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Image partition regularity of matrices
near 0 with real entries

Dibyendu De and Ram Krishna Paul

ABSTRACT. We prove that many of the known results regarding image
partition regularity and image partition regularity near zero for finite
and infinite matrices with rational or integer entries have natural ana-
logues for matrices with real entries over the reals, extending work by

N. Hindman.
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1. Introduction

One of the famous classical results of Ramsey Theory is van der Waerden’s
Theorem [12], which states that if r,l € N and N = |J_; A;, there exist
ie€{1,2,...,7} and a,d € N such that {a,a+d,...,a+1d} C A;. In other
words it says that the entries of MZ, where

10
11
M = 1 2
1 1

and

. a
T = ( d > e N2,
are monochromatic.

This suggests the following definition:
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Definition 1.1. Let u,v € N and let M be a u X v matrix with entries from
Q. The matrix M is image partition regular over N if and only if whenever
r € Nand N = (J;_, C;, there exist i € {1,2,...,r} and & € N such that
Mz e C}.

Characterizations of those matrices with entries from Q that are image
partition reqular over N were obtained in [8]. The underlying fact behind the
characterization of finite image partition regular matrices is that whenever N
is finitely colored one color should contain a central set [5, Theorem 8.8] and
hence satisfies the conclusion of the Central Sets Theorem [5, Proposition
8.21]. Algebraic definition of central set is also available in [10, Definition
4.42]. After the algebraic definition of central sets it becomes immediate
that any set containing a central set is central. A natural extension of this
notion to central set near zero was introduced in [7, Definition 4.1]. For any
dense subsemigroup of (R, +) it was observed that there are some subsets
of R living near zero which also satisfy some version of the Central Sets
Theorem. Motivated by this observation, the notion of Image Partition
Regularity near zero was introduced in [1].

Definition 1.2. Let S be a subsemigroup of (R,+) with 0 € ¢S, let
u,v € N, and let M be a u X v matrix with entries from Q. Then M is
image partition regular over S near zero (abbreviated IPR/Sp) if and only
if, whenever S\ {0} is finitely colored and ¢ > 0, there exists & € SY such
that the entries of MZ are monochromatic and lie in the interval (—d, ).

The matrices which are image partition reqular near zero are very in-
teresting in themselves. Image partition reqularity near zero over various
subsemigroups of (R,+) containing 0 in the closure has been investigated
extensively in [1]. One of the main objectives was that for finite matrices
with rational entries image partition regularity and image partition reqular-
ity near zero are equivalent. But when we turn our attention to admissible
infinite matrices these two notions are not equivalent. Here, an admissible
infinite matrix is an w X w matrix, each row of which contains only finitely
many nonzero elements, where w is the first infinite ordinal number.

The characterization of finite matrices with real entries that are image
partition reqular over RT were obtained in [6]. The definitions of image
partition regularity and image partition reqularity near zero for finite matri-
ces with entries from R have natural generalizations for admissible infinite
matrices.

In this paper we shall investigate matrices with real entries that are tmage
partition reqular near zero over R*. In Section 2 we shall characterize the
finite matrices with real entries that are image partition reqular near zero
over R™ and prove that those matrices are actually the matrices with real
entries that are image partition regular over RT. The following is a repetition
of definition for finite matrices with entries from R.
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Definition 1.3. Let u,v € N and M be a u X v matrix with entries from R.
Then M is image partition reqular over R near zero (abbreviated IPR/R{)
if and only if, whenever R is finitely colored and § > 0, there exists & €
(RT)Y such that the entries of M# are monochromatic and lie in the interval

0,9).

In Section 3 we shall prove that the Milliken—Taylor matrices and in-
sertion matrices (which we shall define in Definition 3.3 and Definition 3.7
respectively) with real entries are image partition reqular near zero over R

We complete this section with some necessary facts regarding the com-
pact right topological semigroup (SR}, +), where R:{ means R with the
discrete topology. For details regarding the algebraic structure of 35, for
an arbitrary dense subsemigroup S of R* one can see [7].

Definition 1.4. Define 07(R") = {p € SR} : (Ve > 0)((0,¢) € p)}.

