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Faithful actions of automorphisms on the
space of orderings of a group

Thomas Koberda

Abstract. In this article we study the space of left- and bi-invariant
orderings on a torsion-free nilpotent group G. We will show that gen-
erally the set of such orderings is equipped with a faithful action of
the automorphism group of G. We prove a result which allows us to
establish the same conclusion when G is assumed to be merely residu-
ally torsion-free nilpotent. In particular, we obtain faithful actions of
mapping class groups of surfaces. We will draw connections between
the structure of orderings on residually torsion-free nilpotent, hyper-
bolic groups and their Gromov boundaries, and we show that in those
cases a faithful Aut(G)-action on the boundary is equivalent to a faithful
Aut(G) action on the space of left-invariant orderings.
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1. Introduction

The purpose of this article is to show that the space of left-invariant
orderings of a residually torsion-free nilpotent group G is sufficiently rich as
to admit a faithful action of Aut(G).
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Let G be a finitely generated group. A fundamental and often quite
difficult problem in the combinatorial group theory of G is to describe the
space of orderings on G. A left-invariant ordering on G is a relation ≤ on G
which is a total ordering on the elements of G, together with the following
left-invariance property: for all triples a, b, c ∈ G, a ≤ b implies ca ≤ cb. An
ordering is called right-invariant if the analogous right-invariance property
holds. An ordering is called bi-invariant if it is both left- and right-invariant.
It is easy to check that an ordering is bi-invariant if and only if it is left-
invariant and conjugation-invariant.

Many groups admit no left-invariant orderings at all. For instance, the
presence of torsion precludes orderability. Some groups admit finitely many
orderings, and the book of Botto Mura and Rhemtulla [12] describes some
aspects of the theory of groups with finitely many orderings.

It is sometimes useful to observe that orderings on a group naturally
occur in pairs. For each ordering ≤, there is a natural ordering ≤op called
the opposite ordering, given by g ≤op h if and only if h ≤ g. Many groups
admit uncountably many orderings.

To organize the set of all orderings of a group, one defines the space of left-
invariant or bi-invariant orderings on the group, denoted LO(G) in the case
of left-invariant orderings and O(G) in the case of bi-invariant orderings.
To define this space and equip it with a good topology, we first define the
notion of a positive cone P of an ordering. Given an ordering ≤∈ LO(G) or
O(G), we set

P = P(≤) = {g ∈ G such that 1 < g}.
This gives us a canonical bijective correspondence between orderings and
certain subsets of G. Indeed, to recover an ordering, we declare g < h if and
only if g−1h ∈ P.

In order for a subset of G to be the positive cone of some left-invariant
ordering, it must satisfy some axioms:

(1) P∪P−1 = G\{1}, where P−1 denotes the set of inverses of elements
of P.

(2) P ∩ P−1 = ∅.
(3) P · P ⊂ P.

P will be the positive cone of some bi-invariant ordering if in addition P
is G-conjugation invariant.

The power set of subsets of G comes with a natural topology which gives
it the structure of a Cantor set. Precisely, two subsets are close if they agree
on large finite subsets. This Cantor set will be metrizable whenever G is
countable. In particular, the power set of G can be viewed as

{0, 1}G,

where the two point set has the discrete topology and the product has the
product topology. Two points in the power set of G are close in this topology
if they agree on a large finite subset.
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It is not difficult to show that the conditions for a set to be the positive
cone of a left- or bi-invariant ordering are closed conditions in the natural
topology on the power set. The details of the proof can be found in Chapter
14 of the book [6] by Dehornoy, Dynnikov, Rolfsen and Wiest. Thus, LO(G)
and O(G) can be viewed as closed subsets of a Cantor set. The topology of
this space for various groups has been studied by various authors, such as
by Navas for free groups in [13], by Navas and Rivas for Thompson’s group
F in [14], and by Sikora for finitely generated torsion-free abelian groups in
[17].

