1 (X))(1)⊕ (L⊗2)⊕b4⊕

· · · ⊕ h1(Jad−1(X))(d− 1)⊕ L⊗d

is a direct summand of the Chow motive h(X) and thatH∗(A) = H∗(X). Let
us write h(X) = A ⊕N . The property of being finite-dimensional is stable
by direct summand. Therefore N is a finite-dimensional motive. Moreover
H∗(N) = 0. Lemma 3.2 shows that N = 0. �

3.2. Representability vs. injectivity of the Abel–Jacobi maps: the
proof of (3) ⇔ (4) in Theorem 4. The results in this section are seem-
ingly well-known. Given a smooth projective complex variety X, we prove
that the following statements are equivalent:

(1) CHi(X)alg is representable for all i.
(2) The total Abel–Jacobi map⊕

i

CHi(X)hom →
⊕
i

Ji(X)⊗Q

is injective.
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(3) The total Deligne cycle class map

clD :
⊕
i

CHi(X)hom →
⊕
i

HD2i(X,Q(i))

is injective.
(4) The total Deligne cycle class map is bijective and

Hi(X) = N bi/2cHi(X)

for all i.

The equivalence (2) ⇔ (3) follows immediately from Diagram (3.1). The
implication (4) ⇒ (3) is obvious and the implication (3) ⇒ (4) is due to
Esnault and Levine [6] (Theorem 3.3 below together with Lemma 3.1). The
main argument is a generalized decomposition of the diagonal as performed
by Laterveer [16] and Paranjape [19] among others after Bloch’s and Srinivas’
original paper [4]. Proposition 3.4 proves the standard implication (2) ⇒
(1). We couldn’t find any reference for the implication (1) ⇒ (2) so we
include a proof of it: see Corollary 3.6. The proof goes through a generalized
decomposition of the diagonal as done in [6, Theorem 1.2] with some minor
changes (Theorem 3.5).

Theorem 3.3 (Esnault–Levine). Let s be an integer. Assume that the
rational Deligne cycle class maps clDi : CHi(X) → HD2i(X) are injective for
all i ≤ s. Then these are all surjective. Moreover the rational cycle class
maps cli : CHi(X)→ H2i(X) are also surjective for all i ≤ s.

Proof. The fact that the rational Deligne cycle class maps are surjective for
all i ≤ s is contained in Theorem 2.5 of [6] (the maps clDi are denoted cl2d−i0,0

in [6]). The claim about the rational cycle class maps being surjective is
Corollary 2.6 (which states that N iH2i(X) = Hdg2i(X)⊗Q) together with
Theorem 3.2 (which states in particular that H2i(X) = Hdg2i(X) ⊗ Q) of
[6]. �

Proposition 3.4. Given i, if the Abel–Jacobi map CHi(X)alg → Ji(X)⊗Q
is injective, then CHi(X)alg is representable.

Proof. Let Jai (X) be the image of the Abel–Jacobi map

AJi : CHZ
i (X)alg → Ji(X).

By definition of algebraic equivalence,

CHi(X)alg :=
∑

im
(
Γ∗ : CH0(C)hom → CHi(X)

)
where the sum runs through all smooth projective curves C and all corre-
spondences Γ ∈ CHi+1(C × X). Therefore, by functoriality of the Abel–
Jacobi map, we have Jai (X) =

∑
im
(
Γ∗ : J(C) → Jai (X)

)
. By finite-

ness properties of abelian varieties there exist a curve and a correspondence
Γ ∈ CHi+1(C×X) such that Jai (X) = Γ∗J(C). Therefore for this particular
curve Γ∗CH0(C)hom = CHi(X)alg. �
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Theorem 3.5. Let s be an integer with 0 ≤ s ≤ d and let X be a d-
dimensional smooth projective complex variety. Assume CHi(X)alg is rep-
resentable for all i ≤ s. Then there is a decomposition

∆X = γ0 + γ1 + · · ·+ γs + γs+1 ∈ CHd(X ×X)

such that γi is supported on Di×Γi+1 for some sub-schemes Di and Γi+1 of
X satisfying dimDi = d− i and dim Γi+1 = i+ 1 and γs+1 is supported on
Ds+1×X for some sub-scheme Ds+1 of X satisfying dimDs+1 = d− s− 1.

