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Hopf Galois structures on Kummer
extensions of prime power degree

Lindsay N. Childs

Abstract. Let K be a field of characteristic not p (an odd prime),
containing a primitive pn-th root of unity ζ, and let L = K[z] with

xpn

− a the minimal polynomial of z over K: thus L|K is a Kummer
extension, with cyclic Galois group G = 〈σ〉 acting on L via σ(z) = ζz.
T. Kohl, 1998, showed that L|K has pn−1 Hopf Galois structures. In
this paper we describe these Hopf Galois structures.
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1. Introduction

Chase and Sweedler [CS69] introduced the concept of a Hopf Galois ex-
tension, generalizing the notion of a classical Galois extension of fields L|K
with Galois group G. Given a field extension L ⊃ K and a cocommuta-
tive K-Hopf algebra H that acts on L making L into an H-module algebra
(i.e., h(ab) =

∑
(h) h(1)(a)h(2)(b), where, following Sweedler’s notation, the

comultiplication ∆ : H → H ⊗K H is given on an element h of H by

∆(h) =
∑
(h)

h(1) ⊗ h(2),

then L is an H-Hopf Galois extension of K if the obvious map

L⊗K H → EndK(L)

induced from the module action of H on L is 1-1 and onto.
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If L is a Galois extension of K with Galois group G, then L is a KG-Hopf
Galois extension of K.

For some time after the concept was introduced, there was little interest in
applying it to classical Galois extensions of fields, until in [GP87], Greither
and Pareigis showed that a classical Galois extension L|K of fields with
Galois group G could have Hopf Galois structures other than the classical
one by KG, and showed how to transform the problem of determining the
number of Hopf Galois structures on L|K into one depending purely on the
Galois group G.

Subsequently, Byott [By96], extending [Ch89], found a translation of the
group-theoretic problem that made the problem of counting Hopf Galois
structures on L|K far more tractable. Thus most of the results on Hopf
Galois structures on field extensions with given Galois group G have utilized
Byott’s translation, in particular, [By96], [Ko98], [CaC99], [By02], [Ch03],
[By04a], [By04b], [Ch05], [By07], [Ch07], [CCo07], [FCC11]. Other than the
original paper of Greither and Pareigis [GP87] very few papers explicitly
use the direct approach of [GP87] to determine Hopf Galois structures and
even fewer explicitly describe the K-Hopf algebra and the action of the
Hopf algebra on the field extension L. The most notable exceptions are
papers that utilize the Kummer theory of formal groups to yield Hopf Galois
structures (see [Ch00], Chapter 12), results where the Galois group has order
p2, p an odd prime (see [Ch96] and [By02]), and work of Kohl [Ko07], for
groups G of order 4p, p an odd prime.

For Galois extensions L|K of local number fields with Galois group G,
a classical problem in local Galois module theory is to understand the val-
uation ring S of L as a module over the group ring RG, where R is the
valuation ring of K. E. Noether showed that S is a free RG-module if and
only if L|K is tamely ramified. In the wild (= non-tame) case Leopoldt
showed that sometimes S is a free A module where A is the associated order
of S in KG. More generally, if L|K is an H-Hopf Galois extension and A,
the associated order of S in H, is an R-Hopf order in H, then S is A-free
[CM94]. Byott ([By97a], [By97b], [By99], [By00], [By02]) has constructed
examples of wild Galois extensions L|K of local fields with Galois group
G where S is not a free module over the associated order in KG, but the
associated order in some other H-Hopf Galois structure on L|K is an R-
Hopf order in H, and hence S is free over that associated order . Thus the
existence of Hopf Galois structures other than the classical one for Galois
extensions of local fields adds an array of new possibilities for the study of
local Galois module structure.

The purpose of this paper is to study the Hopf Galois structures on a
cyclic extension L|K of order pn, where p is an odd prime. It has been
known since [Ko98] that there are pn−1 Hopf Galois structures on L|K, but
except for n ≤ 2 the K-Hopf Galois structures have not been described. In
this paper, when L is a cyclic Kummer extension of K of degree pn, p an
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odd prime, we describe the K-Hopf algebras H as K-algebras for each of
the pn−1 Hopf Galois structures, and describe how the elements of H act on
L.

Acknowledgements. My thanks to the Mathematics Department at Vir-
ginia Commonwealth University for its hospitality while this research was
conducted, and to a referee for numerous helpful comments on a previous
version of this paper.

2. Greither–Pareigis theory and Byott’s translation

In order to pass from results obtained via Byott’s translation to a more
explicit description of the Hopf Galois structures, we need to examine the
Greither–Pareigis and Byott results in some detail.

Let L|K be a Galois extension with Galois group G. Then the map

γ : L⊗K L → HomL(LG,L) := GL

by γ(a⊗ b)(σ) = aσ(b) is an isomorphism. If {xσ : σ ∈ G} is the dual basis
of {σ ∈ G}, then L ∼= K⊗K L maps under γ into GL and the image γ(1⊗b)
satisfies

γ(1⊗ b)(σ) = σ(b)
for all σ in G. Thus

γ(1⊗ b) =
∑
σ∈G

σ(b)xσ,

and for τ in G,

γ(1⊗ τ(b)) =
∑
σ∈G

σ(τ(b))xσ

=
∑
σ∈G

σ(b)xστ−1

=
∑
σ∈G

σ(b)xρ(τ)(σ)

where ρ : G → Perm(G) is the right regular representation. Thus the action
of G on L ∼= K ⊗ L corresponds under base change to an action of G on
GL =

