New York J. Math. 19 (2013) 145-158.

Computation of the λ_u -function in JB^* -algebras

Akhlaq A. Siddiqui

ABSTRACT. Motivated by the work of Gert K. Pedersen on a geometric function, which is defined on the unit ball of a C^* -algebra and called the λ_u -function, the present author recently initiated a study of the λ_u -function in the more general setting of JB^* -algebras. He used his earlier results on the geometry of the unit ball to investigate certain convex combinations of elements in a JB^* -algebra and to obtain analogues of some related C^* -algebra results, including a formula to compute λ_u -function on invertible elements in a JB^* -algebra. The main purpose in this article is to investigate the computation of the λ_u -function on noninvertible elements in the unit ball of a JB^* -algebra. Additional results that relate the λ_u -function to convex combinations, unitary rank, and distance to the invertibles in the C^* -algebra setting are generalized to the JB^* -algebra context. Results of G. K. Pedersen and M. Rørdam are generalized. An open problem is presented.

Contents

1.	Introduction and preliminaries	145
2.	The λ_u -function	148
3.	The Λ_u -condition	152
4.	An open problem	156
	Acknowledgement	157
References		157

1. Introduction and preliminaries

Inspired by the work of R. M. Aron and R. H. Lohman [2], G. K. Pedersen [11] studied a geometric function, called the λ_u -function, which is defined on the unit ball of a C^* -algebra. In a recent paper [22], we initiated a study of the λ_u -function in the more general setting of JB^* -algebras (originally, called Jordan C^* -algebras [24]).

Received July 15, 2012; revised April 26, 2013.

²⁰¹⁰ Mathematics Subject Classification. 17C65, 46L05, 46H70.

Key words and phrases. C^* -algebra; JB^* -algebra; unit ball; invertible element; unitary element; unitary isotope; convex hull; λ_u -function.

In [17, 22], we discussed two related set-valued functions $\mathcal{V}(x)$ and $\mathcal{S}(x)$ defined on the closed unit ball of a unital JB^* -algebra, which play a significant role in the study of the λ_u -function. Using our earlier results on the geometry of the unit ball (cf. [16, 18, 20, 21]), we obtained JB^* -algebra analogues of certain C^* -algebra results due to G. K. Pedersen, C. L. Olsen and M. Rørdam. Besides other related results, we have shown that $\sup \mathcal{S}(x) = (\inf \mathcal{V}(x))^{-1}$ if $\mathcal{V}(x) \neq \emptyset$ (see [22, Theorem 2.5]); $\mathcal{V}(x) \cap [1, 2) \neq \emptyset$ if and only if x is invertible (see [22, Corollary 2.8]); and for any invertible element x in the closed unit ball, $\lambda_u(x) = (\inf \mathcal{V}(x))^{-1} = \frac{1}{2}(1 + ||x^{-1}||^{-1})$ satisfying $x = \lambda_u(x)u_1 + (1 - \lambda_u(x))u_2$ for some unitary elements u_1, u_2 (see [22, Theorem 2.5 and Corollary 2.10]).

In this article, we continue the study of the λ_u -function in the general setting of JB^* -algebras (of course, the λ_u -function is not defined in the context of more general JB^* -triple systems (cf. [7, 23]), which have no unitary elements). Our main goal here is to obtain some formulae to compute the λ_u -function for noninvertible elements of the closed unit ball in a JB^* -algebra. We compute the functions $\mathcal{V}(x)$, $\mathcal{S}(x)$ for noninvertible elements and make some estimates on inf $\mathcal{V}(x)$ in terms of the distance, $\alpha(x)$, from x to the set of invertible elements in a unital JB^* -algebra.

Further, we introduce a condition, called the Λ_u -condition, which is satisfied by all C^* -algebras and all finite-dimensional JB^* -algebras. For JB^* -algebras satisfying the Λ_u -condition, we obtain sharper bounds for estimates of inf $\mathcal{V}(x)$, together with estimates of distances to the invertibles and to the unitaries. We also obtain the formula $\lambda_u(x) = \frac{1}{2}(1 - \alpha(x))$ for all noninvertible elements x in the closed unit ball. In the course of our analysis, we prove several results on convex combinations, unitary rank, and distance to the invertibles related to the λ_u -function. These include the extension of some other results on C^* -algebras, due to G. K. Pedersen and M. Rørdam, to general JB^* -algebras. We shall conclude the article with a discussion on JB^* -algebras satisfying the Λ_u -condition and by formulating an open problem.

Our notation and terminology are standard and are the same as those found in [22] and [5, 8]. We recall that a commutative (but not necessarily associative) algebra \mathcal{J} with product "o" is called a Jordan algebra if for all $x, y \in \mathcal{J}, x^2 \circ (x \circ y) = (x^2 \circ y) \circ x$. For any fixed element x in a Jordan algebra \mathcal{J} , the x-homotope $\mathcal{J}_{[x]}$ of \mathcal{J} is the Jordan algebra consisting of the same elements and linear space structure as \mathcal{J} but with a different product, " \cdot_x ", defined by $a \cdot_x b = \{axb\}$ for all a, b in $\mathcal{J}_{[x]}$. Here, $\{pqr\}$ denotes the usual Jordan triple product defined in the Jordan algebra \mathcal{J} by $\{pqr\} = (p \circ q) \circ r - (p \circ r) \circ q + (q \circ r) \circ p$.

An element x in a Jordan algebra \mathcal{J} with unit e is said to be invertible if there exists (necessarily unique) element $x^{-1} \in \mathcal{J}$, called the inverse of x, such that $x \circ x^{-1} = e$ and $x^2 \circ x^{-1} = x$. The set of all invertible elements in the unital Jordan algebra \mathcal{J} is denoted by \mathcal{J}_{inv} . In this case,

we have $x \cdot_{x^{-1}} y = y$, and so x acts as the unit in the homotope $\mathcal{J}_{[x^{-1}]}$ of \mathcal{J} . Henceforth, the homotope $\mathcal{J}_{[x^{-1}]}$ will be called the x-isotope of \mathcal{J} and denoted by $\mathcal{J}^{[x]}$ (cf. [8]). It is well known that the x-isotope $\mathcal{J}^{[x]}$ of a Jordan algebra \mathcal{J} need not be isomorphic to \mathcal{J} (cf. [9, 7]). However, some important features of Jordan algebras are unaffected by the process of forming isotopes (see [18, Lemma 4.2 and Theorem 4.6]).

A real or complex Jordan algebra (\mathcal{J}, \circ) is called a $Banach\ Jordan\ algebra$ if there is a complete norm $\|\cdot\|$ on \mathcal{J} satisfying $\|a\circ b\|\leq \|a\|\|b\|$; if, in addition, \mathcal{J} has unit e with $\|e\|=1$, then \mathcal{J} is called a unital Banach Jordan algebra. A complex Banach Jordan algebra \mathcal{J} with involution "*" is called a JB^* -algebra if $\|\{xx^*x\}\| = \|x\|^3$ for all $x\in\mathcal{J}$. It follows that $\|x^*\| = \|x\|$ for all elements x of a JB^* -algebra (cf. [26]). The class of JB^* -algebras was introduced by Kaplansky in 1976 and it includes all C^* -algebras as a proper subclass (cf. [24]). For basic theories of Banach Jordan algebras and JB^* -algebras, we refer to $[1,\ 4,\ 14,\ 23,\ 24,\ 25,\ 26]$. Throughout this note, \mathcal{J} will denote a unital JB^* -algebra unless stated otherwise. A unital JB^* -algebra \mathcal{J} , is said to be of topological stable rank 1 (in short, tsr1) if \mathcal{J}_{inv} is norm dense in \mathcal{J} . Such JB^* -algebras have been recently studied by the present author in [18]. All complex spin factors and all finite-dimensional JB^* -algebras are of tsr1. Additional properties of JB^* -algebras of tsr1 are developed in [18].