It is proved in [7, Lemma 2.5] that 0*(R™) is a compact right topological
subsemigroup of (SR}, +) and therefore contains minimal idempotents of
0t (RT).

Definition 1.5. A set C C R™ is central near zero if and only if there is a
minimal idempotent p of 07 (R™) containing C'.

For our purpose we state the following version of Central Sets Theorem
which follows directly from [1, Corollary 4.7].

Theorem 1.6. Let T be the set of all those sequences (yn)o>, in R such
that lim, oo yn = 0 and let C be central near zero in RY. Let F € Pi(T).
There exist a sequence (an)5>q in RT such that > 7 | an converges and a
sequence (Hp)o2 in Pr(N) such that for each n € N, max H, < min H, 4,
and for each L € Py(N) and each f € F, Y cr(an+ > ey f(t) €C.

The Central Sets Theorem was first discovered by H. Furstenberg [5,
Proposition 8.21] for the semigroup N and considering sequences in Z. How-
ever the most general version of Central Sets Theorem is available in [2,
Theorem 2.2].

Acknowledgement. The authors would like to thank the referee for a
constructive and helpful report, which made a serious improvement of the

paper.
2. Finite matrices

We show in this section that for finite matrices with entries from R image
partition reqularity near zero depends only on the fact that they have im-
ages in any central sets near zero. We start with the following well-known
definition.

Definition 2.1. Let M be a u X v matrix with entries from R. Then M is
a first entries matriz if:
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(1) No row of M is row is 0.

(2) The first nonzero entry of each row is positive.

(3) If the first nonzero entries of any two rows occur in the same column,
then those entries are equal.

If M is a first entries matrix and c is the first nonzero entry of some row M,
then c is called a first entry of M.

Now we prove a lemma which is important for determination of finite
matrices with real entries that are image partition regularity near zero over
RT.

Lemma 2.2. Let M be a u X v first entry matriz with entries from R and
let C be a central set near zero in RT. Then there exist sequences (x1.,)7 1,
(T2m)00 1y oo @y )22y in RT such that for any i € {1,2,..., 0}, D720 @iy
converges and for each F' € Py(N), MZp € C*, where

D oter Tt
_’F _
ZteF $v’t

Proof. Let C be a central set near zero in RT. We proceed by induction
on v. Assume first that v = 1. We can assume M has no repeated rows,
so in this case we have M = (c) for some ¢ € RT. Pick a sequence (y,)%°
[7, Theorem 3.1] with FS({yn)s>,) C C, where > >, y,, converges and for
each n € Nlet x1, = “2. The sequence (x1,,)52, is as required.

Now let v € N and assume the theorem is true for v. Let M be a ux (v+1)
first entries matrix with entries from R. By rearranging the rows of M and
adding additional rows to M if need be, we may assume that we have some

re{1,2,...,u— 1} and some d € R" such that

0 ifief{l,2,...,r}
a1 =
T d dfie{r+1r+2,.. ., ul
Let B be the r x v matrix with entries b; ; = a; j+1. Pick sequences (21 )22,
(om)2 1y vy (200)22; in RT as guaranteed by the induction hypothesis

for the matrix B. For each i € {r + 1,7+ 2,...,u} and each n € N, let

v+1
Yin = g A 525—1n-
Jj=2

Now for each i € {r+1,7+2,...,u}, > ;2 yi+ converges. We take y,,, =0
for all n € N.

Now C being central set near zero in R*, by Theorem 1.6 we can pick
sequence (k,,)5° ; in R* and a sequence (H,,)%2 ; of finite nonempty subsets of
N such that max H,, < min H,,y; for each n and for each i € {r,r+1,...,u},
FS((kn + Y yen, Vit)inpe1) € C, where 3 | k,, converges.



IMAGE PARTITION REGULARITY NEAR 0 153

For each n € N, let 1, = % and note that k, = k, + ZteHn Yrt €
C CRT. Forje{2,3,....,v+1}, let x5, = >,y zj-14 Certainly for
each i € {1,2,...,v+ 1}, D72, @i converges. We claim that the sequences
(jn)o are as requlred To see this, let F' be a finite nonempty subset of N.
We need to show that for each i € {1,2,...,u}, ZUH ij Y nerTim € C.
Solet i € {1,2,...,u} be given.