∑
τ Lxτ making GL a Galois extension of L with Galois group G

acting as permutations of the dual basis {xσ} via ρ.
A subgroup N of Perm(G) is regular if N has the same order as G and

the orbit in G of each element of G under action by N is all of G.
Greither and Pareigis showed that given any Hopf Galois structure on L|K

by a K-Hopf algebra H, then L⊗K H = LN for some regular subgroup N
of Perm(G) acting on GL by permuting the (subscripts of the) dual basis
{xσ}. Also, N is normalized by λ(G), the image in Perm(G) of G under
the left regular representation λ of G, λ(σ)(τ) = στ . Conversely, each
regular subgroup N of Perm(G) defines an LN -Hopf Galois structure on
GL by permuting the dual basis {xσ}, and if N is normalized by λ(G), then
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that Hopf Galois structure descends to an (LN)G-Hopf Galois structure on
(GL)G ∼= L, where G acts on GL by

τ(axσ) = τ(a)xλ(τ)(σ)

for τ, σ in G, a in L, and G acts on LN by

τ(aη) = τ(a)λ(τ)ηλ(τ)−1

for τ in G, η in N and a in L. Thus there is a bijection between Hopf Galois
structures on L|K and regular subgroups of Perm(G) normalized by λ(G).

Byott’s translation works as follows. Given a Galois extension L|K with
Galois group G, let N be a group with the same cardinality as G. Inside
Perm(N) is Hol(N), the normalizer of λ(N). Then Hol(N) = ρ(N)·Aut(N).
Each homomorphism β : G → Hol(N) so that β(G) is a regular subgroup
of Perm(N) yields a Hopf Galois structure on L|K, as follows: Given β,
define the function b : G → N by b(σ) = β(σ)(e), where e is the identity
element of N . Since β(G) is a regular subgroup of Perm(N), b is a bijection.
Then b defines an isomorphism between Perm(N) and Perm(G) by the map
that sends π in Perm(N) to C(b−1)(π) = b−1πb in Perm(G). So define an
embedding α : N → Perm(G) by

α(η)(σ) = b−1(λ(η)(b(σ)))

for σ in G, η in N . As Byott [By96] showed, two regular embeddings β, β′ :
G → Perm(N) define the same regular subgroup α(N) of Perm(G), hence
the same Galois structure on L|K, iff there exists an automorphism γ of N
so that β′(σ) = C(γ)(β(σ)) = γβ(σ)γ−1 for all σ in G.

This translation of the problem of finding regular subgroups of Perm(G)
normalized by λ(G) has made the problem of determining Hopf Galois struc-
tures on L|K somewhat easier by first, splitting the problem into a number
of separate problems, one for each isomorphism class of groups N of the
same cardinality as G, and second, replacing the problem of finding regular
subgroups of Perm(G) normalized by λ(G) by finding regular embeddings
of G into Hol(N), typically a much smaller group. As a result, most of the
results on Hopf Galois structures on field extensions with given Galois group
G have utilized Byott’s translation, as noted above.

Moving from results using the Byott translation to explicitly describing
the Hopf Galois structure involves two obstacles: first, using the function b
(rarely a homomorphism) to translate from a regular embedding β : G →
Hol(N) to the corresponding embedding α : N → Perm(G), and secondly,
descending the action of α(N) on GL to an action of L(α(N))λ(G) on L.

3. The action of LNG on L

Let L|K be a Galois extension of fields with Galois group G of order n,
let N be a group of order n and suppose β : G → Hol(N) ⊂ Perm(N) is a
regular embedding. Then N gives rise to a Hopf Galois structure on L|K
by the K-Hopf algebra H = LNG ∼= Lα(N)λ(G). We describe this action.
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Proposition 1. Let L|K, G, N , β, H be as above. Then H acts on L as
follows. For ξ =

∑
η∈N sηη in H, sη in L and a in L,

ξ(a) =
∑

η

sηb
−1(η−1)(a).

Proof. The regular embedding β : G → Hol(N) yields the regular embed-
ding α : N → Perm(G) via

α(η)(σ) = b−1(λ(η)(b(σ)).

For a in L, the image of a in GL is
∑

σ σ(a)xσ, and

ξ

(∑
σ∈G

σ(a)xσ

)
=
∑

η

sηη

(∑
σ

σ(a)xσ

)
=
∑
η,σ

sησ(a)xα(η)(σ).

Since H maps GLG to itself, ξ(
∑

σ σ(a)xσ) has the form
∑

σ σ(c)xσ, the
image in GL of an element c of L. Thus for a in L, ξ(a) = c, the coefficient
of x1 in the last expression (where 1 is the identity element of G).

Now b : G → N is a bijection that maps 1 in G to the identity element e
of N , since β is a homomorphism. So ,

1 = α(η)(σ) = b−1(λ(η)b(σ))

iff
ηb(σ) = e,

iff
σ = b−1(η−1).

So the coefficient of x1 is

ξ(a) =
∑

(η,σ),α(η)(σ)=1

sησ(a)

=
∑
η∈N

sηb
−1(η−1)(a). �

Once we find a set of generators of H = LNG, we may use the map b−1

to describe the action of H on L as in Proposition 1.

4. Regular embeddings for G cyclic

Let L be a Galois extension of K with Galois group G cyclic of order pn,
p an odd prime. Kohl [Ko98] showed that if L|K is H-Hopf Galois, then
the K-Hopf algebra H has associated group G: that is, L ⊗K H ∼= LG. In
other terms, if there is a regular embedding of G into Hol(N) for N a group
of order pn, then N ∼= G. Thus if we wish to find Hopf Galois structures on
L|K, it suffices to seek regular embeddings β of G into Hol(G).
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Now Hol(G) ∼= GoAut(G) ∼= Z/pnZo(Z/pnZ)×, where we view elements
of Hol(G) as of the form (a, g) with a, g integers modulo pn and g coprime
to p. Since G embeds in Perm(G) by the right regular representation ρ,
(a, g) acts on h in G by (a, g)(h) = (gh − a), and so the multiplication on
G is (a, g)(a′, g′) = (a + ga′, gg′). It is routine to verify that (a, g) has order
pn iff a is coprime to p and g ≡ 1 (mod p). Thus for G = 〈σ〉 the regular
embeddings β : G → Hol(Z/pnZ) have the form β(σ) = (a, 1 + dp) for a
coprime to p.

