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Generalized difference sequence spaces of
fuzzy numbers

Ab. Hamid Ganie and Neyaz Ahmad Sheikh

Abstract. We introduce new difference sequence spaces of fuzzy num-
bers: c0 (F,Λ,4m

n , p) , c (F,Λ,4m
n , p) and l∞ (F,Λ,4m

n , p). We then
examine some of their topological properties by using a sequence of
modulus functions.
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1. Preliminaries, background and notation

A sequence space is defined to be a linear space of real or complex se-
quences. Throughout the paper N, R and C denotes the set of nonnegative
integers, the set of real numbers and the set of complex numbers respectively.
Let ω denote the space of all sequences (real or complex); l∞ and c respec-
tively, denotes the space of all bounded sequences, the space of convergent
sequences.

Throughout the paper p = (pk) is a sequence of positive real numbers.
The notion of paranormed sequences was studied at the initial stage by
Simons [26]. It was further investigated by Maddox [19], Tripathy and Sen
[31], Hamid and Neyaz [14], Hamid, Neyaz and Sen [15] and many others.

Following Ruckle [23] and Maddox [19], a modulus function f is a function
from [0,∞) to [0,∞) such that:

(i) f(x) = 0 if and only if x = 0.
(ii) f(x+ y) ≤ f(x) + f(y) ∀x, y ≥ 0.
(iii) f is increasing.
(iv) f if continuous from the right at x = 0.
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The concepts of fuzzy sets and fuzzy set operations were first introduced
by Zadeh [32] and subsequently several authors have discussed various as-
pects of the theory and applications of fuzzy sets such as fuzzy topologi-
cal spaces, similarity relations and fuzzy orderings, fuzzy measures of fuzzy
events, fuzzy mathematical programming. Matloka [20] introduced bounded
and convergent sequences of fuzzy numbers and studied their some proper-
ties. Matloka [20] also has shown that every convergent sequence of fuzzy
numbers is bounded. Later on sequences of fuzzy numbers have been dis-
cussed by Nanda [22], Altin [1], Altinok [2], Başarir and Mursaleen [3], Bilgin
[4], Chaudhuri and Das [5], Çolak [6, 7, 8], Diamond and Kloeden [9], Esi
[10, 11], Fang and Fang [12], Hamid and Neyaz [13], Hazarika [16], Kelava
[17], Savaş [24, 25], Tripathy et al [27, 28, 29, 30], etc.

Let D denote the set of all closed and bounded intervals X = [a1, a2] on
the real line R. For X = [a1, a2] and Y = [b1, b2] in D we define

d(X : Y ) = max(|a1 − b1|, |a2 − b2|).

It is known that (D, d) is a complete metric space.
Let I = [0, 1]. A fuzzy real number X is a fuzzy set on R and is a mapping

X : R→ I associating each real number t with its grade membership X(t).
A fuzzy real number X is called convex if

X(t) ≥ X(s) ∧X(r) = min(X(s), X(s)), where s < t < r.

A fuzzy real number X is called normal if there exists t0 ∈ R such that
X(t0) = 1.

A fuzzy real number X is called upper semi-continuous if for each ε > 0,
X−1([0, a+ ε)) for all a ∈ I and given ε > 0, X−1([0, a+ ε)) is open in the
usual topology of R.

The set of all upper semi-continuous, normal, convex fuzzy numbers is
denoted by R(I). The α-level set of a fuzzy real number X for 0 < α ≤ 1
denoted by Xα is defined by Xα = {t ∈ R : X(t) ≥ α}. The 0-level set is
the closure of strong 0-cut.

For each r ∈ R, r̄ ∈ R(I) is defined by

r̄ =

{
r̄, if t = r,

0, if t 6= r.

The absolute value of |X| of X ∈ R(I) is defined by (see for instance
Kaleva and Seikkala [17])

|X|(t) =

{
max{X(t), X(−t)}, if t ≥ 0,

0, if t < 0.

Let d̄ : R(I)× R(I)→ R be defined by

d̄(X,Y ) = sup
0≤α≤1

d(Xα, Y α).
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Then d̄ defines a metric on R(I) (Mat loka [20]). The additive identity and
multiplicative identity in R(I) are denoted by 0̄ and 1̄ respectively.

Throughout the article ωF , cF , cF0 and lF∞ denote the classes of all, con-
vergent, null, bounded sequence spaces of fuzzy real numbers.

A fuzzy real valued sequence {Xn} is said to be convergent to fuzzy real
number X, if for ε > 0, there exists n0 ∈ N such that d̄(X,Y ) < ε for all
k ≥ n0.

