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Density of orbits of semigroups of
endomorphisms acting on the Adeles

Alan Haynes and Sara Munday

Abstract. We investigate the question of whether or not the orbit of
a point in A/Q, under the natural action of a subset Σ ⊆ Q, is dense
in A/Q. We prove that if the set Σ is a multiplicative semigroup of Q×

which contains at least two multiplicatively independent elements, one
of which is an integer, then the orbit Σα of any point α with irrational
real coordinate is dense.
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1. Introduction

Let S be a multiplicative semigroup of positive integers which contains at
least two multiplicatively independent elements (i.e., elements whose loga-
rithms are Q-linearly independent). A well known theorem of Furstenberg
[4, Theorem IV.1] states that if α ∈ R/Z is irrational then the set

Sα := {sα : s ∈ S} ⊆ R/Z

is dense in R/Z. This is a fundamental example of rigidity in dynamical
systems, and it was extended by Berend in [1] to study the action of Q on
the Adelic quotient A/Q. Berend proved that under certain conditions on a
multiplicative semigroup Σ ⊆ Q, every point α ∈ A/Q with an infinite orbit
under the action of Σ turns out to have a dense orbit. Berend’s hypotheses
on Σ require it to contain elements whose absolute values are greater than
one, in all completions of Q (Archimedean and non-Archimedean).
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In this paper we study semigroups of Q which are generated by only two
elements. In this case, in contrast with the results of Berend and Fursten-
berg, there are orbits of ‘nonlacunary’ semigroups which are neither finite
nor dense (see Section 4). Our main result is the following theorem.

Theorem 1.1. Suppose that γ ∈ Q and δ ∈ Z are multiplicatively indepen-
dent and let

Σ = Σ(γ, δ) := {γaδb : a, b ∈ N}.
Then for any α ∈ A/Q with α∞ 6∈ Q the set

Σα := {σα : σ ∈ Σ} ⊆ A/Q,

where σα denotes the natural action of Q on A/Q, is dense in A/Q.

It is possible that the hypothesis that δ ∈ Z could be weakened but, as
the examples of Section 4 show, it cannot be removed completely. Our paper
is organized as follows. In Section 2 we give a basic background about the
Adeles and a metric which generates the topology on A/Q. In Section 3
we give the proof of our main theorem, and in Section 4 we give several
examples of nondense orbits for the actions of semigroups of Q on A/Q.
The reader who is new to these ideas is encouraged to read the final section
before the proof of the main result.

Acknowledgements. We would like to thank Profs. Tom Ward and Man-
fred Einsiedler for helpful comments regarding an earlier draft of this paper,
and for pointing out the above mentioned paper of Berend. We were un-
aware of Berend’s paper before we wrote ours and it seems possible that our
main theorem could be proved by using his results as a ‘black box’. Both
our results and his are based initially on ideas from Furstenberg’s paper [4],
but many parts of the exposition, proofs, and examples in this paper are
different than those in [1].

2. Preliminaries

We use A to denote the rational Adeles with the usual restricted product
topology, under which it is a locally compact Abelian group (we refer the
reader to [5, Chapter 5] for a basic treatment of the Adeles). The group Q
diagonally embeds in A, and we also denote the image of this embedding
as Q. This slight ambiguity in notation should cause no confusion in what
follows. It is well known that Q is a discrete subgroup of A and that the
quotient A/Q is compact. Our canonical choice of fundamental domain for
this quotient will be

F := [0, 1)×
∏
p

Zp.

We will view F as a topological space, with a base for its topology being
given by the following two types of sets:
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(i) Sets of the form

U∞ ×
∏
p

Up,

where each Up ⊆ Zp is an open ball, U∞ ⊆ (0, 1) is an open interval,
and Up = Zp for all but finitely many primes.

(ii) Sets of the form(
(α, 1)×

∏
p

Up

)
∪

(
[0, β)×

∏
p

(Up − 1)

)
,

where α, β ∈ (0, 1), each Up ⊆ Zp is an open ball, and Up = Zp for
all but finitely many primes.

The reason for this choice is made clear by the following proposition.

Proposition 2.1. As a topological space A/Q is homeomorphic to F .