Proposition 2. Up to equivalence, the pn−1 equivalence classes of regular
embeddings β : G → Hol(G) are represented by β satisfying

β(σ) = (−1, 1 + dp)

for d modulo pn−1.

Proof. Given β, β′ : G → Hol(G), β ∼ β′ if β′ = C(γ)β for γ in Aut(G).
Now (Z/pnZ)× ∼= Aut(G) via g 7→ γg, left multiplication by g. For h in
G = Z/pnZ and β(σ) = (a, 1+dp) in Hol(G) = ρ(G) ·Aut(G) ∼= GoAut(G),

γgβ(σ)γ−1
g (h) = γg(a, 1 + dp)γ−1

g (h)

= γg(a, 1 + dp)(g−1h)

= γg((1 + dp)g−1h− a)

= g((1 + dp)g−1h− a)

= (1 + dp)h− ga

= (ga, 1 + dp)(h).

For each a coprime to p, there is some g so that ga ≡ −1 (mod pn). Since d is
unaffected by γg, each choice of d modulo pn−1 yields a different equivalence
class. �

For later use we note:

Lemma 3. For g in (Z/pnZ)×, (−1, g)λ(a)(−1, g)−1 = λ(ga).

Proof.
(−1, g)(g−1, g−1) = (−1 + g(g−1), gg−1) = (0, 1)

and so for all h in G,

(−1, g)λ(a)(−1, g)−1(h) = (−1, g)λ(a)(g−1, g−1)(h)

= (−1, g)λ(a)(g−1h− g−1)

= (−1, g)(a + g−1h− g−1)

= g(a + g−1h− g−1) + 1
= ga + h

= λ(ga)(h). �



HOPF GALOIS STRUCTURES ON KUMMER EXTENSIONS 57

5. Regular subgroups of Perm(G) for G cyclic

As noted earlier, given a regular embedding β : G → Hol(N), we obtain
the corresponding regular subgroup α(N) of Perm(G) by using the bijective
function b : G → N defined by b(σ) = β(σ)(0), where 0 is the identity ele-
ment of N . Then b defines an isomorphism between Perm(N) and Perm(G)
by the map that sends π in Perm(N) to C(b−1)(π) = b−1πb in Perm(G). For
G a cyclic group (written additively), this isomorphism yields an embedding
α : N → Perm(G) by

α(θ)(σ) = b−1(λ(θ)(b(σ))) = b−1(θ + b(σ))

for σ in G, θ in N . The subgroup of Perm(G) corresponding to β is then
α(N), and the action of LNG on L is described by b−1, as in Proposition 1.

For G cyclic of order pn, N ∼= G and the group M = α(G) ⊂ Perm(G) is
generated by η = α(1), the permutation that sends q in G to b−1(b(q) + 1).
In particular, for q = b−1(k), we have

η(b−1(k)) = b−1(bb−1(k) + 1) = b−1(k + 1).

Thus the cycle description of the generator η of α(G) in Perm(G) is

(b−1(1), b−1(2), b−1(3), . . .).

To find b−1 : N → G, we have

Proposition 4. Let G = Z/pnZ, p odd, and let β : G → Hol(G) with
β(1) = (−1, g) for g = 1 + dp as in Proposition 2. Then for t, s in G,

β(t) =
(
−gt − 1

g − 1
, gt

)
,

b(t) =
(1 + dp)t − 1

dp

b−1(s) =
logp(1 + sdp)
logp(1 + sp)

where logp(y) is the p-adic logarithm function.

Proof. If β : G → Hol(G) with β(1) = (−1, g) for g = 1 + dp, then

β(t) = (−1, g)t = (−(1 + g + g2 + . . . + gt−1), gt) =
(
−
(

gt − 1
g − 1

)
, gt

)
.

so

b(t) = β(t)(0) = (−1, g)t(0).
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For g = 1 + dp,

(−1, g)t =

(
−
∑t

r=1

(
t
r

)
(dp)r

dp
,

t∑
r=0

(
t

r

)
(dp)r

)

=

(
−

t∑
r=1

(
t

r

)
(dp)r−1,

t∑
r=0

(
t

r

)
(dp)r

)
,

=

(
−(1 + dp)t − 1

dp
,

t∑
r=0

(
t

r

)
(dp)r

)
.

So

s = b(t) = β(t)(0) =
(1 + dp)t − 1

dp
.

Thus t = b−1(s) where
1 + sdp = (1 + dp)t.

Solving for t is the same as solving the discrete logarithm problem in the
cyclic group (1 + pZ)/(1 + pnZ).

For x a multiple of p, the p-adic logarithm function is

logp(1 + x) =
∞∑
i=1

(−1)i−1 xi

i
.

For x, y both multiples of p, logp((1 + x)(1 + y)) = logp(1 + x) + logp(1 + y),
and logp : (1 + pZ)/(1 + pnZ) → pZ/pnZ is bijective [Co00, 4.2.7, 4.2.8].
Thus from 1 + sdp = (1 + dp)t we obtain

logp(1 + sdp) = logp((1 + dp)t) = t logp(1 + dp)

and so

t = b−1(s) =
logp(1 + sdp)
logp(1 + dp)

. �

Example 5. Let p = 3, G = Z/9Z and d = 1, so g = 4. Then for t ≥ 0,

β(t) = (−1, 4)t,

so

b(t) =
(1 + p)t − 1

p
= t +

t(t− 1)
2

p + . . .

≡ t + 6t(t− 1) (mod 9).