A fuzzy real valued sequence {Xn} is said to be solid (normal) if (Xk) ∈
EF implies that (αkXk) ∈ EF for all sequences of scalars (αk) with |αk| ≤ 1,
for all k ∈ N.

Let K = {k1 < k2 < · · · } ⊆ N and EF be a sequence space. A k-step

space of EF is a sequence space λE
F

K = {(Xkn) ∈ ωF : (Xn) ∈ EF }.
A canonical preimage of a sequence {Xk} ∈ λE

F

K is a sequence {Yn} ∈ ωF
defined as

Yn =

{
Xn, if k ∈ K,

0̄, otherwise.

A canonical preimage of a step space λE
F

K is a set of all elements in λE
F

K ,

i.e., Y is in canonical preimage of λE
F

K if and only if Y is canonical preimage

of some X ∈ λEF

K .
A sequence space EF is said to be monotone if it contains the canonical

preimages of its step spaces.
A sequence space EF is said convergence free if (Yk) ∈ EF whenever

(Xk) ∈ EF and Yk = 0̄ whenever Xk = 0̄.
The difference sequence spaces

Z(∆) = {x = (xk) : ∆x ∈ Z} ,
where Z = l∞, c and c0, were studied by Kizmaz [18].

It was further generalized by Tripathy and Esi [28], as follows. Let m ≥ 0
be an integer. Then

H(∆m) = {x = (xk) : ∆mx ∈ Z} ,
for Z = l∞, c and c0, where ∆mxk = xk − xk+m. Further, in [27] Tripathy
et al. generalized the above notions and unified these as follows:

∆m
n xk = {x ∈ ω : (∆m

n xk) ∈ Z} ,
where

∆m
n xk =

n∑
µ=0

(−1)µ
(
n

r

)
xk+mµ,

∆0
nxk = xk∀ k ∈ N.

The idea of Kizmaz [18] was applied by Savaş [24, 25] to introduce the
notion of difference sequences for fuzzy real numbers and study their different
properties. The difference sequence space were further studies by Çolak
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[7, 8], Ganie and Sheikh [14], Ganie, Sheikh and Sen [15], Mursaleen [21]
and many others.

Let (ak) and (bk) be sequences with complex terms and p = (pk) ∈ l∞,
we have the following known inequality:

(1.1) |ak + bk|pk ≤ B (|ak|pk + |bk|pk)

where B = max{1, 2M−1} and M = sup
k
pk.

2. New classes of sequences of fuzzy numbers

Let X = (Xk) be a sequence of fuzzy numbers and Λ = (fk) be a sequence
of moduli. In this article, we define the following classes of difference se-
quences of fuzzy numbers:

c0 (F,Λ,4m
n , p) =

{
X = (Xk) : lim

k
[fk(d̄(4m

n Xk, 0̄))]pk = 0

}
,

c (F,Λ,4m
n , p) =

{
X = (Xk) : lim

k
[fk(d̄(4m

n Xk, X0))]
pk = 0

}
,

l∞ (F,Λ,4m
n , p) =

{
X = (Xk) : sup

k
[fk(d̄(4m

n Xk, 0̄))]pk <∞
}
,

for some X0 and p = (pk) is a sequence of real numbers such that pk > 0 for
all k and sup

k
pk = M <∞.

Note that for m = 1 = n, fk(x) = x and pk = 1 for all k ∈ N, then
these spaces are reduced to c0 (F,4), c (F,4) and l∞ (F,4), introduced by
Mursaleen and Başarir [21]. Again if we take m = 0, n = 1, fk(x) = x and
pk = 1 for all k ∈ N, then these spaces are respectively reduced to c0 (F ),
c (F ) and l∞ (F ) introduced by Nanda [22].

Theorem 2.1. If d̄ is a translation invariant metric, then c0 (F,Λ,4m
n , p),

c (F,Λ,4m
n , p) and l∞ (F,Λ,4m

n , p) are closed under the operation of addi-
tion and scalar multiplication.

Proof. As d̄ is translation invariant metric, it implies that

d̄(4mXk +4mYk, X0 + Y0) ≤ d̄(4m
n Xk, X0) + d̄(4m

n Yk, Y0),(2.1)

d̄(4m
n λXk, λX0) ≤ |λ|d̄(4m

n Xk, X0),(2.2)

where λ is a scalar and |λ > 1. We shall prove only for c (F,Λ,4m
n , p).