The groups Aut(G) and Out(G) both have natural actions on LO(G) and
O(G) respectively. G acts on LO(G) by conjugation, so Out(G) also acts on
the G-conjugation orbits in this space. These actions are given by pulling
back and ordering ≤ to an ordering ≤φ via the automorphism φ. Precisely,
we define g ≤φ h if and only if φ(g) ≤ φ(h). In the case of the action of
Out(G), the conjugation action of G on O(G) is trivial, so it does not matter
which automorphism representative for an outer automorphism we choose.
It is easy to check that the two actions are by homeomorphisms. One sees
that this way we get maps

ψa : Aut(G)→ Homeo(LO(G))

and

ψo : Out(G)→ Homeo(O(G)).

These maps, particularly the first, are the primary focus of this paper.
Recall that a group G is called residually torsion-free nilpotent if every non-
identity element of G persists in some torsion-free nilpotent quotient of
G. Examples of residually torsion-free nilpotent groups include free groups,
surface groups, right-angled Artin groups and pure braid groups. With this
terminology, we can state the main result of this paper:

Theorem 1.1. Let G be a finitely generated, residually torsion-free nilpotent
group. Then the map

ψa : Aut(G)→ Homeo(LO(G))

is injective.

In particular, the conclusions of Theorem 1.1 hold for mapping class
groups of surfaces (with a marked point) and automorphism groups of free
groups. Theorem 1.1 shows that there are many essentially different positive
cones in residually torsion-free nilpotent groups which are not preserved by
automorphisms of the group.

The proof of Theorem 1.1 is of a very similar flavor to the proof of as-
ymptotic linearity of the mapping class group, one of the principal results
in [10]. Asymptotically faithful actions of mapping class groups have been
of recent interest to various authors, such as Andersen in [1].
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As an amplification of the ideas of Theorem 1.1, we will show that when
G is residually torsion-free nilpotent and hyperbolic, LO(G) recovers the
boundary ∂G. We will be able to show:

Theorem 1.2. Suppose that G is residually torsion-free nilpotent and hy-
perbolic. Then Aut(G) acts faithfully on ∂G.

In the case that G is a surface group, Theorem 1.2 can be viewed as a
generalization of the classical result of Nielsen, namely that the mapping
class group Modg,1 of a surface of genus g ≥ 2 with one marked point acts
faithfully on the circle. For more details, consult the book of Casson and
Bleiler [3]. It seems that there were few if any connections between orderings
on groups and geometric group theory appearing anywhere in literature. It
thus appears that Theorem 1.2 gives an example of such a connection.

It is unlikely that one can easily remove the residual condition on G in
the statement of Theorem 1.2, since hyperbolic groups can be so diverse.
It is not even known whether or not every hyperbolic group is residually
finite or virtually torsion-free. For some discussion of virtual properties of
hyperbolic groups, the reader might consult the paper [9] of I. Kapovich and
D. Wise.

We close the paper by showing that Theorem 1.1 does not hold in general:

Proposition 1.3. Let K be the fundamental group of the Klein bottle. Then
Aut(K) does not act faithfully on LO(K) and Out(K) does not act faithfully
on O(K) nor on conjugacy classes of elements of LO(K).

Acknowledgements. This paper benefitted from conversations with M.
Bestvina, B. Farb, T. Church, C. McMullen, C. Taubes and B. Wiest. The
author thanks P. Hubert for asking whether orderings and Gromov hyper-
bolicity are related. The author finally thanks the referees for careful reading
and useful comments and corrections, and for contributing some simplifica-
tion to the proofs.

2. Abelian groups

In order to prove Theorem 1.1, we will need to understand the conclusion
of the theorem for finitely generated torsion-free abelian groups. Our goal
is to prove:

Lemma 2.1. GLn(Z) acts faithfully on O(Zn) under the homomorphism
ψa.

First, we must understand the structure of LO(Zn) = O(Zn). When
n = 1, it is evident that this set has exactly two points. When n > 1, Sikora
proved in [17] that O(Zn) is a Cantor set. To adapt Sikora’s Theorem to
our setup, we will be quite explicit about a construction of certain orderings
on Zn.

We begin by identifying some useful orderings on Zn. Let Z denote an
rational hyperplane in Rn. Then Z will help determine many positive cones
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on Zn as follows: choose a half of Rn \ Z to be positive. Then choose a
hyperplane within Z and declare a half of Z to be positive. Continuing this
process, we eventually declare each nonzero integral point in Rn to be either
positive or negative. It is easy to see that we in fact obtain a positive cone
on Zn this way.