Thus

b(3r) = 3r

b(1 + 3r) = 1 + 3r

b(2 + 3r) = (2 + 3r) + 3,
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hence

b−1(3r) = 3r

b−1(1 + 3r) = 1 + 3r

b−1(2 + 3r) = (2 + 3r)− 3.

As an element of Perm(G), the generator η of α(G) has cycle description

(0, 1, 8, 3, 4, 2, 6, 7, 5).

Since λ(1) = (0, 1, 2, 3, 4, 5, 6, 7, 8), one may verify easily that

λ(1)ηλ(1)−1 = η4.

6. Determining the K-Hopf algebra

For the remainder of the paper we assume that K contains a primitive
pn-th root of unity ζ, p odd, and L is a Kummer extension of K of order
pn, so that L = K[z] and the minimal polynomial of z over K is xpn − a for
some a in K.

The regular subgroup α(G) = M of Perm(G) yields a K-Hopf algebra ac-
tion on L by the K-Hopf algebra H = LMG, whose structure is determined
by how G acts on L and on how λ(G) acts on M . The action of G on L is
given. In our case L = K[z] is a Kummer extension of K, so the action is
transparent. The action of λ(G) on M is also straightforward.

Proposition 6. Let G = Z/pnZ, p odd. Suppose β : G → Hol(G) is a
regular embedding with β(1) = (−1, g) where g = 1+dp as in Proposition 2.
Then the group α(G) = M = 〈η〉 where η = α(1) = C(b−1)(λ(1)). The
group M is normalized by λ(G) in Perm(G). In fact, the action of λ(G) on
M is induced by λ(1)ηλ(1)−1 = ηg.

Proof. We know that η = C(b−1)(λ(1)), and we showed in Lemma 3 that

(−1, g)λ(1)(−1, g)−1 = λ(g · 1).

When we translate to Perm(G) via C(b−1), we obtain

C(b−1)(−1, g)C(b−1)(λ(1))C(b−1)(−1, g)−1 = C(b−1)(λ(1))g,

that is,

C(b−1)(−1, g)ηC(b−1)(−1, g)−1 = ηg,

using multiplicative notation for composition of permutations in Perm(G).
Now for t in G = Z/pnZ, we have

b(t) =
gt − 1
g − 1

,
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and

C(b−1)(−1, g)(t) = b−1(−1, g)b(t)

= b−1(−1, g)
(

gt − 1
g − 1

)
= b−1

(
g

(
gt − 1
g − 1

)
+ 1
)

= b−1

(
gt+1 − 1
g − 1

)
= b−1(b(t + 1))
= t + 1.

So C(b−1)(−1, g) = λ(1). Thus

λ(1)ηλ(1)−1 = ηg. �

Translating to multiplicative notation for the Galois group G = 〈σ〉 ∼=
Z/pnZ of the Kummer extension L|K, let α(G) = M = 〈η〉 as in Proposition
6. The action of G on LM is induced by the Galois action of G on L and
the action on M by σ(η) = λ(σ)ηλ(σ)−1 = ηg. Thus Proposition 6 enables
us to determine the K-Hopf algebra H = LMG acting on L.

As a K-module we can determine a set of generators of H by simply
taking the sums of elements in the distinct orbits under the action of G of
zkηl for all k, l with 0 ≤ k, l ≤ pn − 1. But we are interested in H as a
K-algebra, so our objective in the remainder of the paper is to obtain an
economical set of generators of H as a K-algebra.

As an initial model, we first do the known case where G = 〈σ〉 is cyclic of
order p2.

6.1. G of order p2. We suppose L is a cyclic Kummer extension of K of
order p2 with Galois group G = 〈σ〉. Thus K contains a primitive p2-root
of unity ζ, and L = K[z] with σ(z) = ζz, where the minimal polynomial of
z over K is xp2 −a. Let M = 〈η〉 be cyclic of order p2 where σ(η) = ηg with
g = 1 + dp. Then σ(ηp) = ηp, so ηp is in LMG = H. Therefore the minimal
idempotents

e1
s =

1
p

p−1∑
i=0

ζ−spiηpi

of K[〈ηp〉] for s = 0, . . . , p − 1 are fixed by G. These idempotents satisfy
ηpe1

s = ζspe1
s. It follows that

σ(z−sdpe1
sη) = ζ−sdpz−sdpe1

sη
1+dp

= ζ−sdpz−sdpe1
sη

dpη

= z−sdpe1
sη.
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So following the construction of Greither [Gr92], we let

av =
p−1∑
s=0

vse1
s

where v = z−dp. Then
σ(avη) = avη.

Proposition 7. H = LMG = K[ηp, avη] where v = z−dp .

Proof. Since H has dimension p2 over K and K[ηp] =
∑p−1

s=0 Ke1
s is a sub-

algebra of H, it suffices to show that for s = 0, . . . , p − 1, K[ηp, avη]e1
s has

dimension p over Ke1
s. Now

K[ηp, avη]e1
s = K[avη]e1

s = K[z−sdpη]e1
s,

the elements {(z−sdpe1
sη)r : 0 ≤ r < p} are linearly independent over Ke1

s,
and

(z−sdpe1
sη)p = z−p2sdζspe1

s

is in Ke1
s. Thus for each s, K[ηp, avη]e1

s has dimension p over Ke1
p. Hence

K[ηp, avη] has dimension p2 over K and is a subalgebra of H, hence is equal
to H. �

This result is in [Ch96, Section 1].

6.2. G of order p3. To preview the main result, Theorem 12 below, we
write down the result for L|K a Kummer extension with Galois group G,
cyclic of order p3.

In KG we have the idempotents

e1
t =

1
p2

p2−1∑
j=0

ζ−pjtηpj

for 0 ≤ t < p2, and

e2
t =

1
p

p−1∑
j=0

ζ−p2jtηp2j

for 0 ≤ t < p. Then e2
t is G-invariant for all t, and e1

t is G-invariant if p
divides t.