An invertible element u in a unital JB^* -algebra \mathcal{J} is called unitary if $u^{-1} = u^*$. We denote the set of all unitary elements of the JB^* -algebra \mathcal{J} by $\mathcal{U}(\mathcal{J})$ and its convex hull by $\operatorname{co}\mathcal{U}(\mathcal{J})$. If $u \in \mathcal{U}(\mathcal{J})$ then the u-isotope $\mathcal{J}^{[u]}$ is called a unitary isotope of \mathcal{J} . It is well known (see [7, 3, 18]) that for any unitary element u in a unital JB^* -algebra \mathcal{J} , the unitary isotope $\mathcal{J}^{[u]}$ is a JB^* -algebra with u as its unit with respect to the original norm and the involution " $*_u$ " defined by $x^{*_u} = \{ux^*u\}$. Like invertible elements, the set of unitary elements in a unital JB^* -algebra \mathcal{J} is invariant on passage to isotopes of \mathcal{J} (cf. [18, Theorem 4.2 (ii) and Theorem 4.6]).

A self-adjoint element x (which means $x^* = x$) is called *positive* in \mathcal{J} if its spectrum $\sigma_{\mathcal{J}}(x) := \{\lambda \in \mathbb{C} : x - \lambda e \notin \mathcal{J}_{\text{inv}}\}$ is contained in the set of nonnegative real numbers, where \mathbb{C} denotes the field of complex numbers. Every element in a finite-dimensional JB^* -algebra \mathcal{J} is positive in some unitary isotope of \mathcal{J} (cf. [18, Theorem 5.9]). One of the main results (namely, Theorem 4.12) in [18] states that every invertible element x of a unital JB^* -algebra \mathcal{J} is positive in the unitary isotope $\mathcal{J}^{[u]}$ of \mathcal{J} , where the unitary u is given by the usual polar decomposition x = u|x| of x considered as an operator in the algebra $\mathcal{B}(\mathcal{H})$ of bounded linear operators on certain Hilbert space \mathcal{H} ; indeed, the same unitary u is the unitary approximant of x, meaning that $\operatorname{dist}(x,\mathcal{U}(\mathcal{J})) = ||x - u||$. More generally, $\operatorname{dist}(y,\mathcal{U}(\mathcal{J})) = ||y - e||$ for any positive element in a JB^* -algebra \mathcal{J} with unit e. In [17, 18], we obtained some formulae to compute $\operatorname{dist}(x,\mathcal{U}(\mathcal{J}))$ including the cases when $x \in (\mathcal{J})_1$, the closed unit ball of \mathcal{J} , when \mathcal{J} is finite-dimensional, and

when \mathcal{J} is of tsr1. In general, one may not have unitary approximants for elements even in the case of von Neumann algebras (for such an example, see [10]).

In [17, 18], the author observed some interesting properties of the distance function $\alpha(x)$, in the context of JB^* -algebras. Here, we continue studying the function $\alpha(x)$ and we investigate its connections with the convex hull $\operatorname{co} \mathcal{U}(\mathcal{J})$ of the unitaries. We connect it with the unitary rank u(x) of an element x— which is the least integer n such that x can be expressed as a convex combination of n unitary elements in \mathcal{J} ; $u(x) = \infty$ otherwise— and with the λ_u -function.

2. The λ_u -function

We begin this section by recalling (from [22]) the following construction of the functions $\mathcal{V}(x)$, $\mathcal{S}(x)$, and $\lambda_u(x)$ at elements x of the closed unit ball $(\mathcal{J})_1$ in a unital JB^* -algebra \mathcal{J} : for each number $\delta \geq 1$,

$$co_{\delta}\mathcal{U}(\mathcal{J}) := \left\{ \delta^{-1} \sum_{i=1}^{n-1} u_i + \delta^{-1} (1 + \delta - n) u_n : u_j \in \mathcal{U}(\mathcal{J}), j = 1, \dots, n \right\}$$

where n is the integer given by $n-1 < \delta \le n$;

$$\mathcal{V}(x) := \{ \delta \ge 1 : x \in \mathrm{co}_{\delta} \mathcal{U}(\mathcal{J}) \};$$

$$\mathcal{S}(x) := \{ 0 \le \lambda \le 1 : x = \lambda v + (1 - \lambda)y \text{ with } v \in \mathcal{U}(\mathcal{J}), y \in (\mathcal{J})_1 \};$$
 and

$$\lambda_u(x) := \sup \mathcal{S}(x).$$

Before presenting further results involving these constructions, it may be helpful to recall some of our results from [22]. Part (i) of the following theorem extends a C^* -algebra result due to Rørdam (see [13, Proposition 3.1]). The proof given in [22, Theorem 2.2] follows his argument with suitable changes necessitated by the nonassociativity of Jordan algebras.

Theorem 2.1. Let \mathcal{J} be a unital JB^* -algebra and let $x \in (\mathcal{J})_1$.

(i) Let $\|\gamma x - u_o\| \le \gamma - 1$ for some $\gamma \ge 1$ and some $u_o \in \mathcal{U}(\mathcal{J})$. Let $(\alpha_2, \ldots, \alpha_m) \in \mathbb{R}^{m-1}$ with $0 \le \alpha_j < \gamma^{-1}$ and $\gamma^{-1} + \sum_{j=2}^m \alpha_j = 1$. Then there exist unitaries u_1, \ldots, u_m in \mathcal{J} such that

$$x = \gamma^{-1}u_1 + \sum_{j=2}^{m} \alpha_j u_j.$$

Moreover, $(\gamma, \infty) \subseteq \mathcal{V}(x)$.

(ii) If $(\gamma, \infty) \subseteq \mathcal{V}(x)$ then for all $r > \gamma$ there is $u_1 \in \mathcal{U}(\mathcal{J})$ such that $||rx - u_1|| \le r - 1$.

This immediately gives the following result (cf. [22, Corollary 2.3]).

Corollary 2.2. For any unital JB^* -algebra \mathcal{J} , $\operatorname{co}_{\gamma} \mathcal{U}(\mathcal{J}) \subseteq \operatorname{co}_{\delta} \mathcal{U}(\mathcal{J})$ whenever $1 \leq \gamma \leq \delta$. Thus, for each $x \in (\mathcal{J})_1$, $\mathcal{V}(x)$ is either empty or equal to $[\gamma, \infty)$ or (γ, ∞) for some $\gamma \geq 1$.

