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Image partition regularity of matrices
near 0 with real entries

Dibyendu De and Ram Krishna Paul

Abstract. We prove that many of the known results regarding image
partition regularity and image partition regularity near zero for finite
and infinite matrices with rational or integer entries have natural ana-
logues for matrices with real entries over the reals, extending work by
N. Hindman.
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1. Introduction

One of the famous classical results of Ramsey Theory is van der Waerden’s
Theorem [12], which states that if r, l ∈ N and N =

⋃r
i=1 Ai, there exist

i ∈ {1, 2, . . . , r} and a, d ∈ N such that {a, a + d, . . . , a + ld} ⊆ Ai. In other
words it says that the entries of M~x, where

M =


1 0
1 1
1 2
...

...
1 l


and

~x =
(

a
d

)
∈ N2,

are monochromatic.
This suggests the following definition:
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Definition 1.1. Let u, v ∈ N and let M be a u×v matrix with entries from
Q. The matrix M is image partition regular over N if and only if whenever
r ∈ N and N =

⋃r
i=1 Ci, there exist i ∈ {1, 2, . . . , r} and ~x ∈ Nv such that

M~x ∈ Cu
i .

Characterizations of those matrices with entries from Q that are image
partition regular over N were obtained in [8]. The underlying fact behind the
characterization of finite image partition regular matrices is that whenever N
is finitely colored one color should contain a central set [5, Theorem 8.8] and
hence satisfies the conclusion of the Central Sets Theorem [5, Proposition
8.21]. Algebraic definition of central set is also available in [10, Definition
4.42]. After the algebraic definition of central sets it becomes immediate
that any set containing a central set is central. A natural extension of this
notion to central set near zero was introduced in [7, Definition 4.1]. For any
dense subsemigroup of (R,+) it was observed that there are some subsets
of R living near zero which also satisfy some version of the Central Sets
Theorem. Motivated by this observation, the notion of Image Partition
Regularity near zero was introduced in [1].

Definition 1.2. Let S be a subsemigroup of (R,+) with 0 ∈ c`S, let
u, v ∈ N, and let M be a u × v matrix with entries from Q. Then M is
image partition regular over S near zero (abbreviated IPR/S0) if and only
if, whenever S \ {0} is finitely colored and δ > 0, there exists ~x ∈ Sv such
that the entries of M~x are monochromatic and lie in the interval (−δ, δ).

The matrices which are image partition regular near zero are very in-
teresting in themselves. Image partition regularity near zero over various
subsemigroups of (R,+) containing 0 in the closure has been investigated
extensively in [1]. One of the main objectives was that for finite matrices
with rational entries image partition regularity and image partition regular-
ity near zero are equivalent. But when we turn our attention to admissible
infinite matrices these two notions are not equivalent. Here, an admissible
infinite matrix is an ω × ω matrix, each row of which contains only finitely
many nonzero elements, where ω is the first infinite ordinal number.

The characterization of finite matrices with real entries that are image
partition regular over R+ were obtained in [6]. The definitions of image
partition regularity and image partition regularity near zero for finite matri-
ces with entries from R have natural generalizations for admissible infinite
matrices.

In this paper we shall investigate matrices with real entries that are image
partition regular near zero over R+. In Section 2 we shall characterize the
finite matrices with real entries that are image partition regular near zero
over R+ and prove that those matrices are actually the matrices with real
entries that are image partition regular over R+. The following is a repetition
of definition for finite matrices with entries from R.
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Definition 1.3. Let u, v ∈ N and M be a u× v matrix with entries from R.
Then M is image partition regular over R+ near zero (abbreviated IPR/R+

0 )
if and only if, whenever R+ is finitely colored and δ > 0, there exists ~x ∈
(R+)v such that the entries of M~x are monochromatic and lie in the interval
(0, δ).

In Section 3 we shall prove that the Milliken–Taylor matrices and in-
sertion matrices (which we shall define in Definition 3.3 and Definition 3.7
respectively) with real entries are image partition regular near zero over R+.

We complete this section with some necessary facts regarding the com-
pact right topological semigroup (βR+

d ,+), where R+
d means R+ with the

discrete topology. For details regarding the algebraic structure of βSd for
an arbitrary dense subsemigroup S of R+ one can see [7].

Definition 1.4. Define 0+(R+) = {p ∈ βR+
d : (∀ε > 0)((0, ε) ∈ p)}.