Case 1. i <r. Then

v+l v+1
Z Qi - Z Ljn = Z Q5 Z Z Zj-1t
ner nelteH,
= Z bz] Z Zjt e C.
teG
where G = UneFH
Case 2. © > r. Then
v+1 v+1
Zam Zl‘]n =d- Z$1n+Zal7] Zx]n
ner nel neFr
v+1
= Z dxl,n + Z Z Zam‘zj_lvt
ner neF teH, j—2
:Z<kn+ Zyi,t> e C. 0
neF teEH,,

Theorem 2.3. Let M be a u X v matrix with entries from R. Then the
following are equivalent.
(1) M is IPR/R*.
(2) M is IPR/R].
(3) For every central set C in RY there exists T € (RT)Y such that
Mz e C.
(4) For every central set near zero C in RT there exists T € (RT)Y such
that Mz € C*.

Proof. (1) = (4) Let C be a central set near zero in RT and M be IPR/R™.
So by [6, Theorem 4.1], there exist m € {1,2,...u} and a u x m first entries
matrix B such that for all 5 € (R*)™ there exists Z € (RT)” such that
MZ = Bjyj. Then by the above Lemma 2.2 there exist some ¢ € (RT)™ such
that By € C".

(4) = (2) Let U;_, C; be a finite partition of RT and € > 0. Then some
C; is central near zero so that C; N (0, ¢€) is also central near zero. Hence by
(4) there exists & € (RT)? such that Mz € C; N (0,¢).

(2) = (1) is obvious.

(1) & (3) follows from [6, Theorem 4.1]. O



154 DIBYENDU DE AND RAM KRISHNA PAUL

3. Infinite matrices

We now prove that certain infinite matrices with real entries are also image
partition regular near zero over R™. K. Milliken and A. Taylor independently
proved a theorem from which it can be derived that certain infinite matrices,
called Milliken—Taylor Matrices, are image partition regular over N. Some
generalizations of this celebrated theorem are also available in [9, Corollary
3.6], [1, Theorem 5.7], [3, Theorem 2.6].

Definition 3.1. Let m € w, let @ = (a;)]", be a sequence in R\ {0}, and let
T = (zp)py be a sequence in R. The Milliken—Taylor system determined
by @ and &, MT (@, %) = {D_;"g @i > scp, 1 : each F; € Pp(w) and if i < m,
then max F; < min Fj;1}

If ¢ is obtained from @ by deleting repetitions, then for any infinite se-
quence &, one has MT(a, &) C MT(¢,Z), so it suffices to consider sequences
¢ without adjacent repeated entries.

Definition 3.2. Let @ be a finite or infinite sequence in R with only finitely
many nonzero entries. Then ¢(@) is the sequence obtained from @ by deleting
all zeroes and then deleting all adjacent repeated entries. The sequence ¢(@)
is the compressed form of d. If @ = ¢(d), then @ is a compressed sequence.

Definition 3.3. Let @ be a compressed sequence in R\ {0}. A Milliken—
Taylor matriz determined by @ is an w X w matrix M such that the rows of
M are all possible rows with finitely many nonzero entries and compressed
form equal to a.

It follows from [7, Lemma 2.5] that
0T (R) = {p € BRy: (Ve > 0)((0,¢) €p)} and
0" (R) = {p € BRy: (Ve > 0)((—€,0) € p)}

are both right ideals of 07(R) U 0~ (R). Further given ¢ € R\ {0} and
p € ORy \ {0}, the product ¢ - p is defined in (SRy,-). One has A C R is a
member of ¢ - p if and only if c7'A = {z € R:c-x € A} is a member of p.

Lemma 3.4. Let p € 07(R), and let ¢ € RT. Then c-p € 07 (R) and
(—c)-p € 0~ (R).
Proof. Let € > 0. We need to show that (0,€) € ¢-p. Now (0,¢/c) € p. But
(0,¢/c) C c71(0,¢€). Hence ¢~ 1(0,¢€) € p so that (0,€) € c - p.