For σ(η) = η1+dp with (p, d) = 1, then, analogous to the Greither element
for the p2-case, we let

g1,sp = z−sdp2
e1
spη, for 0 ≤ s ≤ p− 1, and

g1,s =
p−1∑
i=0

σi(z−sdpe1
sη) for 1 ≤ s ≤ p− 1,



62 LINDSAY N. CHILDS

the sum of the conjugates of z−sdpe1
sη, and let

h =
p−1∑
s=1

g1,s +
p−1∑
s=0

g1,sp.

Then Theorem 12 shows that

LMG = K[h, ηp2
, e2

0η
p, e1

0η].

For σ(η) = η1+dp2
, Theorem 12 specializes to show that

LMG = K[h, ηp, e2
0η]

where

h =
p2−1∑
s=0

g1,s =
p2−1∑
s=0

z−sdp2
e1
sη.

6.3. G of order pn. Let L = K[z], a cyclic Kummer extension of fields of
order pn with Galois group G = 〈σ〉 as at the beginning of Section 6. Let
M = 〈η〉 be the regular subgroup of Perm(G) normalized by G corresponding
to the regular embedding β : G → Hol(G) where β(G) = 〈(−1, 1 + dpν)〉
with (d, p) = 1 and ν ≥ 1. Then the corresponding K-Hopf algebra acting
on L is LMG, where G acts on L via the Galois action and acts on M by
σ(η) = η1+dpν

.

Idempotents. To obtain a set of algebra generators for LMG, we first look
at the idempotents of KM .

For r = 0, . . . , n− 1 and t modulo pn−r we have the pairwise orthogonal
idempotents of K[ηpr

],

er
t =

1
pn−r

pn−r−1∑
i=0

ζ−tpriηpri.

Then
ηpr

er
t = ζprter

t

so for all k ≥ r,
ηspk

er
t = ζstpk

er
t ,

and

1 =
pn−r−1∑

t=0

er
t .

More generally, the idempotents of K[ηpr+1
] decompose in K[ηpr

] as:

Lemma 8. For r = 0, . . . , n− 2,
p−1∑
k=0

er
t+kpn−r−1 = er+1

t .
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Proof.

p−1∑
k=0

er
t+kpn−r−1 =

1
pn−r

p−1∑
k=0

pn−r−1∑
i=0

ζ−pri(t+kpn−r−1)ηpri

=
1

pn−r

pn−r−1∑
i=0

ηpriζ−prit
p−1∑
k=0

ζ−ikpn−1
.

and the last sum = 0 if i 6≡ 0 modulo p, and = p if i = pj. So

p−1∑
k=0

er
t+kpn−r−1 =

1
pn−r−1

pn−r−1−1∑
j=0

ζ−pr+1jtηpr+1j = er+1
t . �

Corollary 9. For all k > 0 and all s, t, r,

er
se

r+k
t = 0 if t 6≡ s (mod pn−r−k)

= er
s if t ≡ s (mod pn−r−k).

Proof. Since er+1
s = er+1

s er+1
s , Lemma 8 gives

p−1∑
k=0

er
s+kpn−r−1 =

p−1∑
k=0

er+1
s er

s+kpn−r−1 .

Multiplying both sides by er
s, we get

er
s = er+1

s er
s

by pairwise orthogonality of the idempotents {er
s : s = 0, . . . , pn−r − 1}.

Since the subscript t of er+1
t is defined modulo pn−r−1, the result is then

clear for k = 1. For general k > 0, we can use the case k = 1 to write

er
s = er

se
r+1
s · · · er+k

s .

Then er+k
t er

s = er
s iff

er+k
s = er+k

t ,

iff

s ≡ t (mod pn−r−k),

and equals 0 otherwise. �

The group G = 〈σ〉 acts on the idempotents by

σ(er
t ) = er

t(1+dpν)−1 ,
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where the subscript t(1 + dpν)−1 is modulo pn−r. To verify this G-action,
the change of variables j = i(1 + dpν) gives

σ(er
t ) =

1
pn−r

pn−r−1∑
i=0

ζ−tpriηpri(1+dpν)

=
1

pn−r

pn−r−1∑
j=0

ζ−tprj(1+dpν)−1
ηprj

= er
t(1+dpν)−1 .

For t = spε with s coprime to p and for k ≥ 0, we have

σpk
(er

spε) = er
spε(1+dpν)−pk .

The subscript t on er
t is modulo pn−r, and for k = n− r − ε− ν,

spε(1 + dpν)−pk ≡ spε (mod pn−r).

Hence

σp(n−r−ε−ν)
(er

spε) = er
spε .

In particular, for r = n− ε− ν and ε = 0, . . . , n− 1− ν, we have

σ(en−ν−ε
spε ) = en−ν−ε

spε .

We may now write 1 as a sum of pairwise orthogonal G-invariant idem-
potents:

Proposition 10. In LMG, we have

1 =
n−ν−2∑

ε=0

pν−1∑
s=1,(s,p)=1

en−ν−ε
spε +

pν−1∑
s=1

e1
spn−ν−1 .

Proof. We just observed that all of the idempotents in the sum are fixed
by G.

We have

1 =
pν−1∑
s=0

en−ν
s =

pν−1∑
s=1,(s,p)=1

en−ν
s +

pν−1−1∑
r=0

en−ν
rp .

Now by Lemma 8,

en−ν
rp =

p−1∑
k=0

en−ν−1
rp+kpν ,
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also a sum of pairwise orthogonal idempotents, so

pν−1−1∑
r=0

en−ν
rp =

pν−1−1∑
r=0

p−1∑
k=0

en−ν−1
rp+kpν

=
pν−1∑
t=0

en−ν−1
tp

=
pν−1∑

s=1,(s,p)=1

en−ν−1
sp +

pν−1−1∑
r=0

en−ν−1
rp2 .