It is proved in [7, Lemma 2.5] that 0+(R+) is a compact right topological
subsemigroup of (βR+

d ,+) and therefore contains minimal idempotents of
0+(R+).

Definition 1.5. A set C ⊆ R+ is central near zero if and only if there is a
minimal idempotent p of 0+(R+) containing C.

For our purpose we state the following version of Central Sets Theorem
which follows directly from [1, Corollary 4.7].

Theorem 1.6. Let T be the set of all those sequences 〈yn〉∞n=1 in R such
that limn→∞ yn = 0 and let C be central near zero in R+. Let F ∈ Pf (T ).
There exist a sequence 〈an〉∞n=1 in R+ such that

∑∞
n=1 an converges and a

sequence 〈Hn〉∞n=1 in Pf (N) such that for each n ∈ N, max Hn < minHn+1

and for each L ∈ Pf (N) and each f ∈ F ,
∑

n∈L(an +
∑

t∈Hn
f(t)) ∈ C.

The Central Sets Theorem was first discovered by H. Furstenberg [5,
Proposition 8.21] for the semigroup N and considering sequences in Z. How-
ever the most general version of Central Sets Theorem is available in [2,
Theorem 2.2].

Acknowledgement. The authors would like to thank the referee for a
constructive and helpful report, which made a serious improvement of the
paper.

2. Finite matrices

We show in this section that for finite matrices with entries from R image
partition regularity near zero depends only on the fact that they have im-
ages in any central sets near zero. We start with the following well-known
definition.

Definition 2.1. Let M be a u× v matrix with entries from R. Then M is
a first entries matrix if:
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(1) No row of M is row is ~0.
(2) The first nonzero entry of each row is positive.
(3) If the first nonzero entries of any two rows occur in the same column,

then those entries are equal.
If M is a first entries matrix and c is the first nonzero entry of some row M ,
then c is called a first entry of M .

Now we prove a lemma which is important for determination of finite
matrices with real entries that are image partition regularity near zero over
R+.

Lemma 2.2. Let M be a u× v first entry matrix with entries from R and
let C be a central set near zero in R+. Then there exist sequences 〈x1,n〉∞n=1,
〈x2,n〉∞n=1, . . . , 〈xv,n〉∞n=1 in R+ such that for any i ∈ {1, 2, . . . , v},

∑∞
t=1 xi,t

converges and for each F ∈ Pf (N), M~xF ∈ Cu, where

~xF =


∑

t∈F x1,t
...∑

t∈F xv,t

 .

Proof. Let C be a central set near zero in R+. We proceed by induction
on v. Assume first that v = 1. We can assume M has no repeated rows,
so in this case we have M = (c) for some c ∈ R+. Pick a sequence 〈yn〉∞n=1

[7, Theorem 3.1] with FS(〈yn〉∞n=1) ⊆ C, where
∑∞

n=1 yn converges and for
each n ∈ N let x1,n = yn

c . The sequence 〈x1,n〉∞n=1 is as required.
Now let v ∈ N and assume the theorem is true for v. Let M be a u×(v+1)

first entries matrix with entries from R. By rearranging the rows of M and
adding additional rows to M if need be, we may assume that we have some
r ∈ {1, 2, . . . , u− 1} and some d ∈ R+ such that

ai,1 =

{
0 if i ∈ {1, 2, . . . , r},
d if i ∈ {r + 1, r + 2, . . . , u}.

Let B be the r×v matrix with entries bi,j = ai,j+1. Pick sequences 〈z1,n〉∞n=1,
〈z2,n〉∞n=1, . . . , 〈zv,n〉∞n=1 in R+ as guaranteed by the induction hypothesis
for the matrix B. For each i ∈ {r + 1, r + 2, . . . , u} and each n ∈ N, let

yi,n =
v+1∑
j=2

ai,jzj−1,n.

Now for each i ∈ {r + 1, r + 2, . . . , u},
∑∞

t=1 yi,t converges. We take yr,n = 0
for all n ∈ N.