It follows that a flag of rational subspaces of Rn together with a choice
of half-space in each dimension gives rise to an ordering on Zn. We will call
orderings which arise in this fashion flag orderings.

Note that if Z is an irrational hyperplane in the sense that it contains no
rational points other than the origin, Z automatically already determines
exactly two orderings: one for each choice of positive halfspace.

We have two perspectives on orderings of Zn. One comes from choosing
irrational hyperplanes and rational flags as above, and the other comes the
definition of a positive cone. It is not immediately clear how to reconcile
these two descriptions of the orderings on Zn, even in the case n = 2. When
n = 2, we have a map from O(Z2) to RP1. This map is given by sending an
ordering to the line which separates the positive half-plane from the negative
half. The fiber over an irrational point in RP1 consists of two points, one for
each choice of positive half-plane. The fiber over a rational point consists
of four points, corresponding to the two choices for positive half-plane and
the two choices for positive half-line. Thus, one can see that the space of
orderings should not be considered with an analytic topology, but rather
with a topology which more closely resembles a totally disconnected one.

The exact nature of the topology on LO(G) and O(G) is not important for
the purposes of this article and we will not discuss the topology much further,
other than to remark that the “fibration” O(Z2)→ RP1 is continuous in the
Cantor set topology on O(Z2) and the usual topology on RP1. A discussion
of this map can be found in [17].

The rational flag orderings occupy a special place in the study of orderings
on Zn, since they are dense in the space of all orderings on Zn:

Lemma 2.2. Let V = {v1, . . . , vn+1} ⊂ Zn be nonzero vectors which do
not lie within a single closed rational half space in Rn. Let S denote the
semigroup generated by these vectors. Then 0 ∈ S.

Proof. The conclusion for n = 1 is trivial. For the general case, fix a basis
{x1, . . . , xn+1} for Qn+1 and let

A : Qn+1 → Qn

be the linear map which sends the vector xi to the vector vi. The map A
evidently has a nontrivial kernel.

Suppose that the conclusion of the lemma fails. Then there is an integral
vector

w = (a1, . . . , an+1)

contained in the kernel of A such that neither w nor −w is contained in the
closed positive orthant of Qn+1. But then there are two indices, which we



788 T. KOBERDA

may assume are 1 and 2, with a1 > 0 and a2 < 0. Then we have

n+1∑
i=3

aivi + a1v1 = −a2v2,

so that v1 and v2 are on the same side of the hyperplane spanned by
{v3, . . . , vn+1}. But then the vectors {v1, . . . , vn+1} are all contained in
one closed halfspace, a contradiction of the hypotheses. �

The author is indebted to the referee for simplifying the proof of Lem-
ma 2.2.

Proposition 2.3. The set of flag orderings on Zn is dense in the space of
orderings on Zn in the Cantor set topology.

Proof. Let {(a1, b1), . . . , (am, bm)} be a collection of pairs of distinct lattice
points and let P ∈ O(Zn). Suppose that according to P , ai < bi for all i.
We will show that there is a flag ordering in which these relations also hold.
This will imply that in any open subset of O(Zn) containing P , there is a
flag ordering.

By definition, (bi − ai) ∈ P for each i. By Lemma 2.2, all the vectors
{(bi − ai)} must lie in a closed rational halfspace. If there is a rational
hyperplane H such that all the vectors {(bi−ai)} are in one open half space
defined by H, then we are done. Otherwise, we consider the elements of
{(bi− ai)} which lie in H. A repeated application of Lemma 2.2 shows that
there is a flag ordering on Zn where all the vectors {(bi−ai)} are positive. �

We are now ready to prove Lemma 2.1.

Proof of Lemma 2.1. We claim that in fact GLn(Z) acts faithfully on the
set of flag orderings of Zn. Let 1 6= A ∈ GLn(Z) be an automorphism which
preserves every flag ordering on Zn. Then A must preserve each rational
hyperplane in Rn. Indeed, if H and J are distinct rational hyperplanes then
H and J cut Rn into halfspaces

{S1,H , S2,H , S1,J , S2,J}
whose intersections with Zn are all different. Therefore if A sends H to J
then A acts nontrivially on O(Zn).