Proof. The proof is the same as the proof of [6, Lemma 1.1] once one

remarks that the map ch : CH0(D̃) → CHn(X) on page 207 has image
contained in CHn(X)alg and therefore factors through the Albanese map

CH0(D̃) → AlbD̃, because CHn(X)alg is representable and has thus the
structure of an abelian variety. �

Corollary 3.6. Assume CHi(X)alg is representable for all i ≤ s. Then the
Abel–Jacobi maps AJi : CHi(X)hom → Ji(X)⊗Q are injective for all i ≤ s.

Proof. By assumption made on CH∗(X)alg, the diagonal ∆X admits a de-

composition as in Theorem 3.5. For all i ≤ s, let Γ̃i+1 be a desingularization
of Γi+1. The action of the correspondence γi on CHj(X)hom then factors

through CHj(Γ̃i+1)hom. For dimension reasons γi acts possibly nontrivially
only on CHi(X) and CHi+1(X). Also for dimension reasons, the correspon-
dence γs+1 acts trivially on CHi(X) for i ≤ s. Therefore the cycle γi acts
nontrivially on CHj(X)hom only if i = j. Thus the action of γi on CHi(X)hom

is identity. Finally, by functoriality of the algebraic Abel–Jacobi map, we
have the following commutative diagram for all i ≤ s

CHi(X)hom

AJi
��

// CHi(Γ̃i+1)hom

'
��

// CHi(X)hom

AJi
��

Ji(X) // Ji(Γ̃i+1) // Ji(X).

The composition of the two maps on each row is induced by γi and is equal to
identity up to torsion. A diagram chase then shows that AJi : CHi(X)alg →
Jai (X)⊗Q is injective. �

Remark 3.7. Given i, I cannot prove that if CHi(X)alg is representable
then the Abel–Jacobi map AJi : CHi(X)alg → Ji(X) ⊗ Q restricted to
algebraically trivial cycles is injective.

Remark 3.8. Bloch and Srinivas proved [4, Theorem 1(i)] that if CH0(X)alg

is representable then so is CH2(X)alg. A generalized decomposition of the
diagonal shows that if CH0(X)alg, . . . ,CHs(X)alg are representable then

CH2(X)alg, . . . ,CH2+s(X)alg are also representable. Therefore, if d is the
dimension of X, it is enough to know that CH0(X)alg, . . . ,CHbd/2c−1(X)alg

are representable in order to deduce that CH∗(X)alg is representable.
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3.3. From representability to finite-dimensionality: proof of (4)
⇒ (1) in Theorem 4. In order to prove the implication (4) ⇒ (1) of
Theorem 4, we again use our projectors Π2i,i and Π2i+1,i, together with the
following lemma which appears in [8, Lemma 1].

Lemma 3.9. Let N be a Chow motive over a field k and let Ω be a universal
domain over k, i.e., an algebraically closed field of infinite transcendence
degree over k. If CH∗(NΩ) = 0, then N = 0. �

Proof of (4) ⇒ (1). If CH∗(XC)alg is representable then the Deligne cycle

class maps clDi are all injective by Corollary 3.6. By Esnault and Levine’s
Theorem 3.3, the Deligne cycle class maps clDi and the cycle class maps cli
are surjective for all i. Now Lemma 3.1 shows that H2i(X) = N iH2i(X) and
H2i+1(X) = N iH2i+1(X) for all i. Thanks to Lemma 2.1 we can therefore
apply Theorems 1, 2 and 3 to cut out the motive

1⊕h1(AlbX)⊕L⊕b2⊕h1(Ja1 (X))(1)⊕(L⊗2)⊕b4⊕· · ·⊕h1(Jad−1(X))(d−1)⊕L⊗d

from h(X). These two motives have same rational Chow groups when the
base field is extended to C, Lemma 3.9 implies they are equal. �

As a corollary, we obtain a result proved independently by Kimura [15]
(Kimura’s result works more generally for any pure Chow motive over C).