Repeating this decomposition n−ν−2 more times yields the desired formula.
�

Generators. We want to find generators of LMGen−ν−ε
spε over Ken−ν−ε

spε .
By analogy with the p2 case, which involves the sum of Greither generators
z−sdpe1

sη, we look at elements of the form

zker
spεηpr−1

with (s, p) = 1. For n = 2, the summands z−sdpe1
sη are fixed by G. For

n > 2 what are fixed are sums of conjugates under the action of G. We
therefore need to know what power of σ fixes these elements.

Proposition 11. We have

σpn−r−ε−ν
(z−sdpε+r+ν−1

er
spεηpr−1

) = z−sdpε+r+ν−1
er
spεηpr−1

.

Proof. We have

σpn−r−ε−ν
(z−sdpε+r+ν−1

) = ζ−sdpn−1
z−sdpε+r+ν−1

while
σpn−r−ε−ν

(er
spε) = er

spε

and σ(η) = η1+dp. So

σpn−r−ε−ν
(er

spεηpr−1
) = er

spεηpr−1(1+dpν)k

where k = pn−r−ε−ν . The exponent of η is

pr−1(1 + dpν)pn−r−ε−ν
= pr−1 + pn−r−ε−νpr−1dpν + d′pn−r−ε−νpr−1p2ν

= pr−1 + dpn−ε−1 + d′′pn−ε

for some d′′. So since r ≤ n− ε− ν ≤ n− ε− 1,

σpn−r−ε−ν
(er

spεηpr−1
) = er

spεηpr−1+dpn−ε−1+d′′pn−ε

= ζsdpn−1
er
spεηpr−1

.

The respective powers of ζ cancel to give the result. �
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Now we can define the generators of the K-Hopf algebra LMG.
For 0 ≤ ε ≤ n− ν − 1, 1 ≤ r ≤ n− ε− ν, and 1 ≤ s ≤ p− 1, let gr,spε be

the sum of the conjugates of the Greither elements z−sdpε+r+ν−1
er
spεηpr−1

:

gr,spε =
pn−ε−r−ν−1∑

i=0

σi(z−sdpε+r+ν−1
er
spεηpr−1

).

Then gr,spε is fixed by G for all s by Proposition 11, so lies in LMG. In
particular,

g1,spε =
pn−ε−ν−1−1∑

i=0

σi(z−sdpε+ν
e1
spεη),

while
gn−ε−ν,spε = z−sdpn−1

en−ε−ν
spε ηpn−ε−ν−1

.

We set h to be the sum of all the sums of conjugates with r = 1:

h =
n−ν−2∑

ε=0

pν−1∑
s=1,(s,p)=1

g1,spε +
pν−1∑
s=0

g1,spn−ν−1 .

Recall that σ(η) = η1+dpν
with (d, p) = 1 and ν ≥ 1. Thus ηpn−ν

is in
LMG since σ(ηpn−ν

) = ηpn−ν(1+dpν) = ηpn−ν
. Also, for r = ν, . . . , n − 1,

er
0η

pr−ν
is in LMG, for σ(er

0) = er
0 and so

σ(er
0η

pr−ν
) = er

0η
pr−ν(1+dpν) = er

0η
pr−ν

ηprd = er
0η

pr−ν

since er
0η

pr
= er

0.
Let

H = K[h, ηpn−ν
, en−1

0 ηpn−1−ν
, . . . , er

0η
pr−ν

, . . . , eν
0η].

Evidently, H ⊂ LMG.

The main result. We show that the algebra generators of H generate all
of LMG:

Theorem 12. H = LMG.

Proof. The idea of the proof is to take the idempotents in Proposition 10,
break up K[h] into a direct product corresponding to those idempotents,
and count the dimensions over K of the direct factors.

We first show that the idempotents en−ν−ε
spε appearing in Proposition 10

are in H. For ε = 1, . . . , n− ν − 1, we have

en−ν−ε
spε = en−ε

0 en−ν−ε
spε

by Corollary 9. Since

en−ν−ε
spε =

1
pν+ε

pν+ε−1∑
j=0

ζ−jspn−ν
ηjpn−ν−ε

,
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we may multiply both sides by en−ε
0 to get

en−ν−ε
spε =

1
pν+ε

pν+ε−1∑
j=0

ζ−jspn−ν
en−ε
0 (ηpn−ν−ε

)j ,

a K-linear combination of powers of en−ε
0 ηpn−ν−ε

, hence in H. For ε = 0,
the idempotents en−ν

s are K-linear combinations of powers of ηpn−ν
, hence

are in H.
Now by Proposition 10, 1 decomposes into a sum of pairwise orthogonal

G-invariant idempotents:

1 =
n−ν−2∑

ε=0

pν−1∑
s=1,(s,p)=1

en−ν−ε
spε +

pν−1∑
s=0

e1
spn−ν−1 .

We also have

h =
n−ν−2∑

ε=0

pν−1∑
s=1,(s,p)=1

g1,spε +
pν−1∑
s=0

g1,spn−ν−1 .

We show:

Proposition 13. For all pairs (s, ε) with s coprime to p and 0 ≤ ε ≤ n−ν−2
or with ε = n− ν − 1, we have

hen−ν−ε
spε = g1,spε .

Proof. For each pair (t, f) we have

hen−ν−f
tpf =

n−ν−2∑
ε=0

pν−1∑
s=1,(s,p)=1

g1,spεen−ν−f
tpf +

pν−1∑
s=0

g1,spn−ν−1en−ν−f
tpf .

We have four cases to show.

Case 1. If n− ν − f ≥ 2 and t is coprime to p, then

g1,spn−ν−1en−ν−f
tpf = 0.