The following result gives some interesting relationship between the sets S(x) and V(x); in particular, $(\inf V(x))^{-1} = \sup S(x)$ if $V(x) \neq \emptyset$:

Theorem 2.3 ([22, Theorem 2.5]). Let \mathcal{J} be a unital JB^* -algebra and let $x \in (\mathcal{J})_1$. Then:

- (i) If $\lambda \in \mathcal{S}(x)$ and $\lambda > 0$ then $(\lambda^{-1}, \infty) \subseteq \mathcal{V}(x)$.
- (ii) If $\delta \in \mathcal{V}(x)$ then $\delta^{-1} \in \mathcal{S}(x)$.
- (iii) $\lambda_u(x) = 0$ if and only if $\mathcal{V}(x) = \emptyset$.
- (iv) If $\lambda_u(x) > 0$ then $S(x) = [0, \lambda_u(x))$ or $[0, \lambda_u(x)]$.
- (v) If $\lambda_u(x) > 0$ and if $0 < \lambda < \lambda_u(x)$ then $\lambda^{-1} \in \mathcal{V}(x)$.
- (vi) If $\lambda_u(x) > 0$ then $(\inf \mathcal{V}(x))^{-1} = \lambda_u(x)$.
- (vii) If $\inf(\mathcal{V}(x)) \in \mathcal{V}(x)$ then $\lambda_u(x) \in \mathcal{S}(x)$.

As the next example shows, $\lambda_u(x) \in \mathcal{S}(x)$ may not imply inf $\mathcal{V}(x) \in \mathcal{V}(x)$.

Example 2.4. Let $\mathcal{J} = \mathcal{C}_{\mathbb{C}}(\Delta)$ be the algebra of all complex-valued continuous functions on the closed unit disk Δ in the complex plane \mathbb{C} . For any integer $n \geq 2$, let the functions $f_n \in \mathcal{C}_{\mathbb{C}}(\Delta)$ be given by $f_n(z) = (1 - \frac{1}{n})z + \frac{1}{n}$. Then $\lambda_u(f_n) \in \mathcal{S}(f_n)$ but inf $\mathcal{V}(f_n) \notin \mathcal{V}(f_n)$.

Indeed, since $f_n = \frac{1}{n}e + (1 - \frac{1}{n})g$ where $e \in \mathcal{U}(\mathcal{J})$, $g \in (\mathcal{J})_1$ are given by e(z) = 1 and g(z) = z for all $z \in \Delta$, we have $\lambda_u(f_n) \geq \frac{1}{n}$. Suppose $\lambda_u(f_n) > \frac{1}{n}$. Then by Part (v) of Theorem 2.3, $(\frac{1}{n})^{-1} \in \mathcal{V}(f_n)$ so that $n \in \mathcal{V}(f_n)$. This contradicts the fact that the unitary rank $u(f_n) \neq n$ (cf. [17, Example 2.5]). Therefore, $\lambda_u(f_n) = \frac{1}{n}$. Hence, $\lambda_u(f_n) \in \mathcal{S}(f_n)$. But, by Part (vi) of Theorem 2.3, inf $\mathcal{V}(f_n) = (\lambda_u(f_n))^{-1} = n \notin \mathcal{V}(f_n)$.

The following example shows the existence of an element x in a C^* -algebra of tsr1 with $\lambda_u(x) > 0$ but inf $\mathcal{V}(x) \notin \mathcal{V}(x)$:

Example 2.5. Let $\mathcal{J} = \mathcal{C}_{\mathbb{C}}((\mathbb{N} \cup \{\infty\}))$ be the C^* -algebra of all convergent complex sequences, where \mathbb{N} denotes the set of natural numbers (cf. [18, Remark 5.11]). If $f \in (\mathcal{J})^{\circ}_{1}$ (the open unit ball of \mathcal{J}) is defined by

$$f(n) = \begin{cases} (2n)^{-1} e^{\frac{1}{2}i\pi n} & \text{if } n \in \mathbb{N}, \\ 0 & \text{otherwise,} \end{cases}$$

then inf $\mathcal{V}(f) \notin \mathcal{V}(f)$ even though \mathcal{J} is of tsr1.

This is because \mathcal{J} is of tsr1 by [12, Proposition 1.7]. Since $f \in (\mathcal{J})_1^{\circ}$, we get $f \in co_{2^+}\mathcal{U}(\mathcal{J})$ by [15, Theorem 11], where

$$co_{2^{+}}\mathcal{U}(\mathcal{J}) = \begin{cases} x \in \mathcal{J} : \text{for each } \epsilon > 0, \ x \text{ has convex decomposition} \end{cases}$$

$$\sum_{i=1}^{3} \alpha_i u_i \text{ with } u_i \in \mathcal{U}(\mathcal{J}), \alpha_3 < \epsilon$$

Hence, inf $\mathcal{V}(x) = 2$ by [17, Theorem 30]. However, u(x) > 2 by [6, Remark 19]. Thus, inf $\mathcal{V}(x) \notin \mathcal{V}(x)$ by [17, Lemma 24].

From Part (iii) of Theorem 2.3, we get the following connections among $\alpha(x)$, $\mathcal{V}(x)$ and $\lambda_u(x)$ (cf. [22, Corollary 2.6]):

Corollary 2.6. For any $x \in (\mathcal{J})_1 \setminus \mathcal{J}_{inv}$, the following statements are equivalent:

- (i) $\alpha(x) < 1 \Rightarrow \mathcal{V}(x) \neq \emptyset$.
- (ii) $\lambda_u(x) = 0 \Rightarrow \alpha(x) = 1$.
- (iii) $\alpha(x) < 1 \Rightarrow \lambda_u(x) > 0$.

For the elements x with $\mathcal{V}(x) \cap [1,2) \neq \emptyset$, we know the following relations among dist $(x, \mathcal{U}(\mathcal{J}))$, $\mathcal{V}(x)$ and $\mathcal{S}(x)$ (see [22, Theorem 2.7]):

Theorem 2.7. Let $0 \le \gamma < \frac{1}{2}$. Let \mathcal{J} be a unital JB^* -algebra and let $x \in (\mathcal{J})_1$. Then the following statements are equivalent:

- (i) $\operatorname{dist}(x, \mathcal{U}(\mathcal{J})) < 2\gamma$.
- (ii) $x \in \gamma \mathcal{U}(\mathcal{J}) + (1 \gamma)\mathcal{U}(\mathcal{J}).$ (iii) $(1 \gamma)^{-1} \in \mathcal{V}(x).$
- (iv) $1 \gamma \in \mathcal{S}(x)$.

This leads us to the following characterizations of the invertible elements in the unit ball; for such elements x, we obtain $\inf \mathcal{V}(x) = 2(1 + ||x^{-1}||^{-1})^{-1}$ (see [22, Corollary 2.8]):

Corollary 2.8. Let \mathcal{J} be a unital JB^* -algebra and let $x \in (\mathcal{J})_1$. Then:

- (a) The following statements are equivalent:
 - (i) x is invertible.
 - (ii) $x \in \gamma \mathcal{U}(\mathcal{J}) + (1 \gamma)\mathcal{U}(\mathcal{J})$ for some $0 \le \gamma < \frac{1}{2}$.
 - (iii) $\operatorname{dist}(x, \mathcal{U}(\mathcal{J})) \leq 2\gamma \text{ for some } 0 \leq \gamma < \frac{1}{2}.$
 - (iv) $1 \gamma \in \mathcal{S}(x)$ for some $0 \le \gamma < \frac{1}{2}$.
 - (v) $(1-\gamma)^{-1} \in \mathcal{V}(x)$ for some $0 \le \gamma < \frac{1}{2}$.
 - (vi) $\lambda \in \mathcal{V}(x)$ for some $1 \leq \lambda < 2$.
- (b) Moreover, if x is invertible then $\inf \mathcal{V}(x) = 2(1 + ||x^{-1}||^{-1})^{-1}$ and $\mathcal{V}(x) = [2(1 + ||x^{-1}||^{-1})^{-1}, \infty).$

Using Part (b) of Corollary 2.8 together with Theorem 2.3 and Theorem 2.7, one can easily deduce that for any invertible element x in the closed unit ball of a unital JB^* -algebra $\mathcal{J}, \lambda_u(x) = \frac{1}{2}(1 + ||x^{-1}||^{-1})$ and $x = \lambda_u(x)u_1 + (1 - \lambda_u(x))u_2$ for some $u_1, u_2 \in \mathcal{U}(\mathcal{J})$ (cf. [22, Corollary 2.10).