Proposition 3.10. Let X be a d-dimensional smooth projective variety over
k. If CH∗(XC) is a finite-dimensional Q-vector space, then

h(X) ∼=
d⊕
i=0

(L⊗i)⊕b2i .

Moreover, the cycle class maps cli : CHi(X) → H2i(X) are all isomor-
phisms.

Proof. Indeed, if CH∗(XC) is a finite-dimensional Q-vector space then it
is representable. Apply Theorem 4 to see that h(X) is a direct sum of
Lefschetz motives and twisted h1’s of abelian varieties. Now for a complex
abelian variety J , CH0(h1(J)) = J ⊗Q which is an infinite-dimensional Q-
vector space if J 6= 0. Therefore h(X) is a direct sum of Lefschetz motives
only. �

4. Chow–Künneth decompositions

A smooth projective variety X of dimension d is said to have a Chow–
Künneth decomposition (CK decomposition for short) if there exist mutually
orthogonal idempotents Π0,Π1, . . .Π2d ∈ CHd(X×X) adding to the identity
∆X such that (Πi)∗H∗(X) = Hi(X) for all i. In this section, we wish to
give explicit examples of varieties having a Chow–Künneth decomposition.
For this purpose we use the projectors of Theorems 1 and 2. Along the way
we are able to establish Grothendieck’s standard conjectures and Kimura’s
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finite dimensionality conjecture in some new cases. In [22], we prove Murre’s
conjectures for all the varieties considered in §§4.2 and 4.3 (and some others
as well).

4.1. The basic theorem. Here, X denotes a smooth projective variety of
dimension d. All the varieties for which we will be able to show that they
admit a CK decomposition will actually also be endowed with a Chow–
Lefschetz decomposition in the following sense.

Definition 4.1. The variety X is said to have a Chow–Lefschetz decompo-
sition if it admits a CK decomposition {Πi}0≤i≤2d such that, for all i > d
the morphism of Chow motives (X,Πi, 0) → (X,Π2d−i, i − d) given by in-
tersecting i− d times with a hyperplane section is an isomorphism.

It is immediate to see that if X has a Chow–Lefschetz decomposition then
it satisfies the Lefschetz standard conjecture. Since in characteristic zero
Grothendieck’s standard conjectures for X reduce to the standard Lefschetz
conjecture for X [1, 5.4.2.2], we get that X satisfies all of Grothendieck’s
standard conjectures.

The key result of this section is the following.

Theorem 4.2. If Hi(X) = N bi/2cHi(X) for all i > d, then X has a Chow–
Lefschetz decomposition {Pi}0≤i≤2d where the idempotents Pi for i 6= d sat-
isfy all the properties listed in Theorems 1 and 2.

Proof. If Hi(X) = N bi/2cHi(X) for i > d, then, intersecting with a linear

section of dimension i − d, we see H2d−i(X) = N b
2d−i

2
cH2d−i(X) for i > d.

Thus by Poincaré duality the pairings N b
i
2
cHi(X)×N b

2d−i
2
cH2d−i(X)→ Q

are nondegenerate for all i > d. The motivic Lefschetz isomorphisms of The-
orems 1 and 2 then imply that X satisfies the Lefschetz standard conjecture.
Therefore, by Lemma 2.1, the pairing N bd/2cHd(X)×N bd/2cHd(X)→ Q is
also nondegenerate. By Theorem 3, we get mutually orthogonal idempo-
tents {Πi}0≤i≤2d that satisfy the motivic Lefschetz isomorphisms. Let us
set Pi := Πi for i 6= d and Pd := ∆X −

∑
i 6=d Πi. Then {Pi}0≤i≤2d is the

required Chow–Lefschetz decomposition for X. �

4.2. Some examples of varieties having a Chow–Lefschetz decom-
position. An immediate consequence to Theorem 4.2 is the following.

Corollary 4.3. Let Y be a 3-fold with H2(Y,OY ) = 0, e.g., a Calabi–Yau
3-fold that is a 3-fold with trivial canonical bundle and vanishing first Betti
number. Then Y has a Chow–Lefschetz decomposition.