Case 2.
g1,spn−ν−1e1

tpn−ν−1 = 0

if t 6= s, while
g1,spn−ν−1e1

spn−ν−1 = g1,spn−ν−1 .

Case 3. For s coprime to p and n− ν − ε ≥ 2,

g1,spεe1
tpn−ν−1 = 0

for all t.
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Case 4. For s, t coprime to p and ε, f ≤ n− ν − 2,

g1,spεen−ν−f
tpf = 0

if f 6= ε or if f = ε but t 6= s, while

g1,spεen−ν−ε
spεf = g1,spε .

We use Corollary 9: For all k > 0 and all s, t, r,

er
se

r+k
t = 0 if t 6≡ s (mod pn−r−k)

= er
s if t ≡ s (mod pn−r−k).

Case 1: We have n− ν − f ≥ 2 and t is coprime to p. Now

g1,spn−ν−1en−ν−f
tpf = z−sdpn−1

ηe1
spn−ν−1e

n−ν−f
tpf ,

and by Proposition 8, this 6= 0 if spn−ν−1 ≡ tpf (mod pn−(n−ν−f)). But
since

ordp(tpf ) = f ≤ n− ν − 2 < ordp(spn−ν−1)
the congruence never holds, so Case 1 is true.

Case 2: Since g1,spn−ν−1 is a multiple of e1
spn−ν−1 , Case 2 follows from the

orthogonality of the idempotents {e1
tpn−ν−1}.

For Cases 3 and 4 we assume s is coprime to p and n − ν − ε ≥ 2. We
write

g1,spε =
pn−ε−ν−1−1∑

i=0

σi(z−sdpε+ν
ηe1

spε)

=
pn−ε−ν−1−1∑

i=0

z−sdpε+ν
ζ−sdpε+ν

η(1+dpν)i
e1
spε(1+dpν)−i

=
pn−ε−ν−1−1∑

i=0

γie
1
spε(1+dpν)−i

where γi is the coefficient of e1
spε(1+dpν)−i in the ith summand.

Case 3 is the case

g1,spεe1
tpn−ν−1 =

pn−ε−ν−1−1∑
i=0

γie
1
spε(1+dpν)−ie

1
tpn−ν−1 ,

which = 0 from Corollary 9 by essentially the same argument as in Case 1.
Case 4: For t coprime to p and n− ν − f ≥ 2, we have

g1,spεen−ν−f
tpf =

pn−ε−ν−1−1∑
i=0

γie
1
spε(1+dpν)−ie

n−ν−f
tpf .

The term
γie

1
spε(1+dpν)−ie

n−ν−f
tpf = 0 or = γie

1
spε(1+dpν)−i
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depending on whether or not

spε(1 + dpν)−i ≡ tpf (mod pn−(n−ν−f))

that is,
spε ≡ tpf (1 + dpν)i (mod pν+f ).

Since s and t are coprime to p, this congruence can hold exactly when ε = f

and s ≡ t (mod pν), independent of i. Thus g1,spεen−ν−f
tpf = g1,spε precisely

when f = ε and t ≡ s (mod pν), and = 0 otherwise. The proposition
follows. �

By Proposition 13,

Hen−ν−ε
spε ⊇ K[h]en−ν−ε

spε = K[g1,spε ]en−ν−ε
spε .

Now H decomposes into a direct sum of subrings corresponding to the idem-
potents arising in Proposition 10:

H =
n−ν−2∑

ε=0

pν−1∑
s=1,(s,p)=1

Hen−ν−ε
spε +

pν−1∑
s=1

He1
spn−ν−1 ,

so

H ⊇
n−ν−2∑

ε=0

pν−1∑
s=1,(s,p)=1

K[g1,spε ]en−ν−ε
spε +

pν−1∑
s=1

K[g1,spn−ν−1 ]e1
spn−ν−1 ,

a module over
n−ν−2∑

ε=0

pν−1∑
s=1,(s,p)=1

Ken−ν−ε
spε +

pν−1∑
s=1

Ke1
spn−ν−1 .

We will compute the dimension of K[g1,spε ]en−ν−ε
spε over Ken−ν−ε

spε for each
s, ε. The sum of those dimensions is less than or equal to the dimension of
H as a K-module. When we show that the sum of the dimensions is pn,
then, since LMG is known by descent to have dimension pn and H ⊆ LMG,
we will obtain equality.

To compute the desired dimensions, we have

Proposition 14. For r = 1, . . . , n− ε− ν − 1 and (s, p) = 1,

gp
r,spε = gr+1,spε .

Proof. Since gr,spε is a sum of terms involving pairwise orthogonal idempo-
tents, we have

gp
r,spε =

pn−ε−r−ν−1∑
i=0

σi(z−sdpε+r+ν
er
spεηpr

)

and
er
spεηpr

= ζspr+ε
er
spε .
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In the summation formula for gp
r,spε we write the index of summation in base

pn−ε−r−ν−1: i = j + kpn−ε−r−ν−1. Then

gp
r,spε =

pn−ε−r−ν−1−1∑
j=0

σj
p−1∑
k=0

σkpn−ε−r−ν−1
(z−sdpε+r+ν

er
spεζspr+ε

).

Focusing on the part of the expression for gp
r,spε involving the index k, we

have
σkpn−ε−r−ν−1

(z−sdpε+r+ν
) = ζ−sdkpn−1

z−sdpε+r+ν
,

and
σkpn−ε−r−ν−1

(er
spε) = er

spε−sdkpn−r−1 .

To verify this last formula, we see that the subscript of er on the left side is

spε(1 + dpν)−kpn−ε−r−ν−1
,

and since the subscript t of er
t is defined modulo pn−r, that subscript is

spε(1 + dpν)−kpn−ε−r−ν−1 ≡ spε − spεkpn−ε−r−ν−1dpν

≡ spε − skdpn−r−1 (mod pn−r).