Proof. Call the two types of sets in the basis above sets of types (i) and
(ii). First we show that both types of sets are open in the quotient topology
on A/Q. Let φ : A → A/Q be the quotient map, and suppose that X ⊆ F
is a set of type (i). Then

φ−1 (X) =
⋃
η∈Q

(X + η),

and for any η ∈ Q we have that Up+η = Zp for all but finitely many primes.
Therefore each set X + η is open in A and we conclude that X is open in
A/Q.

Similarly, if X ⊆ F is a set of type (ii) then write X = A ∪B with

A =

(
(α, 1)×

∏
p

Up

)
and B =

(
[0, β)×

∏
p

(Up − 1)

)
,

and note that

φ−1 (X) =
⋃
η∈Q

((A+ η) ∪ (B + (η + 1))

=
⋃
η∈Q

((
(α, 1 + β)×

∏
p

Up

)
+ η

)
is open in A.

Next we show that any open set in A/Q can be written as a union of sets
of types (i) and (ii). If X ⊆ A/Q is open then we can write

φ−1(X) =
⋃
i∈I

Yi,

where each Yi ⊆ A is a set of the form

Yi = Vi,∞ ×
∏
p

Vi,p,
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with each Vi,p ⊆ Qp an open ball, Vi,p = Zp for all but finitely many primes,
and Vi,∞ ⊆ R an open interval of length less than one. Then we have that

X =
⋃
i∈I

φ(Yi),

and each of the sets in this union, viewed as a subset of F , is a set of type
(i) or (ii). �

As a word of warning we point out that, although their topological struc-
ture is similar, A/Q is not isomorphic as a group to the direct product

R/Z×
∏
p

Zp.

This fact has already been featured in the proof above, and indeed the group
structure is reflected by the shapes of the sets of type (ii).

For convenience we will work with a metric on A/Q which induces its
topology. We define d : F × F → [0,∞) by

d(α, β) = min
η∈{0,±1}

max

(
|α∞ − β∞ − η|∞,max

p

(
|αp − βp − η|p

p

))
.

The function d defines a metric on F and the metric topology is the same
as the quotient topology on A/Q, since it is precisely that generated by the
type (i) and (ii) sets above (see also [6, Proposition 3.3]). We will use the
following proposition to quantify the density of the integers at the finite
places of A/Q.

Proposition 2.2. Let ε > 0 and suppose that X ⊆ [0, 1) is an ε−dense
subset of [0, 1). For each prime p let

(2.1) kp = kp(ε) := max
(
0, d− logp εe − 1

)
,

and set

(2.2) N = N(ε) :=
∏
p

pkp .

Then, with respect to the metric d, the set

{(x;n, n, n, . . .) : x ∈ X, 1 ≤ n ≤ N} ⊆ F

is an ε−dense subset of A/Q.

Proof. The diameter of the space A/Q is 1/2, so we may assume that
ε < 1/2. For any α ∈ F we can clearly choose x ∈ X so that |α∞−x|∞ ≤ ε.
Furthermore by the Chinese Remainder Theorem we can choose an integer
1 ≤ n ≤ N so that

n = αp mod pkp

for all primes p (note that kp = 0 for all primes p ≥ 1/ε). Then by the
definition of d we have that
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d(α, (x;n, n, n, . . .)) = max

(
|α∞ − x|∞ , max

p

|αp − n|p
p

)
≤ max

(
ε , max

p
p−kp−1

)
.

By the choice of kp this is less than or equal to ε. �

3. Proof of Theorem 1.1

The outline of our proof of Theorem 1.1 is based on Furstenberg’s original
proof of his orbit closure theorem [4] and also on Boshernitzan’s exposition
of this result [2]. However there are many features of our proof which are
new, which do not appear when one is considering the group R/Z.

To begin, by replacing γ with γ2 and δ with δ2 if necessary, we assume
without loss of generality that γ > 0 and δ > 1. We first have the following
proposition.

Proposition 3.1. For any ε > 0 there exist a ∈ N and b ∈ Z with

(3.1) 1 <
γa

δb
< 1 + ε.

Proof. Taking logarithms in (3.1) and dividing by b log γ, this is equivalent
to the statement that, for any ε′ > 0, there are a ∈ N and b ∈ Z with

0 <
a

b
− log δ

log γ
<
ε′

b
.