It follows that A preserves each rational hyperplane and therefore acts
trivially on Pn−1(Q) (via the dual action). It follows that A is trivial in
PGLn(Z) and is therefore a scalar multiple of the identity. If A is nontrivial
and integral then it would have to be −I. It is clear that −I acts nontrivially
on O(Zn). �

3. Extensions and pullbacks of orderings

Other than the machinery of orderings on abelian groups, certain exten-
sion and pullback theorems for orderings on torsion-free nilpotent groups
will be very important for the proof of Theorem 1.1. Up to this point in our
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discussion of orderings on groups, we have been considering positive cones
which contain “half” of the nonidentity elements in a group. If we are given
a positive cone P which is partial in the sense that P ∪ P−1 is properly
contained in G \ {1}, we call P a partial ordering. A partial ordering P is
bi-invariant if it is conjugation-invariant. We now quote the following two
strong theorems, the first due to Rhemtulla in [16] and the second due to
Mal’cev in [11] (see also [12]):

Theorem 3.1. Let N be a finitely generated torsion-free nilpotent group
and P a partial ordering on N . Then P extends to a total ordering on N .

Theorem 3.2. Let N be a finitely generated torsion-free nilpotent group
and P a bi-invariant partial ordering on N . Then P extends to a total
bi-invariant ordering on N .

Mal’cev actually proved that it suffices for N to be locally torsion-free
nilpotent.

The two extension theorems above can be restated as follows:

Theorem 3.3. Let N be a torsion-free nilpotent group and let {1} 6= N ′ <
N be a subgroup. Then the restriction map

ρL : LO(N)→ LO(N ′)

is surjective. If in addition N ′ is normal then the restriction map

ρB : O(N)→ ON (N ′)

is surjective, where ON (N ′) denotes the N -invariant bi-invariant orderings
on N ′.

We will call the previous results Rhemtulla’s and Mal’cev’s Extension
Theorems, respectively.

We will often encounter a situation where N is a torsion-free nilpotent
quotient of a group G equipped with an ordering, and we wish to produce
an ordering of G which is compatible with the quotient map G → N and
the given ordering on N .

Let G be a finitely generated group. We will write {γi(G)} for the lower
central series of G. This series is defined by γ1(G) = G and γi+1(G) =
[G, γi(G)]. A group is called residually nilpotent if⋂

i>0

γi(G) = {1}.

The usual definition of residual nilpotence says that G is residually nilpotent
if for each nonidentity g ∈ G, there exists a nilpotent quotient Ng of G where
g is not mapped to the identity. These two definitions are equivalent. Indeed,
if Ng satisfies γi(Ng) = {1} and is a quotient of G, then Ng is a quotient
of the group obtained from G by declaring γi(G) = 1. Conversely, if g 6= 1
then there is some i for which g /∈ γi(G), whence g survives in G/γi(G).
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A finitely generated group is called residually torsion-free nilpotent if for
each nontrivial g ∈ G, there is an i for which g maps to an infinite order
element of G/γi(G). Again, the usual definition of a residually torsion-free
nilpotent group G says that each nonidentity g ∈ G survives in a torsion-free
nilpotent quotient Tg of G. If Tg is a quotient of G/γi(G) (which it must
for some i, since Tg is nilpotent) then the image of g in G/γi(G) has infinite
order. Conversely, the existence of a torsion-free quotient of G/γi(G) follows
from the following well-known fact about nilpotent groups:

Lemma 3.4. Let N be a finitely generated nilpotent group.

(1) The elements of finite order in N generate a finite normal subgroup
T (N).

(2) The quotient N/T (N) is torsion-free.

Proof. See [15], for instance. �

The previous lemma allows us to modify the lower central series of a
residually torsion-free nilpotent group G in a way which will be useful in
further discussion. We will let γTi (G) be the kernel of the composition map

G→ G/γi(G)→ (G/γi(G))/T (G/γi(G)).

Then G/γTi (G) is torsion-free, and⋂
i>0

γTi (G) = {1}.