Thus

σkpn−ε−r−ν−1
(z−sdpε+r+ν

er
spεζspr+ε

)

= z−sdpε+r+ν
er
spε−skdpn−r−1ζ

spr+ε−skdpn−1
.

Now we observe that

ηpr
er
spε−skdpn−r−1 = ζspr+ε−skdpn−1

er
spε−skdpn−r−1 .

So

z−sdpε+r+ν
er
spε−skdpn−r−1ζ

spr+ε−skdpn−1

= z−sdpε+r+ν
ηpr

er
spε−skdpn−r−1 ,

and the sum involving k becomes
p−1∑
k=0

z−sdpε+r+ν
ηpr

er
spε−skdpn−r−1 = z−sdpε+r+ν

ηpr
p−1∑
k=0

er
spε−skdpn−r−1

= z−sdpε+r+ν
ηpr

er+1
spε

by Lemma 8, since sd is coprime to p. Thus

gp
r,spε =

pn−ε−r−ν−1−1∑
j=0

σj(z−sdpε+r+ν
ηpr

er+1
spε )

= gr+1,spε . �
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Now we compute the dimension

[K[g1,spε ] : Ken−ν−ε
spε ]

for (s, p) = 1 and ε < n− ν − 1 and for ε = n− ν − 1 and all s.
First assume s is coprime to p. We have from Proposition 14 that

gpr

1,spε = gr+1,spε

for all r = 1, . . . , n− ε− ν − 1 and (s, p) = 1, and so

gpn−ε−ν−1

1,spε = gn−ε−ν,spε = zsdpn−1
en−ε−ν
spε ηpn−ε−ν−1

.

Then
gpn−ε−ν

1,spε = (gpn−ε−ν−1

1,spε )p = z−sdpn
en−ε−ν
spε ηpn−ε−ν

is in Ken−ε−ν
spε . Thus the dimension of K[g1,spε ] over Ken−ε−ν

spε is ≤ pn−ν−ε.
Now g1,spε has the form

g1,spε = z−sdpε+ν
η

pn−ε−ν−r−1∑
i=0

ζdie1
spε(1+dpν)−i

for some exponent di. This is of the form θz−sdpε+ν
where θ is in the

group ring L[η]. Since L[η] is a free module over K[η] with basis {zj :
j = 0, . . . , pn − 1} and gpn−ε−ν

1,spε 6= 0 in K[η], the set

{gj
1,spε : j = 0 . . . , pn−ε−ν − 1}

is linearly independent over K[η], hence over Ke1
spε .

It follows that for ε < n − ν − 1 and s coprime to p, the dimension of
K[g1,spε over Ke1

spε is = pn−ν−ε.
For ε = n− ν − 1 and all s, we have

K[g1,spn−ν−1 ] = K[z−sdpn−1
e1
spn−ν−1η]

which clearly has dimension p as a module over Ke1
spn−ν−1 .

Summing these dimensions, the dimension of H over K is

≥
n−ν−2∑

ε=0

pν−1∑
s=1,(s,p)=1

pn−ε−ν +
pν−1∑
s=0

p

= (pν − pν−1)(pn−ν + pn−ν−1 + . . . + p2) + p(pν) = pn.

Since H ⊆ LMG, we must have H = LMG, completing the proof of Theo-
rem 12. �

Example 15. Let G be cyclic of order 27. Let M be the regular subgroup
of Perm(G) corresponding to the cyclic subgroup 〈(−1, 4)〉. Then β(t) =
(−1, 4)t, so

b(t) ≡
(

4t − 1
3

)
(mod 27).
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One may verify that

b(3m) = −2(3m)

b(1 + 3m) = 1 + 3m

b(2 + 3m) = 5 + 12m

and that

b−1(−3m) = −12m = 4(−3m)

b−1(−(1 + 3m)) = 14 + 6m

b−1(−(2 + 3m)) = −2− 3m.

Now LMG = K[h, η9, e2
0η

3, e1
0η] where

h = g1,1 + g1,2 + g1,0 + g1,3 + g1,6.

Using Theorem 12 and Proposition 1, the actions of these generators of H
are as follows:

η9(a) = σb−1(−9)(a) = σ−36(a) = σ18(a);

e2
0η

3(a) =
1
3

2∑
k=0

η9k+3(a) =
1
3

2∑
k=0

σb−1(−(9k+3))(a)

=
1
3

2∑
k=0

σ−4(9k+3))(a) =
1
3

2∑
k=0

σ15−9k(a)

=
1
3
σ6(a + σ9(a) + σ18(a));

and

e1
0η(a) =

1
9

8∑
k=0

η3k+1(a) =
1
9

8∑
k=0

σb−1(−(3k+1))(a)

=
1
9

8∑
k=0

σ14+6k(a) =
1
9

8∑
l=0

σ2+3l(a).

As for the components of h, we have

g1,3s(a) = z−9se1
3sη(a)

=
1
9

8∑
k=0

z−9sζ−9skσb−1(−3k−1)(a)

=
1
9

8∑
k=0

z−9sζ−9skσ14+6k(a)
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for s = 1, 2 (note that g1,0 = e1
0η was done above), and since

g1,s =
2∑

i=0

σi(z−3se1
sη)

= z−3se1
sη + ζ−3sz−3se1

7sη
4 + ζ−6sz−3se1

22sη
16

= z−3sη(e1
s + ζ18se1

7s + e1
22s)

=
1
9
z−3s

8∑
k=0

(ζ−3sk + ζ18s−21sk + ζ−66k)η3k+1,

we have

g1,s(a) =
z−3s

9

8∑
k=0

(ζ−3sk + ζ18s−21sk + ζ−66k)σ14+6k(a)

for s = 1, 2.
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