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Integral Hopf—Galois structures for tame
extensions

Paul J. Truman

ABSTRACT. We study the Hopf-Galois module structure of algebraic
integers in some Galois extensions of p-adic fields L/K which are at
most tamely ramified, generalizing some of the results of the author’s
2011 paper cited below. If G = Gal(L/K) and H = L[N]“ is a Hopf
algebra giving a Hopf-Galois structure on L/K, we give a criterion for
the O -order O[N] to be a Hopf order in H. When O[N] is Hopf,
we show that it coincides with the associated order Ap of Op in H
and that 9y, is free over Ay, and we give a criterion for a Hopf-Galois
structure to exist at integral level. As an illustration of these results,
we determine the commutative Hopf—Galois module structure of the
algebraic integers in tame Galois extensions of degree ¢r, where ¢ and r
are distinct primes.
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1. Introduction

Nonclassical Hopf—Galois structures can provide a variety of contexts in
which we can ask module-theoretic questions about a given finite separable
extension of fields L/K and, in the case of local or global fields, study the
structure of valuation rings or rings of algebraic integers. In this paper, we
shall focus on finite Galois extensions of p-adic fields L/K (for some prime
number p) with Galois group G and valuation rings O, O respectively.
Classically, we view L as a module over the group algebra K|[G] and Oy,
as a module over its associated order RAg|g in K[G]. This situation is
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generalized by replacing K[G] with one of a (finite) number of different K-
Hopf algebras H which act on the extension in a “Galois-like” way, each
giving a Hopf-Galois structure on the extension (we also say that L is an
H-Galois extension of K; see [6, Definition 2.7]). A theorem of Greither
and Pareigis [6, Theorem 6.8] shows that there is a bijection between the
Hopf-Galois structures admitted by a given finite Galois extension L/K and
the regular subgroups IV of Perm G that are stable under the action of G by
conjugation via the left regular embedding; the Hopf algebra corresponding
to the subgroup N is H = L[N]%, and the action of an element of H on an
element z € L is given by:

(1) (Z cnn> cr= Z cn(n 1))

neN neN

To study the structure of Oj, relative to a Hopf algebra H giving a Hopf-
Galois structure on L/K, we define its associated order 2y in H, and the
principal question is to determine whether Oy, is free over 2. An account
of this theory appears in [6]. There are examples of wildly ramified Galois
extensions L /K for which Oy, is not free over its associated order in the group
algebra K[G], but is free over its associated order in a Hopf algebra H giving
a nonclassical Hopf-Galois structure on the extension [2]. Examples such
as these illustrate the value of using nonclassical Hopf—Galois structures to
study wildly ramified extensions.

However, in [9] we investigated the nonclassical Hopf-Galois module struc-
ture of valuation rings in extensions of p-adic fields L/K which are at most
tamely ramified. In particular, we studied the Og-order O [N]¢ (hence-
forth denoted A“) within a Hopf algebra H = L[N]“ giving a Hopf-Galois
structure on the extension. We showed [9, Theorem 3.4] that if L/K is
unramified then A is a Hopf order in H and Ay = A®. We then showed
that in this case Oy, is a A®-tame extension of O (see [6, Definition 13.1])
and used a result of Childs ([6, Theorem 13.4]) to conclude that Oy, is a free
A%-module. In Section 2 of this paper we generalize these results. Let L/K
be a Galois extension of p-adic fields with group G and let H = L[N]“ be a
Hopf algebra giving a Hopf-Galois structure on the extension.

Theorem 1.1. The O -order A€ is a Hopf order in H = L[N]% if and only
if the kernel of the action of G on N contains the inertia group of LK.

Theorem 1.2. Suppose that L/K is at most tamely ramified and that A¢
is a Hopf order in H. Then Op is a A®-tame extension of O . Hence
Ay = AC and Oy is a free g -module.

As an application of these results, in Section 3 we study Galois extensions
of p-adic fields which are at most tamely ramified and have degree gr, where
q,r are primes and g < r. We prove the following;:
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Theorem 1.3. Suppose that [L : K| = qr, where q,r are prime and q < r,
that L/K is at most tamely ramified, and that H is commutative. Then
A = AC and O, is a free p-module.

In the final section, we return to the more general setting where L/K is
a Galois extension of p-adic fields which is at most tamely ramified. Under
the assumption that that A® is a Hopf order in H, we determine a criterion
for a Hopf-Galois structure to exist at integral level:

Theorem 1.4. The valuation ring Op, is a A®-Galois extension of Ok if
and only if L/K is unramified.