The others can be treated similarly. Suppose that X = (Xk), Y = (Yk) in
c (F,Λ,4m

n , p). Then

[fk(d̄(4m
n Xk +4m

n Yk, X0 + Y0))]
pk

≤ [fk(d̄(4m
n Xk, X0) + d̄(4m

n Yk, Y0))]
pk , by (2.1)

≤ [fk(d̄(4m
n Xk, X0)) + fk(d̄(4m

n Yk, Y0))]
pk , by (ii)

≤ KM [fk(d̄(4m
n Xk, X0))]

pk +KM [fk(d̄(4m
n Yk, Y0))]

pk , by (1.1).
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Hence, X + Y ∈ c (F,Λ,4m
n , p). Let X = (Xk) ∈ c (F,Λ,4m

n , p). For
λ ∈ R there exists an integer K such that |λ| ≤ K. Then, by taking into
account the property (2.2) and the modulus functions fk for all k ∈ N, we
have

[fk(d̄(λ4m
n Xk, λX0))]

pk ≤ [fk|λ|(d̄(4m
n Xk, X0))]

pk ,

≤ KM [fk(d̄(4m
n Xk, X0))]

pk .

This implies that λX ∈ c (F,Λ,4m
n , p). �

The proof of the following is left to the reader.

Theorem 2.2. Let p = (pk) ∈ l∞. Then c0 (F,Λ,4m
n , p), c (F,Λ,4m

n , p)
and l∞ (F,Λ,4m

n , p), are paranormed spaces, paranormed by g defined by

g(X) = sup
k

(f(d̄(4m
n (αkXk), 0̄)))

pk
M ,

where M = max(1, sup
k
pk) and X = (Xk).

Theorem 2.3. Let Λ = (fk) be a sequence of moduli. Then,

c0 (F,Λ,4m
n , p) ⊂ c (F,Λ,4m

n , p) ⊂ l∞ (F,Λ,4m
n , p) .

Proof. c0 (F,Λ,4m
n , p) ⊂ c (F,Λ,4m

n , p) is trivial. So, let

X = (Xk) ∈ c (F,Λ,4m
n , p) .

Then, there is some fuzzy number X0 such that lim
k

[fk(d̄(4m
n Xk, 0̄))]pk = 0.

Now, from (1.1), we have

[fk(d̄(4m
n Xk, 0̄))]pk ≤ K[fk(d̄(4m

n Xk, X0))]
pk +K[fk(d̄(4m

n Xk, 0̄))]pk .

As X = (Xk) ∈ c (F,Λ,4m
n , p), we obtain X = (Xk) ∈ l∞ (F,Λ,4m

n , p) and
this proves the result. �

Theorem 2.4. The classes (F,Λ,4m
n , p) and l∞ (F,Λ,4m

n , p) are neither
solid nor monotone (in general).

Proof. Let f(x) = x, for all x ∈ [0,∞), m = 2, n = 1, λk = 2 for all k ∈ N

pk =

{
1 for k odd,

2 for k even.

Consider the sequence (Xk) defined by (Xk) = H for all k ∈ N, where

H(t) =


t+ 1, if − 1 ≤ t ≤ 0,

1− t, if 0 ≤ t ≤ 1,

0, otherwise.

Then clearly (Xk) ∈ c (F,Λ,4m
n , p). For, N , a class of sequences, consider

its J-step space Nj defined as follows:
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When (Xk) ∈ Nj , then its canonical pre-image (Yk) ∈ Nj is given by

Yk =

{
Xk, for k even,

0̄, for k odd.

Then (Yk) /∈ c
(
F,42

1, p
)
. Thus, the class of sequences c

(
F,42

1, p
)

is
not monotone. Therefore, it is not solid. Thus, the class of sequences
c (F,4m

n , p) is not monotone in general. �

Theorem 2.5. c0 (F,Λ,4m
n , p) , c (F,Λ,4m

n , p) and l∞ (F,Λ,4m
n , p) are not

symmetric in general.

Proof. We only consider the case c (F,Λ,4m
n , p). To prove the result we

consider the following example:
Let f(x) = x, for all x ∈ x ∈ [0,∞), m = 2, n = 1, λk = 3 and

pk =

{
2 for K odd,

3 for k even,

for all k ∈ N. Consider the sequence (Xk) = (H,N,H,N, . . . ), where the
fuzzy number H is defined as follows:

H(t) =


t+ 1, if −1 ≤ t ≤ 0,

1− t, if 0 ≤ t ≤ 1,

0, otherwise,

and the fuzzy number N is defined by

N(t) =


t
2 + 1, if −2 ≤ t ≤ 0,

1− t
2 , if 0 ≤ t ≤ 2,

0, otherwise.

Then (Xk) ∈ c
(
F,42

1, p
)
. Consider its rearrangement (Yk) of (Xk) de-

fined by (Yk) = (H,N,N,H,H,N,N,H,H, . . . ). Then (Yk) /∈ c
(
F,42

1, p
)
.

Hence, the class of sequences c (F,Λ,4m
n , p) is not symmetric, and the result

follows. �
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