Observe that γTi (G) is characteristic in G and that if i < j then γTj (G) <

γTi (G).
Observe that since for any nilpotent group N , the subgroup T (N) is finite,

we immediately see that γi(G) < γTi (G) as a finite index subgroup. It follows
that the groups

γi(G)/γi+1(G)

and

γTi (G)/γTi+1(G)

are commensurable.
It is a classical result that if φ ∈ Aut(G) acts trivially on the abelianization

Gab of G then it also acts trivially on γi(G)/γi+1(G). A detailed proof and
discussion can be found in [2], for instance. One perspective on this fact is
that there is a natural surjective map from the i-fold tensor product of Gab

to γi(G)/γi+1(G), given by the commutator bracket.
On the one hand, an automorphism φ may act nontrivially on Gab and

yet descend to the identity on G/γT2 (G). On the other hand, we have the
following:

Lemma 3.5. Suppose φ ∈ Aut(G) acts trivially on G/γT2 (G). Then φ acts
trivially on γTi (G)/γTi+1(G) for all i.
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Proof. Let ω be an i-fold tensor of elements of Gab, viewed as an element
of γi(G)/γi+1(G). If any factor of the tensor ω has finite order then multi-
linearity of the tensor product implies that the image of ω in γi(G)/γi+1(G)
has finite order as well. Thus the natural surjective map⊗

Gab → γi(G)/γi+1(G)

descends to a natural map⊗
G/γT2 (G)→ γTi (G)/γTi+1(G)

whose image has finite index in the target. If φ acts trivially on G/γT2 (G)
then it must act trivially on a finite index subgroup of γTi (G)/γTi+1(G). Since
the latter is torsion-free, it follows that φ induces the trivial automorphism
of γTi (G)/γTi+1(G). The conclusion follows. �

The following proposition is well-known (a proof with applications to the
theory of braid orderings can be found in [6]) but we recall a proof for
the convenience of the reader and because the proof will motivate further
discussion:

Proposition 3.6. Let G be finitely generated and residually torsion-free
nilpotent. Then O(G) is nonempty.

Proof. For each i, write Ni for G/γTi (G), and let Zi denote the kernel of
the map Ni → Ni−1, where by convention N0 = {1}. Note that

Zi = γTi (G)/γTi+1(G).

Observe that each Zi is a finitely generated free abelian group, and the
conjugation action of Ni on Zi is trivial. The reason for the second claim is
that Zi is virtually central in Ni, so there can be no action of Ni on Zi which
is nontrivial and yet restricts to the identity on a finite index subgroup.

Choose an arbitrary ordering on each Zi. We obtain an element of O(G)
as follows: let g, h ∈ G. Suppose Ni is the first such quotient of G in which
g−1h survives. Then by minimality of i, we have g−1h ∈ Zi under the map
G→ Ni. If the image of g−1h is positive in Zi, we declare g < h in G. It is
easy to see that this defines a bi-invariant ordering on G. �

Orderings as in Proposition 3.6 are called standard orderings. Using ideas
similar to those in the proof of Proposition 3.6, we can pull back orderings on
torsion-free nilpotent quotients of a residually torsion-free nilpotent group
in a way which we call the standard ordering construction.

Lemma 3.7. Let G be a residually torsion-free nilpotent group and let N =
G/γTi (G). Suppose we are given an ordering P ∈ LO(N). Then there exists

an ordering P ∈ LO(G) which is a pullback of P in the following sense: for
all g, h ∈ N and any preimages g, h ∈ G, we have g < h in G if and only if
g < h in N .
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Proof. For each j > i, choose an arbitrary ordering on Zj . Let g, h ∈ G.
If g−1h is nontrivial in N then we declare g < h if and only if g−1h ∈ P
under the projection G → N . Otherwise we may find, as in the proof of
Proposition 3.6, a minimal j for which g−1h survives in some Zj . We declare
g < h if the image g−1h is positive in the ordering on Zj . �

4. Representations of automorphism groups and the
boundary of a hyperbolic group

In this section, we prove Theorem 1.1.

Theorem 4.1. Let G be a residually torsion-free nilpotent group and let
1 6= φ ∈ Aut(G). Then φ acts nontrivially on LO(G).