Since this paper continues the investigations from [9], we refer the reader
to that paper for further information about the background to, and context
of, these results.

Acknowledgements. I am grateful to the referee for many helpful sugges-
tions regarding the exposition.

2. The fixed points of the integral group ring

In this section we prove Theorem 1.1 and Theorem 1.2. We continue to
denote by L/K a finite Galois extension of p-adic fields with group G and
valuation rings O, Ok respectively, and by H a Hopf algebra giving a Hopf—
Galois structure on the extension. By the theorem of Greither and Pareigis
[6, Theorem 6.8], H = L[N]¢ for some regular subgroup N of Perm G that is
stable under the action of G by conjugation via the left regular embedding
A : G — PermG. We shall denote the integral group ring O[N] by A,
so that the Og-order O[N] is A®. This order is contained in 2y, the
associated order of Oy, in H (see [9, Proposition 2.5]). In [1, Lemma 2.1],
Boltje and Bley determine an O g-basis of A“ as follows:

Let Ni,..., N, be the orbits of G in N. Foreach¢=1,...,7, let n; € N;
be a generator of the orbit N;, and let S; = Stabg(n;). Now let L; = L,
and let {z;; | j = 1,...,[L; : K|} be an integral basis of L; over K. For
eachi=1,...,rand j=1,...,[L; : K], define

aij= Y glwis)'ni,
9€G/S;
where the sum is taken over a set of left coset representatives of S; in G (in
general S; need not be normal in G). Then the set
{ai,j ’i:1,...,T j: 1,...,[LZ‘:K]}

is an O p-basis of A®. In [1, Proposition 4.6] it is shown that A® is a Hopf
order in H if and only if each of the fields L; is unramified over K. We can
now restate and prove Theorem 1.1:

Theorem 2.1. The O -order AC is a Hopf order in H if and only if the
kernel of the action of G on N contains the inertia group of L/K.
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Proof. Let G be the inertia group of L/ K, so that Ly = L% is the maximal
unramified subextension of L/K. Let H < G be the kernel of the action of
G on N. If Gog < H then Gy < S; for each i, so by Galois theory we have
L; = L% C L% = L, and so each L; is unramified over K. Conversely, if
each L; is unramified over K then Gy < S; for each i. Now let n € N. Then
n = 9n; for some g € G and some ¢ = 1,...,r. If 0 € G then, since Gq is
normal in G, there exists 7 € Gy such that ¢ = grg~!. Now we have

-1
‘n=%9n; =99 In;=9"n; = In;, =n,
so “n =n, and so o € H. Therefore Gy < H, as claimed. O
) )

Under the bijection established by the theorem of Greither and Pareigis [6,
Theorem 6.8], the classical Hopf—Galois structure on L/K, with Hopf algeba
K|[G], corresponds to the image of G under the right regular embedding
p: G — PermG. The action of G on p(G) by conjugation via the left
regular embedding is trivial, so H = K[p(G)] and A% = Ok [p(G)]. In this
case, the kernel of the action of G on p(G) is all of G, the inertia subgroup
of L/K is certainly contained in this kernel, and we recover the fact that
Ok[p(G)] is always a Hopf order in K[p(G)]. If G is nonabelian, then L/K
has a canonical nonclassical Hopf-Galois structure, whose Hopf algebra H)
corresponds to the regular subgroup A(G). In this case, we have:

Corollary 2.2. The O -order O [MNG)]C is a Hopf order in Hy = LING)]¢
if and only if the inertia subgroup of L/K is contained in the centre of G.

Proof. In this case the orbits of G in A\(G) correspond to the conjugacy
classes of GG, so the stabilizer of a given element is its centralizer, and the
kernel of the action of G on \(G) is the centre of G. Apply Theorem 2.1. [

For any Hopf order A in H for which Oy, is a module, we say that Oy, is
an A-tame extension of Dk if there exists a left integral  of A satisfying
0-9Or = Ok (see [6, Definition 13.1]). A consequence of a result of Childs
([6, Theorem 13.4]) is that if Oy, is an A-tame extension of Ok, then Oy, is
a free A-module of rank one. Using this, we restate and prove Theorem 1.2:

Theorem 2.3. Suppose that L/K is at most tamely ramified, that H =
L[N]% is a Hopf algebra giving a Hopf-Galois structure on the extension
L/K, and that AC is a Hopf order in H. Then Op is a A®-tame extension
of Or. Hence Ay = AC and O, is a free Up-module.