We proceed to obtain formulae for $\lambda_u(x)$ when x is a noninvertible element of the closed unit ball in a unital JB^* -algebra. We shall also compute $\mathcal{V}(x)$ and $\mathcal{S}(x)$ for such elements, and we shall derive some estimates of $\inf \mathcal{V}(x)$ in terms of $\alpha(x)$.

The following result gives an upper bound for $\lambda_u(x)$ on noninvertible elements x of the closed unit ball:

Theorem 2.9. Let \mathcal{J} be the JB^* -algebra and let $x \in (\mathcal{J})_1$ be noninvertible. Then $\lambda_u(x) \leq \frac{1}{2}(1 - \alpha(x))$. Further, if $\alpha(x) = 1$ then $\lambda_u(x) = 0$.

Proof. Since $||x|| \le 1$, $\alpha(x) \le 1$ and so the inequality is true if $\lambda_u(x) = 0$. Next, suppose $\lambda_u(x) > 0$ and $x = \lambda u + (1 - \lambda)v$ with $u \in \mathcal{U}(\mathcal{J}), v \in (\mathcal{J})_1$ and $0 < \lambda \le 1$. If $1 \ge \lambda > \frac{1}{2}$ then $1 \le \lambda^{-1} < 2$, hence $x = \lambda u + (1 - \lambda)v$ gives $\|\lambda^{-1}x - u\| < 1$ and so $\lambda^{-1}x$ is invertible in the isotope $\mathcal{J}^{[u]}$ by [18, Lemma 2.1]. So that $x \in \mathcal{J}_{inv}$ by [18, Lemma 4.2]; this contradicts the hypothesis. Therefore, $0 < \lambda \le \frac{1}{2}$. Thus we have

(1)
$$||x - \lambda(u+v)|| = ||(1-2\lambda)v|| \le 1 - 2\lambda.$$

For any positive integer n, $\|(1-\frac{1}{n})v\| < 1$, so that $u + (1-\frac{1}{n})v$ is invertible in $\mathcal{J}^{[u]}$ again by [18, Lemma 2.1], and hence it is in \mathcal{J}_{inv} as above. Hence, $\alpha(x) \leq \|x - \lambda(u + (1 - \frac{1}{n})v)\|$ for all positive integers $n \in \mathbb{N}$, and so

(2)
$$\alpha(x) \le ||x - \lambda(u+v)||.$$

From (1) and (2), we conclude that $\lambda_u(x) \leq \frac{1}{2}(1 - \alpha(x))$.

Further, if $\alpha(x) = 1$, then $\lambda_u(x) \leq \frac{1}{2}(1 - \alpha(x))$ gives $\lambda_u(x) \leq 0$, and hence $\lambda_u(x) = 0$ because $\lambda_u(x) \geq 0$.

We now give the following extension of [17, Theorem 34] for noninvertible elements of the open unit ball in a general JB^* -algebra; the norm 1 case will be discussed in the next section. For the invertible elements of the unit ball, see Corollary 2.8.

Theorem 2.10. Let \mathcal{J} be a unital JB^* -algebra and $x \in (\mathcal{J})_1^{\circ} \setminus \mathcal{J}_{inv}$ (so that $\alpha(x) < 1$). Then $\mathcal{V}(x) \neq \emptyset$. Further:

- (i) $\mathcal{V}(x) = [(\lambda_u(x))^{-1}, \infty) \text{ or } \mathcal{V}(x) = ((\lambda_u(x))^{-1}, \infty).$ (ii) $u(x) = n \text{ if } n \neq (\lambda_u(x))^{-1} \text{ given by } n 1 < (\lambda_u(x))^{-1} \leq n.$
- (iii) u(x) = n or u(x) = n + 1 if $n = (\lambda_u(x))^{-1}$.

In any case, for each $0 < \epsilon \le 1$, there exist $u_1, \ldots, u_{n+1} \in \mathcal{U}(\mathcal{J})$ such that $x = (\epsilon + n)^{-1}(u_1 + \dots + u_n + \epsilon u_{n+1}).$ Moreover, $0 < (u(x))^{-1} \le \lambda_u(x) \le \frac{1}{2}(1 - \alpha(x)).$ Hence $x \in \operatorname{co}_{n+} \mathcal{U}(\mathcal{J}).$

Proof. By [20, Theorem 2.3], $u(x) < \infty$. Since $u(x) = \min(\mathcal{V}(x) \cap \mathbb{N})$ by [17, Lemma 24], we have $\mathcal{V}(x) \neq \emptyset$. Hence, $\lambda_u(x) = (\inf \mathcal{V}(x))^{-1}$ by Theorem 2.3. Thus, Part (i) follows from Corollary 2.2. However, the other parts follow easily from Part (i) and Theorem 2.9.

We close the section with the following realization:

Corollary 2.11. Let \mathcal{J} be a JB^* -algebra of tsr1 and let $x \in (\mathcal{J})_1^{\circ} \setminus \mathcal{J}_{inv}$. Then

$$\mathcal{V}(x) = [2, \infty)$$
 or $\mathcal{V}(x) = (2, \infty)$.

Proof. By Theorem 2.10,

$$\mathcal{V}(x) = [(\lambda_u(x))^{-1}, \infty) \quad \text{or} \quad \mathcal{V}(x) = ((\lambda_u(x))^{-1}, \infty).$$

Since \mathcal{J} is of tsr1 and $x \in (\mathcal{J})_1^{\circ}$, we get $x \in co_{2+} \mathcal{U}(\mathcal{J})$ by [15, Theorem 11]. Hence, $2 + \epsilon \in \mathcal{V}(x)$ for all $0 < \epsilon \le 1$. Now, since $\alpha(x) = 0$, we get

$$2 \le (\lambda_u(x))^{-1} = \inf \mathcal{V}(x) \le 2$$

by Theorem 2.3 and Theorem 2.9.

3. The Λ_u -condition

In the previous section, we observed several facts about convex combinations of unitaries in relation to the λ_u -function. We now introduce a condition on a general JB^* -algebra, called the Λ_u -condition. Under this condition, more precise assertions about the λ_u -function can be made. In particular, for any element x in a JB^* -algebra satisfying the Λ_u -condition, we have $\mathcal{V}(x) \neq \emptyset$ and $\lambda_u(x) > 0$ whenever $\alpha(x) < 1$. We shall observe some interesting characterizations of the Λ_u -condition, which in turn would give the bound of $\operatorname{inf} \mathcal{V}(x)$ for elements x with $\alpha(x) < 1$.