Now C being central set near zero in R+, by Theorem 1.6 we can pick
sequence 〈kn〉∞n=1 in R+ and a sequence 〈Hn〉∞n=1 of finite nonempty subsets of
N such that maxHn < minHn+1 for each n and for each i ∈ {r, r+1, . . . , u},
FS(〈kn +

∑
t∈Hn

yi,t〉∞n=1) ⊆ C, where
∑∞

n=1 kn converges.
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For each n ∈ N, let x1,n = kn
d and note that kn = kn +

∑
t∈Hn

yr,t ∈
C ⊆ R+. For j ∈ {2, 3, . . . , v + 1}, let xj,n =

∑
t∈Hn

zj−1,t. Certainly for
each i ∈ {1, 2, . . . , v + 1},

∑∞
t=1 xi,t converges. We claim that the sequences

〈xj,n〉∞n=1 are as required. To see this, let F be a finite nonempty subset of N.
We need to show that for each i ∈ {1, 2, . . . , u},

∑v+1
j=1 ai,j

∑
n∈F xj,n ∈ C.

So let i ∈ {1, 2, . . . , u} be given.

Case 1. i ≤ r. Then
v+1∑
j=1

ai,j ·
∑
n∈F

xj,n =
v+1∑
j=2

ai,j ·
∑
n∈F

∑
t∈Hn

zj−1,t

=
v∑

j=1

bi,j ·
∑
t∈G

zj,t ∈ C.

where G =
⋃

n∈F Hn.

Case 2. i > r. Then
v+1∑
j=1

ai,j ·
∑
n∈F

xj,n = d ·
∑
n∈F

x1,n +
v+1∑
j=2

ai,j ·
∑
n∈F

xj,n

=
∑
n∈F

dx1,n +
∑
n∈F

∑
t∈Hn

v+1∑
j=2

ai,jzj−1,t

=
∑
n∈F

(
kn +

∑
t∈Hn

yi,t

)
∈ C. �

Theorem 2.3. Let M be a u × v matrix with entries from R. Then the
following are equivalent.

(1) M is IPR/R+.
(2) M is IPR/R+

0 .
(3) For every central set C in R+ there exists ~x ∈ (R+)v such that

M~x ∈ Cu.
(4) For every central set near zero C in R+ there exists ~x ∈ (R+)v such

that M~x ∈ Cu.

Proof. (1) ⇒ (4) Let C be a central set near zero in R+ and M be IPR/R+.
So by [6, Theorem 4.1], there exist m ∈ {1, 2, . . . u} and a u×m first entries
matrix B such that for all ~y ∈ (R+)m there exists ~x ∈ (R+)v such that
M~x = B~y. Then by the above Lemma 2.2 there exist some ~y ∈ (R+)m such
that B~y ∈ Cu.

(4) ⇒ (2) Let
⋃r

i=1 Ci be a finite partition of R+ and ε > 0. Then some
Ci is central near zero so that Ci ∩ (0, ε) is also central near zero. Hence by
(4) there exists ~x ∈ (R+)v such that M~x ∈ Ci ∩ (0, ε).

(2) ⇒ (1) is obvious.
(1) ⇔ (3) follows from [6, Theorem 4.1]. �
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3. Infinite matrices

We now prove that certain infinite matrices with real entries are also image
partition regular near zero over R+. K. Milliken and A. Taylor independently
proved a theorem from which it can be derived that certain infinite matrices,
called Milliken–Taylor Matrices, are image partition regular over N. Some
generalizations of this celebrated theorem are also available in [9, Corollary
3.6], [1, Theorem 5.7], [3, Theorem 2.6].

Definition 3.1. Let m ∈ ω, let ~a = 〈ai〉mi=0 be a sequence in R\{0}, and let
~x = 〈xn〉∞n=0 be a sequence in R. The Milliken–Taylor system determined
by ~a and ~x, MT (~a, ~x) = {

∑m
i=0 ai ·

∑
t∈Fi

xt : each Fi ∈ Pf (ω) and if i < m,
then max Fi < minFi+1}

If ~c is obtained from ~a by deleting repetitions, then for any infinite se-
quence ~x, one has MT (~a, ~x) ⊆ MT (~c, ~x), so it suffices to consider sequences
~c without adjacent repeated entries.

Definition 3.2. Let ~a be a finite or infinite sequence in R with only finitely
many nonzero entries. Then c(~a) is the sequence obtained from ~a by deleting
all zeroes and then deleting all adjacent repeated entries. The sequence c(~a)
is the compressed form of ~a. If ~a = c(~a), then ~a is a compressed sequence.

Definition 3.3. Let ~a be a compressed sequence in R \ {0}. A Milliken–
Taylor matrix determined by ~a is an ω × ω matrix M such that the rows of
M are all possible rows with finitely many nonzero entries and compressed
form equal to ~a.