The proof of the other is similar. O

Definition 3.5. Let (wy,)%, be a sequence in R. A sum subsystem of
(wn)o2 ) is a sequence (xy)>° ; such that there exists a sequence (Hy,)o2 ) in
P¢(N) such that for each n € w, max H, < min H,4; and z, = ZteHn Wy.

Recall FS((xn)52r) = D nep Tn : F € Pp(w) and min F' > k}, for a
given a sequence (,)0°, and k € w. The proof of the following theorem is
taken nearly verbatim from [1, Theorem 5.7].
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Theorem 3.6. Let m € w and @ = (a;)]*, be a compressed sequence in
R\ {0} with ag > 0, and let M be a Milliken—Taylor matriz determined by
@, Then M is IPR/RS. In fact, given any sequence (w,)% o in RY such
that Yo7 wy, converges, whenever r € N, RT = J;_, C;, and § > 0, there
exist i € {1,2,...,7} and a sum subsystem (x,)5> of (wn)2>, such that
MT(a,z) C C;n(0,9).

Proof. By [10, Lemma 5.11] we can choose an idempotent

p € () elor, FS((wa)oy)-
k=0

Since >o° , wy, converges, p € 07(R). Let ¢ = ag-p+ai-p+- - -+am-p. Then
by Lemma 3.4 and the previously mentioned fact that 01 (R) and 0~ (R) are
both right ideals of 07 (R) U0~ (R), we have that ¢ € 07(R). So it suffices

to show that whenever @ € g, there is a sum subsystem (z,,)5° , of (w, )7,
such that MT(d,z) C Q. Let Q € g be given. Assume first that m = 0.
Then (ap)~1Q € pso by [10, Theorem 5.14] there is a sum subsystem (z,,)°%,
of (wy)52 such that FS((z,)52,) C (ag)'Q. Then MT(d,#) C Q. Now
assume that m > 0. Define
P@)={zeR:—(ap-z)+Q€ayi-p+az-p+ -+ am-p}.
Since ) € ¢ we have
agt {r€R:—2+Q€ay-ptag-p+ - +am-p}eEDp
which shows that
P)={zeR:—(ap-z)+Q€ai-p+ay-p+---+am-p}Ep.
Given x( define
P(zg)={yeR:—(ap-zo+a1-y)+Q Eaz-pt+as-p+ -+ apm-p}
If g € P(0), then —(ap-20)+Q €a1-p+az-p+ -+ an - p and so
{fyeR:—(a1-y)+ (—(ap-z0)+Q)€az-p+az-p+---+am-p}€p

and thus P(z) € p.

Givenn € {1,2,...,m—1} and zg, 21, ..., Zp_1, let P(zg,21,...,Tp—1) =
{yeR: —(ag-xzo+ - +an-1 - Tp-1+an-y)+Q € ant1-p+---+am -pt I
xo € P(D) and for each i € {1,2,...,n — 1}, z; € P(xg,21,...,2;—1), then
P(xo,71,...,Zn-1) € P.

Now given g, x1, ..., Tm—1, let

P(iEO,.Tl,...,fEmfl)
={yeR:ap-zo+ar-z1+ -+ am1 Tmo+am -y}

If zg € P(0) and for each i € {1,2,...,m—1}, x; € P(zo,1,...,Ti—1), then
P(zo,21,...,Zm—1) € p. Given any B € p, let B* ={x € B: —x + B € p}.
Then B* € p and by [10, Lemma 4.14], for each z € B*, —x + B* € p.
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Choose zg € P(0)* N FS({wn)52,) and choose Hy € Py¢(N) such that
To = ZteHO we. Let n € w and assume that we have chosen xzg, x1,..., 2,
and Hgy, Hy,..., H, such that:

1) If k€ {0,1,...,n}, then Hy € Py(w) and xx = D,y wi-

2) If k € {0,1,...,n — 1}, then max Hy < min Hy ;.