Definition 3.1. We say that a unital JB^* -algebra satisfies the Λ_u -condition if and only if every noninvertible unit vector $y \in \mathcal{J}$ with $\lambda_u(y) = 0$ satisfies $\alpha(y) = 1.$

It may be noted that for any $x \in (\mathcal{J})_1^{\circ}$, we have $\mathcal{V}(x) \neq \emptyset$ by [20, Theorem 2.3] and [17, Lemma 24]. Hence, $\lambda_u(x) \neq 0$ by Theorem 2.3. Here, it is worth recalling from Theorem 2.9 that $\lambda_u(x) = 0$ if $\alpha(x) = 1$ with $x \in (\mathcal{J})_1$. Thus, in any unital JB^* -algebra satisfying the Λ_u -condition, we have $\lambda_u(x)=0$ if and only if $\alpha(x) = 1$.

Example 3.2. Any finite-dimensional JB^* -algebra and all unital C^* -algebras satisfy the Λ_u -condition by [17, Theorem 34] and [11, Theorem 5.1]), respectively.

The Λ_u -condition is good enough to guarantee an appropriate JB^* -algebra analogue of [13, Theorem 3.3], and hence that of [11, Theorem 5.1].

Theorem 3.3. Suppose the unital JB^* -algebra \mathcal{J} , satisfies the Λ_u -condition and let $x \in (\mathcal{J})_1$ be noninvertible with $\alpha(x) < 1$. Then:

- (i) $\lambda_u(x) > 0$.
- (ii) $V(x) = [(\lambda_u(x))^{-1}, \infty) \text{ or } V(x) = ((\lambda_u(x))^{-1}, \infty).$ (iii) $u(x) = n \text{ if } n \neq (\lambda_u(x))^{-1} \text{ given by } n 1 < (\lambda_u(x))^{-1} \le n.$
- (iv) u(x) = n or u(x) = n + 1 if $n = (\lambda_u(x))^{-1}$.

In either case, for each $0 < \epsilon \le 1$, there exist $u_1, \ldots, u_{n+1} \in \mathcal{U}(\mathcal{J})$ such that $x = (\epsilon + n)^{-1}(u_1 + \dots + u_n + \epsilon u_{n+1}), \text{ hence } x \in co_{n+} \mathcal{U}(\mathcal{J}).$

Proof. If ||x|| = 1 then from Corollary 2.6 we get $\mathcal{V}(x) \neq \emptyset$ since $\alpha(x) < 1$. Hence, assertion (ii) follows for ||x|| = 1 from Theorem 2.3 and Corollary 2.2. In the case ||x|| < 1, assertion (ii) follows from Theorem 2.10. The remaining assertions can easily be deduced from the assertion (i).

Corollary 3.4. Let \mathcal{J} be a unital JB^* -algebra satisfying the Λ_u -condition. Then:

- (i) $(\mathcal{J})_1 \setminus \operatorname{co} \mathcal{U}(\mathcal{J}) \subseteq \{ y \in \mathcal{J} : ||y|| = \alpha(y) = 1 \}.$
- (ii) If $\alpha(x) < 1$ for all $x \in (\mathcal{J})_1$ then $(\mathcal{J})_1 = \operatorname{co} \mathcal{U}(\mathcal{J})$.
- (iii) If \mathcal{J} is of tsr1 then $(\mathcal{J})_1 = co \mathcal{U}(\mathcal{J})$.

Proof. (i) If $x \in (\mathcal{J})_1 \setminus \operatorname{co} \mathcal{U}(\mathcal{J})$, then ||x|| = 1 (because ||x|| < 1 gives $x \in \operatorname{co} \mathcal{U}(\mathcal{J})$ by [20, Thorem 2.3]) and $\alpha(x) = 1$ (for otherwise, $\lambda_u(x) > 0$ so that $\mathcal{V}(x) \neq \emptyset$ by Theorem 2.3, and hence $x \in \operatorname{co} \mathcal{U}(\mathcal{J})$. Thus,

$$(\mathcal{J})_1 \setminus \operatorname{co} \mathcal{U}(\mathcal{J}) \subseteq \{ y \in \mathcal{J} : ||y|| = \alpha(y) = 1 \}.$$

- (ii) Since $\alpha(x) < 1$ for all $x \in \mathcal{J}$, $\{y \in \mathcal{J} : ||y|| = \alpha(y) = 1\}$ is the empty set and hence $(\mathcal{J})_1 = \operatorname{co} \mathcal{U}(\mathcal{J})$ by assertion (i).
- (iii) As \mathcal{J} is of tsr1, $\alpha(x) = 0$ for all $x \in \mathcal{J}$. So the result follows from assertion (ii).

The next result provides motivation for the subsequent results.

Corollary 3.5. Suppose the unital JB^* -algebra \mathcal{J} satisfies the Λ_u -condition, and let $x \in (\mathcal{J})_1$ be noninvertible with $\alpha(x) < 1$. Then $\lambda_u(x) > 0$ and so $\mathcal{V}(x) \neq \emptyset$. Moreover:

- (i) $((\lambda_u(x))^{-1}, \infty) \subseteq \mathcal{V}(x)$. (ii) $(\lambda_u(x))^{-1} = \inf(\mathcal{V}(x))$. (iii) If $\lambda > (\lambda_u(x))^{-1}$, then there is $u \in \mathcal{U}(\mathcal{J})$ with $\|\lambda x u\| \le \lambda 1$.

Proof. Since \mathcal{J} satisfies the Λ_u -condition and since $\alpha(x) < 1$, $\lambda_u(x) > 0$. Now, the result follows from Theorem 2.1 and Theorem 2.3.

Next, we see if we can identify $\inf \mathcal{V}(x)$ in terms of $\alpha(x)$. For any noninvertible element x of the closed unit ball in a unital JB^* -algebra $\mathcal J$ with $\alpha(x) < 1$, the number β_x is defined by $\beta_x = 2(1 - \alpha(x))^{-1}$:

Theorem 3.6. Let \mathcal{J} be a unital JB^* -algebra and suppose $x \in (\mathcal{J})_1$ with $\alpha(x) < 1$. Then the following conditions are equivalent:

- (Λ_1) $(\beta_x, \infty) \subseteq \mathcal{V}(x)$.
- (Λ_2) $(\lambda_u(x))^{-1} = \inf \mathcal{V}(x) = \beta_x.$
- (Λ_3) For all $\gamma > \beta_x$, there exists $u \in \mathcal{U}(\mathcal{J})$ such that $||\gamma x u|| \leq \gamma 1$.
- $(\Lambda_4) \ \lambda_u(x) \geq \beta_x^{-1}$.

Proof. $(\Lambda_1) \Rightarrow (\Lambda_2)$: By [17, Theorem 30], $\mathcal{V}(x) \subseteq [\beta_x, \infty)$. Then, by the condition (Λ_1) , inf $\mathcal{V}(x) = \beta_x$. Hence, the required equality follows from Theorem 2.3.