Now we can take a/b = p2n+1/q2n+1 to be the (2n + 1)st convergent in the
continued fraction expansion of log δ/ log γ, with n chosen large enough that
q−12n+1 < ε′. If γ < 1 then we choose a > 0, b < 0, while if γ > 1 we choose
a, b > 0. �

Now let P be the collection of primes p for which |γ|p > 1, define

(3.2) P =
∏
p∈P
|γ|p,

and write P = pa11 · · · pamm with p1, . . . , pm distinct primes (we can assume
that P is nonempty, otherwise we are in the case of Furstenberg’s theorem).
Let

XP =

(
R×

m∏
i=1

Qpi

)/
ι(Z[1/(p1 · · · pm)]),

where

ι : Z[1/(p1 · · · pm)]→ R×
m∏
i=1

Qpi

denotes the diagonal embedding, and let

π : A/Q→ XP
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be the map obtained by projection of F onto XP . We take XP with its usual
quotient topology and note that the map π is continuous. Furthermore the
elements of Σ act both on A/Q and on XP as endomorphisms, and these
actions commute with π. We have the following proposition.

Proposition 3.2. If α ∈ A/Q satisfies α∞ 6∈ Q, and if there exists an
s/t ∈ Q such that ι(s/t) is an accumulation point of the set π(Σα), then Σα
is dense in A/Q.

Proof. We first claim that we can replace ι(s/t) with an accumulation point
satisfying the same hypotheses, which is also invariant under the action of
suitable powers of γ and δ. If it happens that s/t = 0 then this claim is
trivially satisfied, so let us assume temporarily that s/t 6= 0.

Write γ = r/P with (r, P ) = 1. We can assume that s/t lies in the
fundamental domain

(3.3) (−1, 0]×
∏
p∈P

Zp,

and we can also assume (by multiplying by an element of Σ if necessary),
that (r, t) = (δ, t) = 1. Here and throughout the proof we are using the fact,
mentioned before the proposition, that

π(σα) = σπ(α), for any α ∈ A/Q and σ ∈ Σ.

We can view s/t as an element of the ring

lim
←

Z/P iZ,

with an eventually periodic expansion. For each i ∈ N choose 0 ≤ Ai < P i

with s/t = Ai mod P i. Then there is an I ∈ N such that for all i > I, the
rational number

(3.4) ξi = P−i
(s
t
−Ai

)
=

s

P it
− Ai
P i
∈ Zp

has a purely periodic p-adic expansion, for all primes p ∈ P. We may assume
that I is large enough so that ξi ∈ (−1, 0) for all i > I. Now choose µ > I
such that (rδ)µ = 1 mod t, and let β′ = (rδ)µ(s/t) and β′′ = (γδ)µ(s/t).
Then, choosing a representative in (3.3) for β′, we have that

β′∞ =
(rδ)µs

t
−
(

1 +

⌊
(rδ)µs

t

⌋)
=
s

t
,

and therefore also that β′p = s/t for all p ∈ P. Since β′′ = P−µβ′, we then
have that β′′∞ = ξµ and that β′′p = ξµ for all p ∈ P. Here our representative
for β′′ is determined uniquely by the requirements that β′′∞ ∈ (−1, 0] and
β′′p ∈ Zp for all p. Therefore, for the remainder of this proof we will assume
(by replacing s/t with ξµ) that the hypotheses of this proposition are satisfied
for a fraction s/t ∈ (−1, 0) with (rδ, t) = 1, with (p, t) = 1 for all p ∈ P, and
with the property that the p-adic expansion of s/t is purely periodic, for all
p ∈ P.
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Let ν ∈ N be the least common multiple of ϕ(t) and all of the period

lengths of s/t modulo primes p ∈ P. Set β(0) = rν(s/t), and for each

1 ≤ i ≤ m set β(i) = p−νaii β(i−1). We will work with representatives for
these elements which lie in the fundamental domain (3.3).

First of, as in the argument above, notice that

β(0)∞ =
rνs

t
−
(

1 +

⌊
rνs

t

⌋)
=
s

t
,

and therefore that β
(0)
p = s/t for all p ∈ P. Similarly for each 1 ≤ i ≤ m we

have that
β(i)pi =

s

t
,

because the pi-adic expansion of s/t is periodic with period dividing ν.