3) If 0 # F € {0,1,...,n}, then >, z; € P(0)*.

4) If k € {1,2,...,min{m,n}}, Fo, F1,..., F € Ps({0,1,...,n}), and
for each j € {0,1,...,k — 1}, max F; < min F}j 1, then

3 xtep(z 0w Y m>

teFy teFy teFy teF,_1

All hypotheses hold at n = 0, (2) and (4) vacuously.
Let v = max H,. For r € {0,1,...,n}, let

E.={3crz:0#F C{r,r+1,...,n}}.
For k € {0,1,...,m—1} and r € {0,1,...,n}, let

_{<Z Teyon Y xt> cFo, Fyy .., Fr € Pp({0,1,...,7})

teFy teFy

(1)
(
(
(

and for each i € {0,1,...,k — 1}, max F; < minFiH}

Note that Wy, # 0 if and only if & < r.
If y € Ey, then y € P(0)*, so —y + P(0)* € p and P(y) € p. If k € {1,2,
m — 1} and (yanlv"'ayk) € Wk,ma then yy, € P(y07y17"'7yk—1) 80
P(yo,y1,---,yx) € p and thus P(yo,y1,...,yx)* € p. i re€{0,1,....,n—1},
ke {0,1,...,min{m — 1,7}}, (vo,v1,...,Yk) € Wiy, and z € E,41, then

z € P(yo,y1,---,yk)* s0 =z + P(yo, y1,- .., yk)* € p-

If n=0,let 2y € FS((wy)2,41) N PO N {—zo+ P(0)*} N P(xo)* and
pick H; € P¢(N) such that min H; > vand 1 = ),y wi. The hypotheses
are satisfied. Now assume that n > 1 and pick

P € FS(0),0) VPO 1 () (= + PO)")
yE€E
min{m—1,n}
N ﬂ ﬂ P(yo,y1,---,yk)*
k=0 (Yo,Y15-- k) EWg m
n—1min{m—1,r}

mﬂo ﬂ N () (== +Plyo,yr,- - ye)") -

(Y0,Y1 5 Yk ) EWg o 2€Er 11

Pick Hyy1 € Py(N) such that min Hpiq > v and @pi1 = 3 ey, W
Hypotheses (1) and (2) hold directly. For hypothesis (3) assume that
0#FC{0,1,...,n+1}andn+1€ F. If F = {n+ 1} we have directly
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that x,4+1 € P(0)*, so assume that {n+1} C F and let G = F\{n+1}. Let
Y= e ¥t- Then y € Ey 50 xpq1 € —y + P(0)* and so >, p 24 € P(0)*.

To verify hypothesis (4), let & € {1,2,...,min{m,n + 1}} and assume
that Fo, 1, ..., Fr, € P¢({0,1,...,n+1}) and for each j € {0,1,...,k—1},
max Fj < min Fj;;. We can assume that n+1 € Fy. Forl € {0,1,...,k—1}
let yi = > 4cp ¢ Then kK —1 < min{m — 1,n} and (yo,¥1,-..,Yk-1) €
Wi-1m. If Fy = {n+ 1}, then >, p o = Tpt1 € PYo, Y155 Yk—1)"
So assume that {n + 1} C Fj and let ] = F; \ {n + 1}. Let r =
max F_1. Then r < minF] sor < n—1, k —1 < min{m — 1,r},
and (Y0,y1,--,Yk—1) € Wi—1,. Let z = ZteF,g z¢. Then z € FE,.y1 so
Tnt1 € =2+ P(Y0,Y1,---,Yk—1)". Hence we have

zxtep@jxt,zxt..., 3 x> g

teFy teFy teFy teEF,_1

Next we define another class of infinite matrices with real entries, called
insertion matrices, which are also image partition regular near zero over RT.
The notion of insertion matrix was first introduced in [11, Definition 4.8 |].