It follows from [7, Lemma 2.5] that

0+(R) =
{
p ∈ βRd : (∀ε > 0)

(
(0, ε) ∈ p

)}
and

0−(R) =
{
p ∈ βRd : (∀ε > 0)

(
(−ε, 0) ∈ p

)}
are both right ideals of 0+(R) ∪ 0−(R). Further given c ∈ R \ {0} and
p ∈ βRd \ {0}, the product c · p is defined in (βRd, ·). One has A ⊆ R is a
member of c · p if and only if c−1A = {x ∈ R : c · x ∈ A} is a member of p.

Lemma 3.4. Let p ∈ 0+(R), and let c ∈ R+. Then c · p ∈ 0+(R) and
(−c) · p ∈ 0−(R).

Proof. Let ε > 0. We need to show that (0, ε) ∈ c ·p. Now (0, ε/c) ∈ p. But
(0, ε/c) ⊆ c−1(0, ε). Hence c−1(0, ε) ∈ p so that (0, ε) ∈ c · p.

The proof of the other is similar. �

Definition 3.5. Let 〈wn〉∞n=0 be a sequence in R. A sum subsystem of
〈wn〉∞n=0 is a sequence 〈xn〉∞n=0 such that there exists a sequence 〈Hn〉∞n=0 in
Pf (N) such that for each n ∈ ω, max Hn < minHn+1 and xn =

∑
t∈Hn

wt.

Recall FS(〈xn〉∞n=k) = {
∑

n∈F xn : F ∈ Pf (ω) and min F ≥ k}, for a
given a sequence 〈xn〉∞n=0 and k ∈ ω. The proof of the following theorem is
taken nearly verbatim from [1, Theorem 5.7].
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Theorem 3.6. Let m ∈ ω and ~a = 〈ai〉mi=0 be a compressed sequence in
R \ {0} with a0 > 0, and let M be a Milliken–Taylor matrix determined by
~a, Then M is IPR/R+

0 . In fact, given any sequence 〈wn〉∞n=0 in R+ such
that

∑∞
n=0 wn converges, whenever r ∈ N, R+ =

⋃r
i=1 Ci, and δ > 0, there

exist i ∈ {1, 2, . . . , r} and a sum subsystem 〈xn〉∞n=0 of 〈wn〉∞n=0 such that
MT (~a, ~x) ⊆ Ci ∩ (0, δ).

Proof. By [10, Lemma 5.11] we can choose an idempotent

p ∈
∞⋂

k=0

c`βRd
FS(〈wn〉∞n=k).

Since
∑∞

n=0 wn converges, p ∈ 0+(R). Let q = a0 ·p+a1 ·p+· · ·+am ·p. Then
by Lemma 3.4 and the previously mentioned fact that 0+(R) and 0−(R) are
both right ideals of 0+(R) ∪ 0−(R), we have that q ∈ 0+(R). So it suffices
to show that whenever Q ∈ q, there is a sum subsystem 〈xn〉∞n=0 of 〈wn〉∞n=0

such that MT (~a, ~x) ⊆ Q. Let Q ∈ q be given. Assume first that m = 0.
Then (a0)−1Q ∈ p so by [10, Theorem 5.14] there is a sum subsystem 〈xn〉∞n=0

of 〈wn〉∞n=0 such that FS(〈xn〉∞n=0) ⊆ (a0)−1Q. Then MT (~a, ~x) ⊆ Q. Now
assume that m > 0. Define

P (∅) = {x ∈ R : −(a0 · x) + Q ∈ a1 · p + a2 · p + · · ·+ am · p} .

Since Q ∈ q we have

a−1
0 · {x ∈ R : −x + Q ∈ a1 · p + a2 · p + · · ·+ am · p} ∈ p

which shows that

P (∅) = {x ∈ R : −(a0 · x) + Q ∈ a1 · p + a2 · p + · · ·+ am · p} ∈ p.