Therefore we have that β
(i)
∞ = s/t and β

(i)
p = s/t for all p ∈ P and for

1 ≤ i ≤ m. In particular, this is true for i = m, when β(m) = γν(s/t).
The same argument applies with γ replaced by δ, and this verifies the claim
which we made at the beginning of the proof.

Let us take s/t as above, satisfying our claim, and for notational conve-
nience let us replace γ and δ by γν and δν , and Σ by the semigroup generated
by the new choices of γ and δ. The next part of the proof is somewhat tech-
nical, but the central idea is to find a point y ∈ A/Q for which π(y) is
close to ι(s/t), and then multiply y by a sequence of elements of Σ, selected
with the aid of Proposition 3.1, to move away from s/t in the Archimedean
direction in very small steps. We continue on in small steps, controlling the
p-adic directions so that they stay in Zp, until the Archimedean component
of our point is close to an integer N which is as large as we need. Then we
translate everything back into a fundamental domain. The real components
will remain in a sufficiently dense set in the real direction, and the p-adic
components will simultaneously wind around enough in the p-adic directions
to allow us to apply Proposition 2.2.

Now we fill in the details of this argument. Let M ≥ 2 be an even
integer, for each prime p let kp = kp(M

−1) be defined as in (2.1), and let
N = N(M−1) be defined as in (2.2). Then let

L = lcmp≤M

(
pkp−1(p− 1)

)
,

and apply Proposition 3.1 to find integers a ∈ N and b ∈ Z with

1 <
γa

δb
< 1 +

1

LMN
.

Next set σ = γa/δb and let

K =
⌈
2δMN(σ − 1)−1σL

⌉
.

If b < 0 then choose γ0 ∈ Σ to be any element satisfying γ0 > 1, and if b > 0
choose γ0 = δKb. Then set

γi = σiγ0 for 1 ≤ i ≤ K,
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and note that each of these fractions is in Σ. Finally choose a point y ∈ Σα
in the fundamental domain

(3.5) (−1, 0]×
∏
p

Zp

satisfying ∣∣∣y∞ − s

t

∣∣∣
∞
<

1

2γ0σLM
, and(3.6) ∣∣∣yp − s

t

∣∣∣
p
<

min
(
1, |σ|−Kp

)
pkp

for all p ∈ P.(3.7)

By multiplying y by a suitable power of δ, which does not increase the p-adic
absolute values of any of the yp-coordinates, we may assume that we have
chosen y so that y∞ also satisfies the lower bound

(3.8)
∣∣∣y∞ − s

t

∣∣∣
∞
>

1

2δγ0σLM
.

We point out that this is where we are using the fact that α∞ 6∈ Q. Now

for each 0 ≤ i ≤ K define y(i) = γiy. If we write y
(0)
∞ = s/t + x∞ and

y
(0)
p = s/t+ xp for each p ∈ P, then we have for each 0 ≤ i ≤ K that

y(i)∞ = σi · s
t

+ σix∞,

y(i)p = σi · s
t

+ σixp for p ∈ P, and

y(i)p = σiy(0)p for p 6∈ P.
By our choice of s/t there is a fraction s′/t′ which is in Zp for all p 6∈ P and
which satisfies

σ · s
t

=
s

t
+
s′

t′
.

Noting that inequality (3.7) guarantees that |σixp|p < p−kp for all p ∈ P
and 0 ≤ i ≤ K, we have after translating back into the fundamental domain
(3.5) that

y(i)∞ =
s

t
+ σix∞ − ni,

y(i)p =
s

t
+ σixp − ni for p ∈ P, and

y(i)p = σiy(0)p −
s′

t′
·
i−1∑
j=0

σj − ni for p 6∈ P,

where

ni = 1 +
⌊s
t

+ σix∞

⌋
.

Now by our lower bound (3.8) we have for any 0 ≤ i < K that

|σi+1x∞ − σix∞|∞ = |(σ − 1)σix∞|∞ >
(σ − 1)

2δσLM
,
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and by our choice for K this implies that σKx∞ > N . On the other hand
for any i with σi < N we have that

|σi+1x∞ − σix∞|∞ <
1

LM
.