Definition 3.7. Let v, § € w|J{w} and let C be a v x § matrix with finitely
many nonzero entries in each row. For each ¢ < 4, let B, be a finite matrix
of dimension u; X v¢. Let R = {(i,7) : i <~y and j € x4<5{0,1,...,us —1}}.
Given t < 6 and k € {0,1,...,u; — 1}, denote by Elgt) the k" row of B.
Then D is an insertion matrix of (By);<s into C' if and only if the rows of D
are all rows of the form

(1)
“bi

N e e

Cio - Eg,((]())) ~ G
where (i,7) € R.

For example, if

and
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then the insertion matrix is

1 1 00
1 1 00
5 7 00
5 7 00
2 2 01|
2 2 3 3
10 14 0 1
10 14 3 3
i.e.,
1 1 00
5 7 0 0
2 2 01
2 2 3 3
10 14 0 1
10 14 3 3

is an insertion matrix of (By)i<2 into C.

We now show that if @ = (a;)!_, is a compressed sequence in R \ 0 with
[ > 0 and ag > 0 then the insertion matrix is IPR/RJ. The proof of the
following theorem is similar to that of [11, Theorem 4.12].

Theorem 3.8. Let @ = (ag,a1,...,a;) be a compressed sequence in R\ 0
with I > 0 and ag > 0, let C be a Milliken—Taylor matriz for d, and for each
t < w, let By be a us X vy finite matre with entries from R which is image
partition regular matriz over RT. Then any insertion matriz of (Bi)t<y into
C' is image partition regqular near zero, i.e., IPR/RSF.

Proof. Pick by [7, Lemma 2.5] and [10, Corollary 2.6] some minimal idem-
potent p of 07 (R). Let ¢ = ag-p+ai-p+---+a;-p. Then by Lemma 3.4 and
the previously mentioned fact that 0% (R) and 0~ (R) are both right ideals
of 07 (R)U0~ (R), we have that ¢ € 07 (R). Let G be a finite partition of R
and pick A € G such that A € gq.

Now{z €R:—x+A€a;-p+---+a;-p} €agp-pso that

Dy={x€eR:—ap-z+A€a-p+---+a-p} €p.

Then Dj € p (as used in Theorem 3.6).
Let ag = 0 and inductively let any1 = an + vy
So pick by Theorem 2.3, xg,x1,...,Za,—1 € RT such that
Zo
€1
By ) € (Dg)™.

Toq—1
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Let Hy be the set of entries of

To

T
By

Toq—1

Inductively, let n € N and assume that we have chosen (x:);" Uin RY,
(Dy)y~5 in p, and (Hy)7—} in the set P¢(N) of finite nonempty subsets of N

such that for r € {0,1,...,n — 1}:
(I) H, is the set of entries of

Lo

T

T, +1
B, )

xarJrl*l

(I) If 0 # F € {0,1,...,r}, k = min F, and for each t € F, y, € Hy,
then Y, .y € Dj.

(III) If r <n —1, then D,4q1 C D,.

(IV) It m € {0,1,...,l — 1} and Fy, F1,..., F,, are all nonempty subsets
of {0,1,...,r}, for each ¢ € {0,1,...,m — 1}, max F; < min Fj;1,
and for each t € ;% F;, y+ € Hy, then

m
*Zai'Z?/t+A€am+1'p+am+2'P+"'+al'P-

t=0 teF;
(V) If r <n—1, Fy, F1, ..., F,_1 are nonempty subsets of {0,1,...,7},
for each i € {0,1,...,m — 1}, max F; < min F;;;, and for each

te Uy Fi, v+ € Hy, then Dy yq C al_l(— f;é a; - ZteFi Y+ A).

(VD) it r <n—1, m € {0,1,...,1 — 2}, Fy, Fi,..., F,, are nonempty

subsets of {0,1,...,r}, for each i € {0,1,...,m — 1}, max F; <
min Fj 1, and for each ¢t € |J" ) F}, y+ € H¢, then D, C {z € R:
1T+ (=200 @i Y e, Yi+A) € ami2-ptamispt- - +arp}.

At n =1, hypotheses (I), (II),and (IV) hold directly while (IIT), (V), and
(VI) are vacuous.