Given x0 define

P (x0) = {y ∈ R : −(a0 · x0 + a1 · y) + Q ∈ a2 · p + a3 · p + · · ·+ am · p}.
If x0 ∈ P (∅), then −(a0 · x0) + Q ∈ a1 · p + a2 · p + · · ·+ am · p and so

{y ∈ R : −(a1 · y) + (−(a0 · x0) + Q) ∈ a2 · p + a3 · p + · · ·+ am · p} ∈ p

and thus P (x0) ∈ p.
Given n ∈ {1, 2, . . . ,m−1} and x0, x1, . . . , xn−1, let P (x0, x1, . . . , xn−1) =

{y ∈ R : −(a0 ·x0 + · · ·+an−1 ·xn−1 +an · y)+Q ∈ an+1 ·p+ · · ·+am ·p}. If
x0 ∈ P (∅) and for each i ∈ {1, 2, . . . , n − 1}, xi ∈ P (x0, x1, . . . , xi−1), then
P (x0, x1, . . . , xn−1) ∈ p.

Now given x0, x1, . . . , xm−1, let

P (x0, x1, . . . , xm−1)

= {y ∈ R : a0 · x0 + a1 · x1 + · · ·+ am−1 · xm−1 + am · y ∈ Q}.

If x0 ∈ P (∅) and for each i ∈ {1, 2, . . . ,m−1}, xi ∈ P (x0, x1, . . . , xi−1), then
P (x0, x1, . . . , xm−1) ∈ p. Given any B ∈ p, let B? = {x ∈ B : −x + B ∈ p}.
Then B? ∈ p and by [10, Lemma 4.14], for each x ∈ B?, −x + B? ∈ p.
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Choose x0 ∈ P (∅)? ∩ FS(〈wn〉∞n=0) and choose H0 ∈ Pf (N) such that
x0 =

∑
t∈H0

wt. Let n ∈ ω and assume that we have chosen x0, x1, . . . , xn

and H0,H1, . . . ,Hn such that:
(1) If k ∈ {0, 1, . . . , n}, then Hk ∈ Pf (ω) and xk =

∑
t∈Hk

wt.
(2) If k ∈ {0, 1, . . . , n− 1}, then max Hk < minHk+1.
(3) If ∅ 6= F ⊆ {0, 1, . . . , n}, then

∑
t∈F xt ∈ P (∅)?.

(4) If k ∈ {1, 2, . . . ,min{m,n}}, F0, F1, . . . , Fk ∈ Pf ({0, 1, . . . , n}), and
for each j ∈ {0, 1, . . . , k − 1}, max Fj < minFj+1, then∑

t∈Fk

xt ∈ P

(∑
t∈F0

xt,
∑
t∈F1

xt . . . ,
∑

t∈Fk−1

xt

)?

.

All hypotheses hold at n = 0, (2) and (4) vacuously.
Let v = maxHn. For r ∈ {0, 1, . . . , n}, let

Er = {
∑

t∈F xt : ∅ 6= F ⊆ {r, r + 1, . . . , n}} .

For k ∈ {0, 1, . . . ,m− 1} and r ∈ {0, 1, . . . , n}, let

Wk,r =

{(∑
t∈F0

xt, . . . ,
∑
t∈Fk

xt

)
: F0, F1, . . . , Fk ∈ Pf ({0, 1, . . . , r})

and for each i ∈ {0, 1, . . . , k − 1} , max Fi < minFi+1

}
Note that Wk,r 6= ∅ if and only if k ≤ r.

If y ∈ E0, then y ∈ P (∅)?, so −y + P (∅)? ∈ p and P (y) ∈ p. If k ∈ {1, 2,
. . . , m − 1} and (y0, y1, . . . , yk) ∈ Wk,m, then yk ∈ P (y0, y1, . . . , yk−1) so
P (y0, y1, . . . , yk) ∈ p and thus P (y0, y1, . . . , yk)? ∈ p. If r ∈ {0, 1, . . . , n− 1},
k ∈ {0, 1, . . . ,min{m − 1, r}}, (y0, y1, . . . , yk) ∈ Wk,r, and z ∈ Er+1, then
z ∈ P (y0, y1, . . . , yk)? so −z + P (y0, y1, . . . , yk)? ∈ p.

If n = 0, let x1 ∈ FS(〈wt〉∞t=v+1) ∩ P (∅)? ∩ {−x0 + P (∅)?} ∩ P (x0)? and
pick H1 ∈ Pf (N) such that minH1 > v and x1 =

∑
t∈H1

wt. The hypotheses
are satisfied. Now assume that n ≥ 1 and pick

xn+1 ∈ FS(〈wt〉∞t=v+1) ∩ P (∅)? ∩
⋂

y∈E0

{−y + P (∅)?}

∩
min{m−1,n}⋂

k=0

⋂
(y0,y1,...,yk)∈Wk,m

P (y0, y1, . . . , yk)?