This together with our upper bound (3.6) ensures that for any interval I ⊆
[0, N ] of length 2/M , there is an integer 0 ≤ j ≤ K − L with the property
that σix∞ ∈ I for all j ≤ i ≤ j + L. One of these integers must equal 0
modulo L and for this integer we have that

σi = 1 mod pkp for all p 6∈ P,

and therefore also that
i−1∑
j=0

σj =
σi − 1

σ − 1
= 0 mod pkp for all p 6∈ P.

To finish the argument, partition the interval (−1, 0] into disjoint intervals
of length 2/M . By what we have said above, for each such interval I and

for each integer 1 ≤ n ≤ N there is an 0 ≤ i ≤ K with y
(i)
∞ ∈ I and

|y(i)p − n|p ≤ p−kp for all primes p. By Proposition 2.2 the set Σα is 2/M -
dense in A/Q, and M can be taken arbitrary large. �

Now we come to the proof of our main result.

Proof of Theorem 1.1. We will show that if α ∈ A/Q satisfies α∞ 6∈ Q,
then there is a rational s/t satisfying the hypothesis of Proposition 3.2.
Suppose, by way of contradiction, that this is not the case. As before write
γ = r/P with (r, P ) = 1. Then for any integer v ≥ 3 which is coprime to
Prδ, there exists an integer u with −v < u ≤ −1 and (u, v) = 1, for which
u/v has a purely p-adic expansion for all p ∈ P. This follows from the same
argument used to construct the fractions ξi in the previous proof (cf. (3.4)).
By replacing γ and δ by suitable powers, as in the previous proof, we may
assume that ι(u/v) is invariant under the action of Σ.

Define Y0 ⊆ XP by

Y0 = π (Σα),

and for each i ∈ N define Yi ⊆ Yi−1 by

Yi = {y ∈ Yi−1 : y + ι(u/v) ∈ Yi−1}.

For any i ∈ N any for any y ∈ Yi we have that

y + j · ι(u/v) ∈ Y0 for all 0 ≤ j ≤ i.

Therefore if we can show that all of the sets Yi are nonempty then, since i
can be taken arbitrarily large, it will follow from Proposition 2.2 that the
set Y0 must be 1/v-dense in XP . Since Y0 is closed and v can be taken
arbitrarily large, this would mean that Y0 = XP , which would contradict
our initial assumption and complete the proof.
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All that remains is to show that the sets Yi are always nonempty, and we
will do this by an inductive argument. It is clear that Y0 is nonempty, closed,
and Σ-invariant. Since α∞ 6∈ Q, it follows that Y0 contains an accumulation
point y and a sequence of points (y(j))∞j=1 approaching y, with the property

that y
(j)
∞ 6= y∞ for any j. This implies that there is a sequence of points

(x(j))∞j=1 in the difference set

D0 := Y0 − Y0

with x(j) → 0 and x
(j)
∞ 6= 0 for any j. Since D0 is closed, this allows us to

apply the same argument as in the previous proposition to conclude that

D0 = XP . We note that the property that x
(j)
∞ 6= 0 for any j is crucial here

(cf. (3.8)). Since u/v ∈ D0 we conclude that Y1 is nonempty.
Next we show that Y2 is nonempty. The set Y1 is nonempty, closed, and

Σ-invariant (since ι(u/v) is Σ-invariant). If there is an element y ∈ Y1 with
y∞ 6∈ Q then the argument is exactly the same as before. If not, then choose
any element y ∈ Y1 and, considering it as an element of the fundamental
domain (3.3), choose a prime p ∈ P with the property that yp 6= y∞. This
is possible since we know that ι(y∞) 6∈ Y0. Then yp ∈ Zp and y∞ ∈ Q ∩Qp,
and we can write their p-adic expansions as

y∞ =

∞∑
`=−∞

b`p
` and yp =

∞∑
`=0

c`p
`,

with b` = 0 for all ` less than some bound. Now write γ = p−aγ′ with
|γ′|p = 1, and set z(i) = p−iay and y(i) = γiy. Working in the fundamental
domain (3.3), we find that for all sufficiently large i,

|z(i)∞ |p = pia ·

∣∣∣∣∣
−1∑

`=−∞
b`p

` +
ia−1∑
`=0

(b` − c`)p`
∣∣∣∣∣
p

.