For m € {0,1,...,1 =1}, let Gy = {D 2 ai - doter Yt t Fo, Py Py
are nonempty subsets of {0,1,...,n — 1}, for each ¢ € {0,1,...,m — 1},
max F; < min Fj;1, and for each t € |J;~, F;, yr € Hi}.

For k € {0,1,...,n =1}, let B = {> ,cpuye : if ¢ # F C{0,1,...,7},
k = min F, and for each t € F, yy € Hy}. Given b € FEj, we have that
b € D; by hypothesis (II) and so —b+ D} € p. If d € Gj_1, then by (IV),
—d+ A € a;-p so that al_l(—d—i—A) ep. Iftme{0,1,...,1—2}and d € Gy,
then by (IV), —d+ A € aymy1 P+ amy2-p+ -+ a;-pso that {zr € R :
—ami1- T+ (—d+A) € amia-D+amys-p+---+a;-p} € p. Thus we have that
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D, Ep, where Dy, = D1 N (25 Mper, (=0 + Df) N Nage,_, 4 (—d + A)

N0 Nuea,, 17 €R : —amyr-z+(—d+A) € iz p+amrs: p+ -+a;-p}.
(Here 1f say [ =1 or n < [, we are using the convention that () = R.)

Pick, again by Theorem 2.3, xq,,, Ta,+15 -+ Tan1—1 € R7T such that
Lan,
B T e
Toneiol

Let H,, be the set of entries of

Lo

n

Lo, +1
By, )

Lay,41-1

Then hypotheses (I), (II1),(V), and (VI) hold directly.

To verify hypothesis (IT), let ) # F C {0,1,...,7}, let kK = min F’, and for
each t € I, let y; € H;. If n does not belong to F, then ), .y € Dy by
hypothesis (II) at n — 1, so assume that n € F. If F' = {n}, then we have
that yn € Dy, directly so assume that F'# {n}. Let b =}_,cp 1,3 y¢- Then
b € Ej, and so y, € —b+ Dj and thus b +y, € Dy as required.

To verify hypothesis (IV), let m € {0,1,...,l—1} and Fy, F1,..., F,, are
nonempty subsets of {0,1,...,n}, such that for each ¢ € {0,1,...,m — 1},
max F; < min Fjy1, and for each ¢t € U?io F, yv € H. If m = 0, then
> ter, Yt € Dg by (I1) and (III) so that —ag- Y ycp vt + A€ ar-p+az-p+

-+ 4 ay - p as required.

So assume that m > 0. Let £k = min F};, and j = max F,,_1. Then
Yoier, Yt € Di by (II) € Djpq by (ID) C{x € R: —ap - o+ (— Yoo Lai -
doter Yt +A) € i1 P+ amy2 - p+ - +ap - pt by (VI) as required.

The induction being complete, we claim that whenever Fpy, Fi,..., F; are
nonempty subsets of w such that for each ¢ € {0,1,...,l — 1}, max F; <
min Fj 1, and for each t € J", F;, y+ € Hy, then _Zézo a; - ZteFi yr €
A. To see this, let k = minFl and let j = max F;_1. Then ZteFl Yy €

Df C Djy1 C a; ' (— Zt OaZ > ter, Yt + A) by hypothesis (V), and so

Zi’:o ai ) e, Yt € A as claimed.
Let @ be an insertion matrix of (B;);«., into C. We claim that all entries of
Q7 arein A. To see this, let v < w be given and let j € x4<,{0,1,...,u;—1},

so that ¢y - b»?o)(o) ~ Cy1 l_)’((}) ~ ... is a row of @, say row §. For each
te€{0,1,...,m},lety, = >}, ! bgt ‘T, +k (so that y, € Hy). Therefore we

have Z;o:o 05,5°Ts = Y 1o Cyt Ut Choose nonempty subsets Fy, F,.. ., Fj of
{0,1,...,m} such that for each i € {0,1,...,l—1}, max F; < min F;;1, and



IMAGE PARTITION REGULARITY NEAR 0 161

for each t € Fj, ¢yt = ai. (One can do this because C' is a Milliken-Taylor
. N l
matrix for @) Then Y™ gy iy = D0 ai- ) yep Yt € A O
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