∩
n−1⋂
r=0

min{m−1,r}⋂
k=0

⋂
(y0,y1,...,yk)∈Wk,r

⋂
z∈Er+1

(−z + P (y0, y1, . . . , yk)?) .

Pick Hn+1 ∈ Pf (N) such that minHn+1 > v and xn+1 =
∑

t∈Hn+1
wt.

Hypotheses (1) and (2) hold directly. For hypothesis (3) assume that
∅ 6= F ⊆ {0, 1, . . . , n + 1} and n + 1 ∈ F . If F = {n + 1} we have directly



IMAGE PARTITION REGULARITY NEAR 0 157

that xn+1 ∈ P (∅)?, so assume that {n+1} ( F and let G = F \{n+1}. Let
y =

∑
t∈G xt. Then y ∈ E0 so xn+1 ∈ −y + P (∅)? and so

∑
t∈F xt ∈ P (∅)?.

To verify hypothesis (4), let k ∈ {1, 2, . . . ,min{m,n + 1}} and assume
that F0, F1, . . . , Fk ∈ Pf ({0, 1, . . . , n+1}) and for each j ∈ {0, 1, . . . , k− 1},
max Fj < minFj+1. We can assume that n+1 ∈ Fk. For l ∈ {0, 1, . . . , k−1}
let yl =

∑
t∈Fl

xt. Then k − 1 ≤ min{m − 1, n} and (y0, y1, . . . , yk−1) ∈
Wk−1,m. If Fk = {n + 1}, then

∑
t∈Fk

xt = xn+1 ∈ P (y0, y1, . . . , yk−1)?.
So assume that {n + 1} ( Fk and let F ′

k = Fk \ {n + 1}. Let r =
max Fk−1. Then r < minF ′

k so r ≤ n − 1, k − 1 ≤ min{m − 1, r},
and (y0, y1, . . . , yk−1) ∈ Wk−1,r. Let z =

∑
t∈F ′

k
xt. Then z ∈ Er+1 so

xn+1 ∈ −z + P (y0, y1, . . . , yk−1)?. Hence we have

∑
t∈Fk

xt ∈ P

(∑
t∈F0

xt,
∑
t∈F1

xt . . . ,
∑

t∈Fk−1

xt

)?

. �

Next we define another class of infinite matrices with real entries, called
insertion matrices, which are also image partition regular near zero over R+.
The notion of insertion matrix was first introduced in [11, Definition 4.8 ].

Definition 3.7. Let γ, δ ∈ ω
⋃
{ω} and let C be a γ×δ matrix with finitely

many nonzero entries in each row. For each t < δ, let Bt be a finite matrix
of dimension ut × vt. Let R = {(i, j) : i < γ and j ∈ ×t<δ{0, 1, . . . , ut − 1}}.
Given t < δ and k ∈ {0, 1, . . . , ut − 1}, denote by ~b

(t)
k the kth row of Bt.

Then D is an insertion matrix of 〈Bt〉t<δ into C if and only if the rows of D
are all rows of the form

ci,0 ·~b(0)
j(0) _ ci,1 ·~b(1)

j(1) _ · · ·

where (i, j) ∈ R.

For example, if

C =
(

1 0
2 1

)
,

B0 =
(

1 1
5 7

)
and

B1 =
(

0 1
3 3

)
,
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then the insertion matrix is

1 1 0 0
1 1 0 0
5 7 0 0
5 7 0 0
2 2 0 1
2 2 3 3
10 14 0 1
10 14 3 3


,

i.e., 
1 1 0 0
5 7 0 0
2 2 0 1
2 2 3 3
10 14 0 1
10 14 3 3


is an insertion matrix of 〈Bt〉t<2 into C.

We now show that if ~a = 〈ai〉li=0 is a compressed sequence in R \ 0 with
l > 0 and a0 > 0 then the insertion matrix is IPR/R+

0 . The proof of the
following theorem is similar to that of [11, Theorem 4.12].

Theorem 3.8. Let ~a = 〈a0, a1, . . . , al〉 be a compressed sequence in R \ 0
with l > 0 and a0 > 0, let C be a Milliken–Taylor matrix for ~a, and for each
t < ω, let Bt be a ut × vt finite matrx with entries from R which is image
partition regular matrix over R+. Then any insertion matrix of 〈Bt〉t<ω into
C is image partition regular near zero, i.e., IPR/R+

0 .