- $(\Lambda_2) \Rightarrow (\Lambda_3)$: See [17, Theorem 30].
- $(\Lambda_3) \Rightarrow (\Lambda_4)$: Let $\gamma > \beta_x$. Then, by the condition (Λ_3) , there exists $u \in \mathcal{U}(\mathcal{J})$ such that $\|\gamma x - u\| \leq \gamma - 1$. Then, by Theorem 2.1, $(\gamma, \infty) \subseteq \mathcal{V}(x)$ so that inf $\mathcal{V}(x) \leq \gamma$. Hence, by Theorem 2.3, $\lambda_u(x) \geq \gamma^{-1}$. It follows that $\lambda_u(x) \ge \beta_x^{-1}$.

 $(\Lambda_4) \Rightarrow (\Lambda_1)$: Let $\gamma > \beta_x$. Then, by the condition (Λ_4) , $0 < \gamma^{-1} < \beta_x^{-1} \le \lambda_u(x)$. Thus, $\gamma^{-1} \in \mathcal{S}(x)$, and so $(\gamma, \infty) \subseteq \mathcal{V}(x)$ by the assertion (i) of Theorem 2.3. It follows that $(\beta_x, \infty) \subseteq \mathcal{V}(x)$.

Corollary 3.7. Let \mathcal{J} be a unital JB^* -algebra and $x \in (\mathcal{J})_1$ with $\alpha(x) < 1$ satisfy any of the conditions (Λ_1) - (Λ_4) . If $\alpha(x) < 1 - \frac{2}{m}$ then $u(x) \leq m$.

Proof. As $\alpha(x) < 1 - \frac{2}{m}$, $m > 2(1 - \alpha(x))^{-1}$. Hence, for the case when $x \notin \mathcal{J}_{\text{inv}}$, we have by [17, Theorem 30] that $m \in \mathcal{V}(x)$, or equivalently, $u(x) \leq m$. If $x \in \mathcal{J}_{\text{inv}}$ then we get from Corollary 2.8 that $m \in \mathcal{V}(x)$ since $m \geq 2$, and hence $u(x) \leq m$.

Corollary 3.8. Let \mathcal{J} be a unital JB^* -algebra of tsr1 and let x be a non-invertible element of $(\mathcal{J})_1$. Let $0 < \epsilon \le 1$. If x satisfies any one of the conditions (Λ_1) - (Λ_4) , then there exist unitaries u_1, u_2 and u_3 in \mathcal{J} such that $x = (2 + \epsilon)^{-1}(u_1 + u_2 + \epsilon u_3)$.

Proof. Since \mathcal{J} is of tsr1, $\alpha(x) = 0$ for all $x \in \mathcal{J}$. If the JB^* -algebra \mathcal{J} satisfies any one of the conditions (Λ_1) – (Λ_4) , then for each noninvertible $x \in (\mathcal{J})_1$ we have $(2, \infty) \subseteq \mathcal{V}(x)$ since $\alpha(x) = 0$ gives $2 + \epsilon > 2(1 + \alpha(x))^{-1}$ for any $\epsilon \in (0, 1]$. This proves the result.

Remark 3.9. [15, Theorem 11] states the same fact for elements of $(\mathcal{J})_1^{\circ}$.

If in Theorem 3.6 we restrict x to be of norm 1, then we obtain more equivalent conditions in the following result:

Theorem 3.10. Let \mathcal{J} be a unital JB^* -algebra and let $x \in \mathcal{J} \setminus \mathcal{J}_{inv}$ with ||x|| = 1 and $\alpha(x) < 1$. Then the following are equivalent:

- (i) (Λ_1) holds for x.
- (ii) (Λ_2) holds for x.
- (iii) (Λ_3) hold for x.
- (iv) (Λ_4) holds for x.
- (v) (Λ_1) holds for each rx with $0 < r \le 1$.
- (vi) (Λ_2) holds for each rx with $0 < r \le 1$.
- (vii) (Λ_3) holds for each rx with $0 < r \le 1$.
- (viii) (Λ_4) holds for each rx with $0 < r \le 1$.
- (ix) If $y \in \operatorname{Sp}(x)$ (the linear span of x) and $||y|| > \alpha(y) + 2$, then

$$||y - u|| \le ||y|| - 1$$

for some $u \in \mathcal{U}(\mathcal{J})$.

Moreover, if any one of the above conditions (i) to (ix) holds for all $y \in \mathcal{J} \setminus \mathcal{J}_{inv}$ with ||y|| = 1 and $\alpha(y) < 1$, then \mathcal{J} satisfies the Λ_u -condition.

Proof. We first establish the equivalence of the listed conditions. By Theorem 3.6, (i)–(iv) are equivalent. It is clear that $rx \in (\mathcal{J})_1$; and by [18, Lemma 6.2], $\alpha(rx) = r\alpha(x) < 1$ (as $\alpha(x) < 1$) for each $0 < r \le 1$. Hence, again by Theorem 3.6, (v)–(viii) are equivalent. Next, we show (ii) \Leftrightarrow (vi), (iv) \Rightarrow (ix) and (ix) \Rightarrow (i).

(ii) \Leftrightarrow (vi): Of course, (vi) \Rightarrow (ii). Conversely, suppose

$$(\lambda_u(x))^{-1} = \inf \mathcal{V}(x) = \beta_x.$$

Let r be any fixed number such that 0 < r < 1. Then $rx \in (\mathcal{J})_1^{\circ} \setminus \mathcal{J}_{inv}$; so that $\lambda_u(rx) \leq \beta_{rx}^{-1}$ by Theorem 2.9. Let $\lambda > \beta_x$. Then, by the condition (ii) and Corollary 2.2, $\lambda \in \mathcal{V}(x)$ so that $x \in co_{\lambda}\mathcal{U}(\mathcal{J})$. Hence, there exist $u_1, \ldots, u_n \in \mathcal{U}(\mathcal{J})$ with $n-1 < \lambda \leq n \in \mathbb{N}$ such that

$$x = \lambda^{-1}(u_1 + \dots + u_{n-1} + (1 + \lambda - n)u_n),$$

so that

$$rx = r\lambda^{-1}(u_1 + \dots + u_{n-1} + (1 + \lambda - n)u_n) + \frac{1 - r}{2}u_1 + \frac{1 - r}{2}(-u_1).$$

This implies

$$\lambda_u(rx) \ge r\lambda^{-1} + \frac{1-r}{2} = r\beta_x^{-1} + \frac{1-r}{2} + r\lambda^{-1} - r\beta_x^{-1}$$
$$= \frac{1}{2}(1 - r\alpha(x)) + r(\lambda^{-1} - \beta_x^{-1}) = \beta_{rx}^{-1} + r(\lambda^{-1} - \beta_x^{-1}).$$

Hence, $\lambda_u(rx) \geq \beta_{rx}^{-1} + r(\lambda^{-1} - \beta_x^{-1})$ for all $\lambda > \beta_x$. Thus, $\lambda_u(rx) = \beta_{rx}^{-1}$. (iv) \Rightarrow (ix): Let $y \in \operatorname{Sp}(x)$ with $||y|| > \alpha(y) + 2$. Clearly, $||y||^{-1}$ exists and satisfies

$$||y||^{-1} < \frac{||y||^{-1}}{2} (||y|| - \alpha(y)) = \frac{1}{2} (1 - \alpha(||y||^{-1}y)).$$

Since $x = ||y||^{-1}y$, we get by (iv) that

$$||y||^{-1} < \frac{1}{2}(1 - \alpha(x)) \le \lambda_u(x).$$

Then, by Theorem 2.3, for $\lambda = \|y\|^{-1}$ there exist $u \in \mathcal{U}(\mathcal{J})$ and $v \in (\mathcal{J})_1$ such that $x = \lambda u + (1 - \lambda)v$. Hence, $\|x - \lambda u\| \le 1 - \lambda$ as $\lambda \le 1$ (in fact, $\lambda \le \frac{1}{2}$ as $\lambda = \|y\|^{-1} < \frac{1}{\alpha(x) + 2} \le \frac{1}{2}$). Thus, $\|y - u\| \le \|y\| - 1$.