Here we are using the fact that b` 6= c` for some `, and this also implies that

|z(i)∞ |p tends to infinity with i. Since |γ′|p = 1, and since translation by a
p-adic integer (in order to bring all other coordinates back into the funda-
mental domain) does not change the p-adic absolute value of an element of

Qp \ Zp, we have that |y(i)∞ |p tends to infinity with i. This means that there
are infinitely many points in Y1 whose representatives in the fundamental
domain (3.3) have different Archimedean coordinates, and therefore there

is a sequence of points (x(j))∞j=1 in the difference set D1 := Y1 − Y1 with

x(j) → 0 and x
(j)
∞ 6= 0 for any j. The rest of the argument for showing

that Y2 is nonempty is exactly the same as before, and the same argument
then shows that Yi is nonempty for all i ∈ N. This concludes the proof of
Theorem 1.1. �
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4. Examples of nondense orbits

Finally we give examples which illustrate various ways in which one can
fail to have dense orbits. Firstly, if all the elements of Σ are contractions on
R, then there is one obvious degeneracy.

Proposition 4.1. Suppose that γ, δ ∈ Q satisfy

max (|γ|, |δ|) < 1,

let Σ denote the multiplicative semigroup which they generate, and let P
be defined as in (3.2). If α ∈ A/Q is any point with coordinates in the
fundamental domain

(4.1) [−1/2, 1/2)×
∏
p

Zp

which satisfies αp = 0 for all p |P , then all accumulation points x of the set
Σα have x∞ = 0.

Proof. If α is any point which satisfies the hypotheses of this proposition
then for any σ ∈ Σ and for any prime p, we will have that σαp ∈ Zp.
However as a and b tend to infinity along any sequence in N, we will have
that

γaδbα∞ → 0,

so that 0 is the only possible real coordinate of any accumulation point of
Σα in the fundamental domain (4.1). �

Secondly, there are some semigroups of contractions which give rise to
orbits whose real coordinates become dense in fractal sets.

Proposition 4.2. Let Σ be the multiplicative semigroup generated by 1/4
and 5/64. There are points α ∈ A/Q with the property that

{(σα)∞ ∈ [0, 1) : σ ∈ Σ}
is a set of Hausdorff dimension equal to 1/2.

Proof. Define affine contractions T1, T2, T3, T4 : [0, 1)→ [0, 1) by setting

T1(x) := x/4 + 1/4, T2(x) := x/4 + 1/2

T3(x) := 5x/64 + 41/64, and T4(x) := 5x/64 + 9/32.

Then there exists a unique nonempty compact set F such that

F =

4⋃
i=1

Ti(F )

(see Theorem 9.1 in [3]). Noting that

T3([0, 1)) ⊂ T2([0, 1)),

T4([0, 1)) ⊂ T1([0, 1)),
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we may use Hutchinson’s Formula (see Theorem 9.3 in [3]) to calculate the
Hausdorff dimension of the attractor F . We have that dimH(F ) = s, where
4−s + 4−s = 1, that is, s = 1/2.

Let x ∈ [0, 1) be a point whose orbit under the collection of maps Ti
is dense in F , and choose α ∈ A/Q to be any point in F with α∞ = x
and α2 = 1/3. The action of multiplying α (or any point in F with 2-adic
coordinate 1/3) by 1/4, and then translating back to F , corresponds to the
map T1, extended coordinate-wise to A/Q. Also, the 2-adic coordinate of
the image is 1/3.

Similarly, multiplication of any point in F with 2-adic coordinate 1/3 by
5/64 corresponds to the map T3, and the 2-adic coordinate of the image is
2/3. The same argument applies to points with 2-adic coordinates 2/3, and
the resulting maps correspond to T2 and T4. Therefore the real part of the
closure of the orbit of α under the semigroup Σ equals F . �

Finally, if Σ is generated by finitely many integers, then there will be other
types of infinite nondense orbits (of points α with α∞ ∈ Q). For example
the orbit of any point α ∈ A/Q with α∞ = 2/7 and αp 6= 2/7 for any p
under the action of the semigroup generated by 8 and 729 will be infinite,
but all points in the closure will have real coordinate 2/7. We point this out
only in order to emphasize that the correct interpretation must be applied
when using Berend’s hypotheses, for example in [1, Theorems II.1, IV.1].
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