Proof. Pick by [7, Lemma 2.5] and [10, Corollary 2.6] some minimal idem-
potent p of 0+(R). Let q = a0 ·p+a1 ·p+ · · ·+al ·p. Then by Lemma 3.4 and
the previously mentioned fact that 0+(R) and 0−(R) are both right ideals
of 0+(R)∪ 0−(R), we have that q ∈ 0+(R). Let G be a finite partition of R+

and pick A ∈ G such that A ∈ q.
Now {x ∈ R : −x + A ∈ a1 · p + · · ·+ al · p} ∈ a0 · p so that

D0 = {x ∈ R : −a0 · x + A ∈ a1 · p + · · ·+ al · p} ∈ p.

Then D?
0 ∈ p (as used in Theorem 3.6).

Let α0 = 0 and inductively let αn+1 = αn + vn.
So pick by Theorem 2.3, x0, x1, . . . , xα1−1 ∈ R+ such that

B0


x0

x1
...

xα1−1

 ∈ (D?
0)

u0 .
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Let H0 be the set of entries of

B0


x0

x1
...

xα1−1

 .

Inductively, let n ∈ N and assume that we have chosen 〈xt〉αn−1
t=0 in R+,

〈Dk〉n−1
k=0 in p, and 〈Hk〉n−1

k=0 in the set Pf (N) of finite nonempty subsets of N
such that for r ∈ {0, 1, . . . , n− 1}:

(I) Hr is the set of entries of

Br


xαr

xαr+1
...

xαr+1−1

 .

(II) If ∅ 6= F ⊆ {0, 1, . . . , r}, k = minF , and for each t ∈ F , yt ∈ Ht,
then

∑
t∈F yt ∈ D?

k.
(III) If r < n− 1, then Dr+1 ⊆ Dr.
(IV) If m ∈ {0, 1, . . . , l − 1} and F0, F1, . . . , Fm are all nonempty subsets

of {0, 1, . . . , r}, for each i ∈ {0, 1, . . . ,m − 1}, max Fi < minFi+1,
and for each t ∈

⋃m
i=0 Fi, yt ∈ Ht, then

−
m∑

t=0

ai ·
∑
t∈Fi

yt + A ∈ am+1 · p + am+2 · p + · · ·+ al · p.

(V) If r < n − 1, F0, F1, . . . , Fl−1 are nonempty subsets of {0, 1, . . . , r},
for each i ∈ {0, 1, . . . ,m − 1}, max Fi < minFi+1, and for each
t ∈
⋃m

i=0 Fi, yt ∈ Ht, then Dr+1 ⊆ a−1
l (−

∑l−1
t=0 ai ·

∑
t∈Fi

yt + A).
(VI) if r < n − 1, m ∈ {0, 1, . . . , l − 2}, F0, F1, . . . , Fm are nonempty

subsets of {0, 1, . . . , r}, for each i ∈ {0, 1, . . . ,m − 1}, max Fi <
minFi+1, and for each t ∈

⋃m
i=0 Fi, yt ∈ Ht, then Dr+1 ⊆ {x ∈ R :

−am+1 ·x+(−
∑m

t=0 ai ·
∑

t∈Fi
yt+A) ∈ am+2 ·p+am+3 ·p+· · ·+al ·p}.

At n = 1, hypotheses (I), (II),and (IV) hold directly while (III), (V), and
(VI) are vacuous.

For m ∈ {0, 1, . . . , l − 1}, let Gm = {
∑m

t=0 ai ·
∑

t∈Fi
yt : F0, F1, . . . , Fm

are nonempty subsets of {0, 1, . . . , n − 1}, for each i ∈ {0, 1, . . . ,m − 1},
max Fi < minFi+1, and for each t ∈

⋃m
i=0 Fi, yt ∈ Ht}.