(ix) \Rightarrow (i): For any $\gamma > 2(1-\alpha(x))^{-1}$, we have $\|\gamma x\| - \alpha(\gamma x) = \gamma - \gamma \alpha(x) > 2$ so that $\|\gamma x\| > \alpha(\gamma x) + 2$. Hence, by (ix), $\|\gamma x - u\| \leq \|\gamma x\| - 1$ for some $u \in \mathcal{U}(\mathcal{J})$. So, by Theorem 2.1, $(\gamma, \infty) \subseteq \mathcal{V}(x)$. Thus, $(\beta_x, \infty) \subseteq \mathcal{V}(x)$.

Finally, suppose $x \in \mathcal{J} \setminus \mathcal{J}_{inv}$ with ||x|| = 1 and $\lambda_u(x) = 0$. Then $\alpha(x) = 1$: for otherwise, $\alpha(x) < 1$ would give $\lambda_u(x) \neq 0$ by (iv); a contradiction. However, all of the conditions (i) to (ix) are equivalent as seen above. \square

We close this section by observing the following fact about the norm 1 noninvertible elements in a JB^* -algebra of tsr1.

Corollary 3.11. Let \mathcal{J} be a unital JB^* -algebra of tsr1 and $x \in \mathcal{J} \setminus \mathcal{J}_{inv}$ with ||x|| = 1. If x satisfies any of the conditions (i)–(ix) given in Theorem 3.10, then:

- (i) $V(x) = [2, \infty)$ or $V(x) = (2, \infty)$.
- (ii) u(x) = 2 or u(x) = 3.

Further, for each $\epsilon \in (0,1]$, there are unitaries $u_1, \ldots, u_3 \in \mathcal{J}$ such that $x = (2+\epsilon)^{-1}(u_1 + u_2 + \epsilon u_3)$. Hence, $x \in \operatorname{co}_{2+} \mathcal{U}(\mathcal{J})$.

Proof. For this, we only have to show that $(2, \infty) \subseteq \mathcal{V}(x)$. Suppose $\gamma > 2$. Then $\|\gamma x\| = \gamma > 2$ and hence, by the condition (ix) in Theorem 3.10, there exists some unitary $u \in \mathcal{U}(\mathcal{J})$ such that $\|\gamma x - u\| = \|\gamma x\| - 1 = \gamma - 1$. Then, by Theorem 2.1, $(\gamma, \infty) \subseteq \mathcal{V}(x)$. We conclude that $(2, \infty) \subseteq \mathcal{V}(x)$.

4. An open problem

The following question remains unanswered:

Does every JB^* -algebra satisfy the Λ_u -condition?

As noted in the previous section, every unital C^* -algebra satisfies the Λ_u -condition. This fact follows immediately from a result due to G. K. Pedersen: $\lambda_u(x) = \frac{1}{2}(1-\alpha(x))$ for $||x|| \leq 1$ with $\alpha(x) < 1$ (see [11, Theorem 5.1]). We do not know if an appropriate analogue of [11, Theorem 5.1] holds for general JB^* -algebras. The proof of this result for C^* -algebras given in [11] by Pedersen depends fundamentally on another result [13, Theorem 2.1], due to M. Rørdam, which may be expressed as follows: for any element T of a C^* -algebra \mathcal{U} , if $a > \alpha(T)$ then there is an invertible element S in \mathcal{U} such that $V(I-E_a) = S(I-E_a)$, where V is a partial isometry in the polar decomposition of T and E_a denotes the spectral projection corresponding to the interval [0,a] for |T|. We do not know if this holds for a general JB^* -algebra but we will show that the proof given in [13] for the C^* -algebra case does not work in the setting of the finite-dimensional JB^* -algebra, $\mathcal{M}_2^s(\mathbb{C})$, consisting of all 2×2 complexified symmetric matrices.

Recall the following steps in the proof of [13, Theorem 2.1]: For 0 < b < a, let f and g be continuous functions defined on the interval $[0, \infty]$ by

$$f(t) = \begin{cases} b^{-1} & \text{if } t \leq b, \\ t^{-1} & \text{otherwise,} \end{cases} \quad \text{and} \quad g(t) = \begin{cases} 0 & \text{if } t \leq b, \\ \frac{t-b}{a-b} & \text{if } b < t \leq a, \\ 1 & \text{otherwise.} \end{cases}$$

Choose b such that $\alpha(T) < b < a$ and $A \in \mathcal{U}_{inv}$ such that $||T^* - A|| < b$. Let $B = Af(|T^*|)$, C = (1 - BV)g(|T|) and D = I - C. Then the required element S is given by $S = B^{-1}D$.

Example 4.1. Let $\mathcal J$ be the JB^* -algebra $\mathcal M_2^s(\mathbb C)$ and $T=\begin{bmatrix}i&i+1\\i+1&2\end{bmatrix}$. Then $|T|=\begin{bmatrix}1&1-i\\1+i&2\end{bmatrix}$, $|T^*|=\begin{bmatrix}1&1+i\\1-i&2\end{bmatrix}$ so that $f(|T^*|)=\frac{1}{18}\begin{bmatrix}8&-i-1\\i-1&7\end{bmatrix}$ and $g(|T|)=\frac{1}{3}\begin{bmatrix}1&1-i\\1+i&2\end{bmatrix}$. It is easy to see that $\alpha(T)=0$ (cf. [18, Theorem 5.2]). Let a=3. Choosing b=2 we have $\alpha(T)< b< a$. We take $A=\begin{bmatrix}1-i&1-i\\1-i&3\end{bmatrix}\in\mathcal J$. Then A is invertible and satisfies

$$\begin{split} \|T^* - A\| &= \|I\| < b, \text{ so that } B = Af(|T^*|) = \frac{1}{18} \begin{bmatrix} 8-6i & 5-7i \\ 5-5i & 19 \end{bmatrix} \text{ with} \\ \text{the inverse } B^{-1} &= \frac{3+i}{30} \begin{bmatrix} 19 & 7i-5 \\ 5i-5 & 8-6i \end{bmatrix}. \text{ Next, the polar decomposition} \\ T &= V|T| \text{ gives } V = \begin{bmatrix} i & 0 \\ 0 & 1 \end{bmatrix}, \text{ so we calculate } C = (I-BV)g(|T|) = \frac{1}{9} \begin{bmatrix} -i & -i-1 \\ -i-1 & -2 \end{bmatrix}. \text{ Hence, } D = I-C = \frac{1}{9} \begin{bmatrix} 9+i & 1+i \\ 1+i & 11 \end{bmatrix}. \text{ Thus,} \\ S &= B^{-1}D = \frac{1}{90} \begin{bmatrix} 152+74i & -68i+84i \\ -50+30i & 100-40i \end{bmatrix} \end{split}$$

is not in the algebra \mathcal{J} , unfortunately.