Proof. Note that the trace element
0= Z n

is a left integral of A®. Using the formula for the action of H on L given in
Equation (1), we have:

0-z=>Y (n'(1a)x=> g(x)="Tryx(x) forall x € Oy,
neN geG
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and since L/K is tame there exists an element ¢t € Oy, such that § -t = 1.
Thus O is an A®-tame extension of O, and so by [6, Theorem 13.4] O,
is a free A%-module. Since Ay is the only order in H over which Oy, can
possibly be free (see [6, Proposition 12.5]), this implies that %Az = A€, O

Note that if L/K is wildly ramified then A® C 2y, since in this case
0-x="Try g(r) € Tk for all ¥ € O (where 7 is a uniformizer of K),
and so the element 771}19 is in Az but not in AC.

3. Applications to tame extensions of degree qr

Let p,q and r be prime numbers, with ¢ < r. In this section we study
commutative Hopf—Galois structures on Galois extensions of p-adic fields
L/K which have degree ¢gr and are at most tamely ramified, culminating in
a proof of Theorem 1.3. We restrict our attention to commutative structures
since for these we have Ay = O [N ]G and Oy, is a free A g-module whenever
p t qr [9, Theorem 4.4]. We do not have an analogue of this result for
noncommutative structures, and so these will require more detailed analysis,
which we intend to complete in a forthcoming paper.

There are two possibilities for the structure of the group G = Gal(L/K):
it may be cyclic or metacyclic. If » Z 1 (mod ¢) then G must be cyclic,
and by [4, Theorem 1] L/K admits only the classical Hopf-Galois structure
with Hopf algebra K[G] and its usual action on L. Since L/K is at most
tamely ramified, Noether’s Theorem implies that 2k (g = Ok[G] and O,
is a free O g [G]-module. Having dealt with this case, we shall assume that
r =1 (mod ¢) from now on.

In this case, the extension L/K does admit nonclassical Hopf-Galois
structures. If H = L[N]% is a Hopf algebra giving a Hopf-Galois struc-
ture on L/K then we refer to the isomorphism class of N as the type of the
Hopf algebra. Byott has shown [3, Theorem 6.1 and Theorem 6.2] that:

e If L/K is cyclic then it admits precisely 2g — 1 Hopf-Galois struc-
tures. The classical structure is of cyclic type, and the other 2(¢—1)
structures are of metacyclic type.

e If L/K is metacyclic then it admits precisely 2 + r(2¢ — 3) Hopf-
Galois structures. Of these, r are of cyclic type and the remainder
are of metacyclic type.

Since we are presently concerned with commutative Hopf-Galois struc-
tures, we shall say nothing more about cyclic extensions. If G is metacyclic
then we may present it as

G=(o,7|0"=11=1,701"t = 0%,

where d is a fixed natural number whose order modulo r is q.

Consider the residue characteristic p of K. If p { ¢r then, as noted above,
we have Ay = Op[N ]G and Oy, is a free Agy-module. The two remaining
cases are p = g and p = r. Write L for the maximal unramified subextension
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of L/K, and let 1 # Gp<G be the Galois group of L/Lg (the inertia subgroup
of G). Since L/K is tamely ramified, we must have p t |Gp|. If p = r, then
this forces |Go| = g. But this is impossible, since G does not have a normal
subgroup of order ¢. So we are left with the case where p = ¢, and G is the
unique normal subgroup of G of order r, generated by o.

L
Degree r,
Totally Ramified
G Lo
Degree q,
Unramified
K
Qq

In [3, Lemma 4.1], Byott gives an explicit description of the p subgroups
of Perm(G) corresponding to the commutative Hopf—Galois structures on
L/K. They are the groups N, for 0 < ¢ < r — 1, where N, is generated by
the two permutations:

a:olrt s gutiry

n:otrt s gumed ol
(Here o"7" denotes an arbitrary element of G.) Using this explicit descrip-
tion, we can examine the relationship between the kernel of the action of G
on any of the subgroups N, and the inertia group Go = (0):

Lemma 3.1. For each 0 < ¢ < r — 1, the inertia subgroup G is contained
in the kernel of the action of G on N..