Proof. Clearly we may suppose that φ acts trivially on G/γT2 (G), since
otherwise we may choose an ordering on G/γT2 (G) which is not preserved
by φ by Lemma 2.1, and then pull it to all of G by a standard ordering
construction, as in Lemma 3.7.

Suppose φ acts trivially on G/γT2 (G) but that φ is a nontrivial automor-
phism of G. Let i be minimal so that φ acts nontrivially on Ni = G/γTi (G).
Let g ∈ Ni be an element which is not fixed by φ. Then φ(g) = g · z,
where z ∈ Zi. Since φ acts trivially on G/γT2 (G) it acts trivially on Zi by
Lemma 3.5.

Therefore, φ preserves the group generated by g and z, which is abelian
since the conjugation action of g on Zi is trivial. Therefore, 〈g, z〉 ∼= Z2.
Choose an ordering on this copy of Z2 which is not preserved by φ. By
Rhemtulla’s Extension Theorem, there exists an ordering on Ni which re-
stricts to the pre-chosen ordering on Z2. By Lemma 3.7, we can pull this
ordering back to G. Since the ordering is not preserved on Ni, it is not
preserved on G. �

In the remainder of this section we shall develop an alternative viewpoint
on Theorem 1.1 which makes the result more transparent, at least in the
case of surface groups and free groups. Recall that a finitely generated group
G is called hyperbolic, Gromov hyperbolic or negatively curved if there is a
δ ≥ 0 such that whenever g, h ∈ G, any geodesic in G (with respect to
the word metric) connecting g and h is contained in a δ-neighborhood of
the union of two geodesics connecting the identity to g and h respectively.
Being δ-hyperbolic is a quasi-isometry invariant, though the precise value of
δ which witnesses δ-hyperbolicity depends on the generating set of G.

For basics on hyperbolic groups, the reader is referred to [7]. The property
of hyperbolic groups we will be most interested in presently is the notion of
the Gromov boundary of an infinite hyperbolic group G, denoted ∂G. Recall
that to define ∂G, we fix a basepoint in G and consider equivalence classes
of geodesic rays emanating from the basepoint (in the Cayley graph of G).
Two geodesic rays are equivalent if they remain bounded distance from each



ACTIONS ON ORDERINGS OF GROUPS 793

other. Using the δ-hyperbolicity of G, it is possible to check that ∂G is
independent of the basepoint.

If two geodesic rays agree along long initial segments, then they are close.
It is easy to produce a dense set of points in ∂G using the elements of G
itself. Indeed, note that each infinite order element g ∈ G gives rise to a
point xg ∈ ∂G given by positive powers of g. The precise statement is as
follows, and a discussion can be found in [7] (see also [8]):

Lemma 4.2. Let G be a hyperbolic group.

(1) Each infinite order element g ∈ G induces a loxodromic, fixed-point
free isometry ψg of the Cayley graph of G.

(2) For each infinite order g, the isometry ψg has exactly two fixed points
on ∂G, denoted xg and yg. These are the attracting and repelling
fixed points of ψg and are given by

xg = lim
n→∞

gn

and

yg = lim
n→∞

g−n.

(3) The set of points {xg} for infinite order elements g ∈ G is dense in
∂G.

(4) The maps N → G which sends n to gn(b) is a quasi-isometric em-
bedding for each basepoint b.

(5) If g, h ∈ G do not generate an elementary (virtually cyclic) subgroup
of G then the fixed points of g and h on ∂G do not coincide.

(6) If G is torsion-free and 1 6= g ∈ G, then there exists a unique h ∈ G
such that g = hm for some m > 0 and h is itself not a proper power.

The points {xg} should be thought of as the rational points in ∂G. The
motivation for this terminology is taken from lattices in Rn. Notions akin to
the Gromov boundary can be defined for nonnegatively curved metric spaces,
such as Rn. From Rn we obtain a natural boundary which is homeomorphic
to Sn−1. In this same way, the boundary of Zn should be thought of as
Sn. Then the rational points on the boundary are obviously given by lines
through the origin, all of whose slopes are rational.