Proof. By the Lefschetz (1, 1)-theorem, H2(Y,OY ) = 0 implies H4(Y ) =

N2H4(Y ). Thus Hi(X) = N bi/2cHi(X) for all i > 3. �

In Theorems 4.5 and 4.8 below, in addition to proving that some X has
a Chow–Lefschetz decomposition, we give some information on the support
of the middle CK projector of X. Such information will be used in [22] to
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further prove Murre’s conjectures in the cases covered by the theorems. For
this purpose we need the following lemma stated in [21, Lemma 1.2] and
which is due to Kahn and Sujatha [13].

Lemma 4.4. Let M = (X, p, 0) be a Chow motive over k and let Ω be a
universal domain over k. If CH0(NΩ) = 0, then there exists a Chow motive
N = (Y, q, 0) such that M = (Y, q, 1). �

Theorem 4.5. Let X be a smooth projective variety of even dimension
d = 2n. If CH0(X)alg,CH1(X)alg, . . . ,CHn−2(X)alg are representable, then
X has a Chow–Lefschetz decomposition {Πi}. Moreover, the idempotents
Πi are as in Theorems 1 and 2 for i 6= d and the idempotent Πd has a
representative supported on X × Z with Z a sub-variety of X of dimension
n+ 1.

Proof. By a generalized decomposition of the diagonal (as performed for
instance by Laterveer [16, 2.1]), the assumption on the Chow groups of

X implies that Hi(X) = N bi/2cHi(X) for all i > d. We can therefore
apply Theorem 4.2 to get a CK decomposition {Πi}0≤i≤2d for X where
the idempotents Πi for i 6= d satisfy all the properties listed in Theorems
1 and 2. By Corollary 3.6 if CH0(X)alg,CH1(X)alg, . . . ,CHn−2(X)alg are
representable, then the Abel–Jacobi maps AJi : CHi(X)hom → Ji(X) ⊗ Q
are injective for all i ≤ n−2. Esnault and Levine’s Theorem 3.3 then implies
that the Abel–Jacobi maps are bijective. Thanks to the properties of the CK
projectors, we thus get CHi(X) = (Π2i + Π2i+1)∗CHi(X) for all i ≤ n − 2.
As such, the idempotent Πd acts trivially on CHi(X) for all i ≤ n − 2. By
applying n−1 times Lemma 4.4, we get that (X,Πd, 0) is isomorphic to some
Chow motive (Y, q, n − 1). This means that there exists a correspondence
f ∈ Hom((X,Πd, 0), (Y, q, n − 1)) such that Πd = Πd ◦ f−1 ◦ q ◦ f ◦ Πd.
In particular Πd factors through Y and a straightforward analysis of the
dimensions shows that Πd has a representative supported on X ×Z with Z
a sub-variety of X of dimension n+ 1. �

Corollary 4.6. Every fourfold X with CH0(X)alg representable has a Chow–
Lefschetz decomposition. In particular, if X is a smooth projective fourfold
which is either rationally connected or admits a curve C as a base for its
maximal rationally connected fibration (i.e., if there exists a rational map
f : X 99K C with rationally connected general fiber), then X has a Chow–
Lefschetz decomposition. �

Remark 4.7. Arapura [3] proved the Lefschetz standard conjecture for
unirational fourfolds. He does so by proving that a unirational fourfold is
motivated by surfaces. More generally, Arapura proves that any variety
which is motivated by a surface (this means that the cohomology of X is
generated by the cohomology of product of surfaces via correspondences)
satisfies the standard Lefschetz conjecture. Corollary 4.6 is more precise
for unirational fourfolds because we obtain the Lefschetz isomorphism mod-
ulo rational equivalence (rather than just modulo homological equivalence).
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Moreover, Corollary 4.6 includes the case of rationally connected fourfolds
as well as the case of fourfolds admitting a curve as a base for their maximal
rationally connected fibration.