Proof. Let 0 <c<r—1. For all g € G and s,t € Z, we have
I(an') = () (n") = (Ya)*(“n)",

so it is sufficient to show that (Ya) = a and (Yn) = 7 for each g € Go = (o).
Let o be a typical element of Gy and o%7? a typical element of G. Then
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we have
Mo )ar(e™))(e"r") = [A(o")a](c" ')

so %o = a. Similarly, we have
M@)o ))(a"") = Ao )n)(a" ')
_ [A(Uz’)]au—i—cd” 7_v—‘,—l

AU
— gt cd 7_v—i—l

= 7](0'“7”)7

SO Uin = 1. Therefore (o) = G is contained in the kernel of the action of
G on N.. O

Finally we use Theorems 2.1 and 2.3 to describe the associated order in the
Hopf algebra corresponding to each regular subgroup N. and the structure
of O over each of these associated orders:

Theorem 3.2. Let 0 <c<r—1, and let H. = L[NC]G be the commutative
Hopf algebra corresponding to the group N, and giving a Hopf-Galois struc-
ture on L/K. Then AS = O[N] is a Hopf order in H., and O is a free
AG -module.

Proof. We have shown in Lemma 3.1 that the inertia subgroup Gy is con-
tained in the kernel of the action of G on N., and by Theorem 2.1 this
implies that AS is a Hopf order in H,.. Since L/K is tamely ramified, we
can apply Theorem 2.3 and conclude that Oy, is a free Ag—module. O

We summarise the results of this section by restating and proving Theo-
rem 1.3:

Theorem 3.3. Suppose that L/K is a Galois extension of p-adic fields
of degree qr, where q,r are prime and q < r, that L/K is at most tamely
ramified, and that H = L[N]% is a commutative Hopf algebra giving a Hopf-
Galois structure on the extension. Then Ay = AC and Oy is a free Ap-
module.

Proof. If r # 1 (mod ¢) then by [4, Theorem 1] L/K admits only the
classical Hopf-Galois structure with Hopf algebra K[G] and its usual action
on L. Since L/K is at most tamely ramified, Noether’s Theorem implies
that Ax(q = Ok[G] and Oy, is a free Ok [G]-module. If 7 = 1 (mod q)
then we must have p # r since L/K is tamely ramified. If p # ¢ then by [9,
Theorem 4.4] we have g = O[N] and Oy is a free Ag-module. If p = ¢
then Theorem 3.2 yields the same conclusions. (]
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4. Integral Hopf—Galois structures

In this section we return to the setting of Section 2: L/K denotes a
finite Galois extension of p-adic fields which has group G and which is at
most tamely ramified. The extension of commutative rings O /O is a
Galois extension with group G in the sense of [5, Definition 1.4], that is, an
Ok [G]-Galois extension of O, if and only if L/K is unramified. In this
section we shall consider a Hopf algebra H = L[N]¢ giving a nonclassical
Hopf-Galois structure on L/K, and investigate when Oy is a A%-Galois
extension of O. Obviously it is necessary that A® be a Hopf order in H
(see Theorem 2.1). To give a criterion, we shall consider linear duals. The
linear dual H* = Homg (H, K) is also a K-Hopf algebra (see [6, (1.4)]), and
if A is a Hopf order in H, then A* = Homg, (A, Ok) is a Hopf order in H*.
We can now restate and prove Theorem 1.4:

Theorem 4.1. Suppose that A® is a Hopf order in H. Then O is a AC-
Galois extension of Ok if and only if L/ K is unramified.

Proof. By a result of Greither ([6, Proposition 22.13)] or [8]), O is a A®-
Galois extension of O if and only if Of is a A®-module algebra [6, §2] and
(Or) = o((A%)*). Since H gives a Hopf-Galois structure on the extension
L/K, the field L is an H-module algebra, so Oy, is a A®-module algebra.
We shall use results of Boltje and Bley to show that d((A%)*) = O. Note
that H* is a commutative Hopf algebra since H is cocommutative and, since
K has characteristic zero, H* is also separable (see [10, (§11.4)]). Therefore
H* has a unique maximal order. In [1, Corollary 4.7] it is shown that AC
is a Hopf order in H if and only if (A%)* is the unique maximal order in
H*. It is also shown ([1, Lemma 3.1]) that the discriminant of this maximal
order is

HD(DLi)a
=1

where the fields L; are as described in Section 2 above. But by [1, Propo-
sition 4.6], A% is a Hopf order in H if and only if each of the fields L; is
unramified over K, that is, if and only if 9(Op,) = Ok foreachi =1,...,r.
So we have d((A%)*) = D in this case. Now by Greither’s result ([6, Propo-
sition 22.13)] or [8]) we have that Oy, is a A%-Galois extension of O if and
only if

2(01) = 0((A9)") = Ok,
that is, if and only if L/K is unramified. O

By applying Theorem 4.1 to the extensions considered in Section 3, we see
that the only circumstance under which we have a Hopf—Galois structure at
integral level is when L/K is unramified of degree ¢r and H = K|[G| gives
the classical structure on the extension.
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