For k ∈ {0, 1, . . . , n − 1}, let Ek = {
∑

t∈F yt : if φ 6= F ⊆ {0, 1, . . . , r},
k = minF , and for each t ∈ F , yt ∈ Ht}. Given b ∈ Ek, we have that
b ∈ D?

k by hypothesis (II) and so −b + D?
k ∈ p. If d ∈ Gl−1, then by (IV),

−d+A ∈ al ·p so that a−1
l (−d+A) ∈ p. If m ∈ {0, 1, . . . , l−2} and d ∈ Gm,

then by (IV), −d + A ∈ am+1 · p + am+2 · p + · · · + al · p so that {x ∈ R :
−am+1 ·x+(−d+A) ∈ am+2 ·p+am+3 ·p+· · ·+al ·p} ∈ p. Thus we have that
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Dn ∈ p, where Dn = Dn−1 ∩
⋂n−1

k=0

⋂
b∈Ek

(−b + D?
k) ∩

⋂
d∈Gl−1

a−1
l (−d + A)

∩
⋂l−2

m=0

⋂
d∈Gm

{x ∈ R : −am+1 ·x+(−d+A) ∈ am+2 ·p+am+3 ·p+· · ·+al ·p}.
(Here, if say l = 1 or n < l, we are using the convention that

⋂
∅ = R.)

Pick, again by Theorem 2.3, xαn , xαn+1, . . . , xαn+1−1 ∈ R+ such that

Bn


xαn

xαn+1
...

xαn+1−1

 ∈ (D?
n)un .

Let Hn be the set of entries of

Bn


xαn

xαn+1
...

xαn+1−1

 .

Then hypotheses (I), (III),(V), and (VI) hold directly.
To verify hypothesis (II), let ∅ 6= F ⊆ {0, 1, . . . , r}, let k = minF , and for

each t ∈ F , let yt ∈ Ht. If n does not belong to F , then
∑

t∈F yt ∈ D?
k by

hypothesis (II) at n − 1, so assume that n ∈ F . If F = {n}, then we have
that yn ∈ D?

n directly so assume that F 6= {n}. Let b =
∑

t∈F\{n} yt. Then
b ∈ Ek and so yn ∈ −b + D?

k and thus b + yn ∈ D?
k as required.

To verify hypothesis (IV), let m ∈ {0, 1, . . . , l− 1} and F0, F1, . . . , Fm are
nonempty subsets of {0, 1, . . . , n}, such that for each i ∈ {0, 1, . . . ,m − 1},
max Fi < minFi+1, and for each t ∈

⋃m
i=0 Fi, yt ∈ Ht. If m = 0, then∑

t∈F0
yt ∈ D?

0 by (II) and (III) so that −a0 ·
∑

t∈F0
yt + A ∈ a1 · p + a2 · p +

· · ·+ al · p as required.
So assume that m > 0. Let k = minFm and j = max Fm−1. Then∑
t∈Fm

yt ∈ D?
k by (II) ⊆ Dj+1 by (III) ⊆ {x ∈ R : −am · x + (−

∑m−1
t=0 ai ·∑

t∈Fi
yt + A) ∈ am+1 · p + am+2 · p + · · ·+ al · p} by (VI) as required.

The induction being complete, we claim that whenever F0, F1, . . . , Fl are
nonempty subsets of ω such that for each i ∈ {0, 1, . . . , l − 1}, max Fi <

minFi+1, and for each t ∈
⋃m

i=0 Fi, yt ∈ Ht, then −
∑l

i=0 ai ·
∑

t∈Fi
yt ∈

A. To see this, let k = minFl and let j = max Fl−1. Then
∑

t∈Fl
yt ∈

D?
k ⊆ Dj+1 ⊆ a−1

l (−
∑l−1

t=0 ai ·
∑

t∈Fi
yt + A) by hypothesis (V), and so∑l

i=0 ai ·
∑

t∈Fi
yt ∈ A as claimed.

Let Q be an insertion matrix of 〈Bt〉t<ω into C. We claim that all entries of
Q~x are in A. To see this, let γ < ω be given and let j ∈ ×t<ω{0, 1, . . . , ut−1},
so that cγ,0 · ~bj(0)

(0)
_ cγ,1 ·~b(1)

j(1) _ . . . is a row of Q, say row δ. For each

t ∈ {0, 1, . . . ,m}, let yt =
∑vt−1

k=0 b
(t)
j(t),k ·xαt+k (so that yt ∈ Ht). Therefore we

have
∑∞

q=0 qδ,s ·xs =
∑m

t=0 cγ,t ·yt. Choose nonempty subsets F0, F1, . . . , Fl of
{0, 1, . . . ,m} such that for each i ∈ {0, 1, . . . , l−1}, maxFi < minFi+1, and
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for each t ∈ Fi, cγ,t = ai. (One can do this because C is a Milliken–Taylor
matrix for ~a.) Then

∑m
t=0 cγ,t · yt =

∑l
i=0 ai ·

∑
t∈Fi

yt ∈ A. �
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