Acknowledgement. The author would like to thank the editor for his help and guidance in improving the paper, both in terms of language and TEX.

References

- Alfsen, Erik M.; Shultz, Frederic W.; Størmer, Erling. A Gelfand-Neumark theorem for Jordan algebras. *Advances in Math.* 28 (1978), no. 1, 11–56. MR0482210 (58 #2292), Zbl 0397.46065, doi:10.1016/0001-8708(78)90044-0.
- [2] ARON, RICHARD M.; LOHMAN, ROBERT H. A geometric function determined by extreme points of the unit ball of a normed space. *Pacific J. Math.* 127 (1987), no. 2, 209–231. MR0881756 (88f:46031), Zbl 662.46020.
- [3] Braun, Robert; Kaup, Wilhelm; Upmeier, Harald. A holomorphic characterization of Jordan C^* -algebras. $Math.\ Z.\ 161\ (1978),\ no.\ 3,\ 277–290.\ MR0493373\ (58\ \#12398),\ Zbl\ 0385.32002,\ doi: 10.1007/BF01214510.$
- [4] DEVAPAKKIAM, C. VIOLA. Jordan algebras with continuous inverse. Math. Japon. 16 (1971), 115–125. MR0297830 (45 #6882), Zbl 0246.17015.
- [5] JACOBSON, NATHAN. Structure and representations of Jordan algebras. American Mathematical Society, Providence, R.I. 1968. x+453 pp. MR0251099 (40 #4330), Zbl 0218.17010.
- [6] Kadison, Richard V.; Pedersen, Gert K. Means and convex combinations of unitary operators. *Math. Scand.* 57 (1985), no. 2, 249-266. MR0832356 (87g:47078), Zbl 0573.46034.
- [7] Kaup, Wilhelm; Upmeier, Harald. Jordan algebras and symmetric Siegel domains in Banach spaces. $Math.\ Z.,\ 157\ (1977),\ no.\ 2,\ 179–200.\ MR0492414\ (58\ \#11532),\ Zbl\ 0357.32018,\ doi: 10.1007/BF01215150.$
- [8] McCrimmon, Kevin. Macdonald's theorem with inverses. Pacific J. Math. 21 (1967), 315–325. MR0232815 (38 #1138), Zbl 0166.04001, doi: 10.2140/pjm.1967.21.315.
- [9] McCrimmon, Kevin. Jordan algebras and their applications. Bull. Amer. Math. Soc. 84 (1978), no. 4, 612–627. MR0466235 (57 #6115), Zbl 0421.17010.
- [10] Olsen, Catherine L.; Pedersen, Gert K. Convex combinations of unitary operators in von Neumann algebras. J. Funct. Anal. 66 (1986), no. 3, 365–380. MR0839107 (87f:46107), Zbl 0597.46061.
- [11] PEDERSEN, GERT K. The λ -function in operator algebras. J. Operator Theory **26** (1991) no. 2, 345–381. MR1225521 (94j:46056), Zbl 0784.46043.
- [12] RIEFFEL, MARC A. Dimension and stable rank in the K-theory of C^* -algebras. Proc. London Math. Soc. (3) **46** (1983), no. 2, 301–333. MR0693043 (84g:46085) Zbl 0533.46046, doi: 10.1112/plms/s3-46.2.301.

- [13] RØRDAM, MIKAEL. Advances in the theory of unitary rank and regular approximation. Ann. of Math. (2) 128 (1988), no. 1, 153–172. MR0951510 (90c:46072), Zbl 0659.46052.
- [14] SHULTZ, FREDERIC W. On normed Jordan algebras which are Banach dual spaces. J. Funct. Anal., 31 (1979), no. 3, 360–376. MR0531138 (80h:46096), Zbl 0421.46043, doi:10.1016/0022-1236(79)90010-7.
- [15] SIDDIQUI, AKHLAQ A. Asymmetric decompositions of vectors in JB*-algebras. Arch. Math. (Brno) 42 (2006), no. 2, 159–166. MR2240353 (2007c:46051), Zbl 1164.46342.
- [16] SIDDIQUI, AKHLAQ A. Self-adjointness in unitary isotopes of JB^* -algebras. Arch. Math. (Basel), 87 (2006), no. 4, 350–358. MR2263481 (2007g:46082), Zbl 1142.46020, doi: 10.1007/s00013-006-1718-6.
- [17] SIDDIQUI, AKHLAQ A. On unitaries in JB^* -algebras. Indian J. Math. 48 (2006), no. 1, 35–48. MR2229466 (2007m:46112), Zbl 1115.46058.
- [18] SIDDIQUI, AKHLAQ A. JB^* -algebras of topological stable rank 1. Int. J. Math. Math. Sci. **2007**, Art. ID 37186, 24 pp. MR2306360 (2008d:46074), Zbl 1161.46041, doi: 10.1155/2007/37186.
- [19] SIDDIQUI, AKHLAQ A. Average of two extreme points in JBW*-triples. Proc. Japan Acad. Ser. A Math. Sci., 83 (2007), no. 9–10, 176–178. MR2376600 (2009m:46081), Zbl 1207.46046, doi: 10.3792/pjaa.83.176.
- [20] SIDDIQUI, AKHLAQ A. A proof of the Russo-Dye theorem for JB^* -algebras. New York J. Math. 16 (2010), 53-60. MR2645985 (2011e:17051), Zbl 1231.46015.
- [21] SIDDIQUI, AKHLAQ A. Convex combinations of unitaries in JB*-algebras. New York J. Math. 17 (2011), 127–137. MR2781910 (2012b:46151), Zbl 1227.46035.
- [22] SIDDIQUI, AKHLAQ A. The λ_u -function in JB^* -algebras. New York J. Math. 17 (2011), 139–147. MR2781911 (2012c:46111), Zbl 1227.46036.
- [23] UPMEIER, HARALD. Symmetric Banach manifolds and Jordan C^* -algebras. North-Holland Mathematics Studies, 104. North-Holland Publishing Co., Amsterdam, 1985. xii+444 pp. ISBN: 0-444-87651-0. MR0776786 (87a:58022), Zbl 0561.46032.
- [24] WRIGHT, J. D. MAITLAND. Jordan C^* -algebras. $Michigan\ Math.\ J.\ 24\ (1977),\ no.\ 3,\ 291–302.\ MR0487478\ (58\ \#7108),\ Zbl\ 0384.46040,\ doi: 10.1307/mmj/1029001946.$
- [25] WRIGHT, J. D. MAITLAND; YOUNGSON, M. A. On isometries of Jordan algebras. J. London Math. Soc. (2) 17 (1978), no. 2, 339–344. MR482212 (58#2294), Zbl 0384.46041.
- [26] YOUNGSON, MARTIN A. A Vidav theorem for Banach Jordan algebras. Math. Proc. Cambridge Philos. Soc. 84 (1978), no. 2, 263–272. MR0493372 (58#12397). Zbl 0392.46038, doi:10.1017/S0305004100055092.

DEPARTMENT OF MATHEMATICS, COLLEGE OF SCIENCE, KING SAUD UNIVERSITY, P.O. BOX 2455-5, RIYADH-11451, KINGDOM OF SAUDI ARABIA. asiddiqui@ksu.edu.sa

This paper is available via http://nyjm.albany.edu/j/2013/19-10.html.