Let us also mention that in what follows Arapura’s technique doesn’t seem
to apply directly to prove the Lefschetz standard conjecture because the
middle cohomology of the varieties in question is not necessarily generated
by the cohomology of products of surfaces.

Theorem 4.8. Let X be a smooth projective variety of odd dimension d =
2n+1 with Hn+1(X,Ωn−1

X ) = 0. If CH0(X)alg,CH1(X)alg, . . . ,CHn−2(X)alg

are representable, then X has a Chow–Lefschetz decomposition. Moreover,
the idempotents Πi are as in Theorems 1 and 2 for i 6= d and the idempotent
Πd has a representative supported on X × Z with Z a sub-variety of X of
dimension n+ 2.

Proof. As for the proof of Theorem 4.5, a generalized decomposition of
the diagonal argument shows that the assumption on the Chow groups of
X implies that Hi(X) = N bi/2cHi(X) for i > d + 1 and that Hd+1(X) =

N
d−1
2 Hd+1(X). This last equality means that there is a smooth projective

variety S of dimension n + 2 and a map f : S → X such that f∗H
2(S) =

Hd+1(X). Because Hn+1(X,Ωn−1
X ) = 0, we see that Hd+1(X) is made of

Hodge classes. By the Lefschetz (1, 1)-theorem applied to S, we see that

Hd+1(X) is spanned by algebraic cycles, i.e., thatHd+1(X) = N
d+1
2 Hd+1(X).

We can thus apply Theorem 4.2 to get a Chow–Lefschetz decomposition
{Πi}0≤i≤2d. The proof of the fact that Πd has a representative supported
on X × Z for Z a sub-variety of X of dimension n+ 2 goes along the same
lines as the proof of Theorem 4.5. �

Corollary 4.9. Let X be a smooth projective fivefold. If CH0(X)alg is rep-
resentable and if H3(X,Ω1

X) = 0, then X has a Chow–Lefschetz decomposi-
tion. In particular, if X is a smooth projective rationally connected fivefold
with H3(X,Ω1

X) = 0, then X has a Chow–Lefschetz decomposition. �

4.3. Hypersurfaces of very small degree are Kimura finite-dimen-
sional. Otwinowska [18] proved that if X is a smooth hyperplane section of
a hypersurface in Pn+1 covered by l-planes then CHi(X)hom = 0 for i ≤ l−1
(see also Esnault, Levine and Viehweg [7]). Therefore when l = bn/2c the
Chow groups CHi(X)alg are all representable by Remark 3.8. As a direct
application of Theorem 4 we get

Theorem 4.10. Let l = bn/2c and let X be a smooth hyperplane section of
a hypersurface in Pn+1 covered by l-planes. Then:

• If n− 1 is even, h(X) = 1⊕ L⊕ L⊗2 ⊕ · · · ⊕ L⊗n−1.
• If n− 1 is odd,

h(X) = 1⊕ L⊕ · · · ⊕ L⊗l ⊕ h1(Jalg
l )(l)⊕ L⊗l+1 ⊕ · · · ⊕ L⊗n−1.

Moreover, in any case, h(X) is finite-dimensional in the sense of Kimura.
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Remark 4.11. Otwinowska also mentions that if k(n− l)−
(
d+l
d

)
+ 1 ≥ 0,

any smooth projective hypersurface of degree d in Pn
C is covered by linear

projective varieties of dimension l.

Examples 4.12. Here are some varieties for which Theorem 4 and the
results of [7] make it possible to prove that they have finite-dimensional
Chow motive:

• Cubic 5-folds.
• A 5-fold which is the smooth intersection of a cubic and a quadric.
• A 7-fold which is the smooth intersection of two quadrics.

Further examples of varieties with finite-dimensional Chow motive can
be constructed as follows. Let X be a variety as in the theorem above.
Consider smooth projective varieties obtained from X by successively blow-
ing up smooth curves. Then, by the blowing-up formula for Chow motives,
such varieties have finite-dimensional Chow motive. Moreover any variety
Y which is dominated by a product of such varieties has finite-dimensional
Chow motive.
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[2] André, Yves; Kahn, Bruno. Nilpotence, radicaux et structures monöıdales. With
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