Lemma 4.3. Let G be a hyperbolic, residually torsion-free nilpotent, let
1 6= g ∈ G and let {Pα} be the set of positive cones on G which contain g.
Let h be the smallest root of g. Then⋂

α

Pα = {hn | n > 0}.

Proof. We must first check that this intersection is nonempty. Clearly, g is
nontrivial in some torsion-free nilpotent quotient N of G. We may declare
g to be positive, thus defining a partial ordering on N . By Rhemtulla’s
Extension Theorem we can extend this partial ordering to all of N , and



794 T. KOBERDA

then to all of G. Therefore there is at least one positive cone which contains
g.

Now suppose that 1 6= k ∈ G is another element such that g and k share
no common powers. Then there is minimal i and a quotient Ni = G/γTi (G)
in which g and k are both nontrivial. Either the image of 〈g, k〉 in Ni is
isomorphic to Z2 or it is cyclic. If it is cyclic, replace g and k by powers so
that they are equal in Ni. We then take the smallest j > i such that g and
k are not equal in Nj . It follows that g and k differ in Nj by an element of
Zj , so that the image of 〈g, k〉 in Nj is isomorphic to Z2.

Now choose an ordering on the copy of Z2 we have produced in which
the image of g is positive and the image of k is negative. By Rhemtulla’s
Extension Theorem, this ordering extends to all of Ni (or Nj). By the
standard ordering construction of Lemma 3.7, we can pull back the resulting
ordering to G in which g is positive and k is negative. Therefore,

k /∈
⋂
α

Pα.

It follows that if

k ∈
⋂
α

Pα

then k and g share a common power. The existence of h with the desired
properties follows from Lemma 4.2. �

It follows that the space LO(G) recovers the Gromov boundary of a resid-
ually torsion-free nilpotent hyperbolic group in the following sense: the in-
tersection of positive cones containing a given element of G yields a unique
point on the Gromov boundary of G, and the collection of all such points is
a dense subset of ∂G.

Note that if φ ∈ Aut(G) preserves each element of LO(G) then it preserves
the sets {gn | n > 0} for elements g which are not proper powers, since for
each element of G, the automorphism φ preserves the positive cones which
contain g.

Proof of Theorem 1.2. Suppose that φ ∈ Aut(G) acts nontrivially on
LO(G). Then there is a g ∈ G and an ordering P of G such that g ∈ P
but φ(g) /∈ P . It follows that φ(g) is not contained in the intersection of all
positive cones in G which contain g, so that φ(g) and g share no common
power. It follows that φ(g) and g cannot generate a virtually cyclic subgroup
of G.

It follows that either xg and xφ(g) are different in which case φ acts non-
trivially on ∂G, or

lim
n→∞

gn = lim
n→∞

φ(gn).

If xg−1 and xφ(g−1) are different then again we see that φ acts nontrivially
on ∂G. Therefore, we may assume that the quasi-geodesics determined by
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g and φ(g) have the same endpoints at infinity. But then the subgroup
generated by g and φ(g) is virtually cyclic, a contradiction. �

In connection with the proof of Theorem 1.2, we note the following: Sup-
pose φ ∈ Aut(G) acts trivially on LO(G). Then φ preserves the sets of the
form {gn | n > 0} for elements g which are not proper powers. It follows
that for each 1 6= g ∈ G, the limits

lim
n→∞

gn

and
lim
n→∞

φ(gn)

are equal, so that the rational points {xg} on ∂G are preserved by φ. It
follows that φ acts trivially on ∂G.

5. Homology, orderings, residual finiteness and faithful
representations

In this section we will make some remarks about homology representations
of Out(G), O(G) and residual finiteness. It would be nice if we could formu-
late and prove an analogous result to Theorem 1.1 for the action of Out(G)
on O(G), but unfortunately we encounter various difficulties. The proofs
as they are given for LO(G) will not work for O(G). One difficulty is the
following: any residually finite group has a residually finite automorphism
group. On the other hand, it is not true that each residually finite group
has a residually finite outer automorphism group. In fact, Wise proves in
[18] that every finitely generated group embeds in the outer automorphism
group of some residually finite group.

For certain residually torsion-free nilpotent groups however, it is possible
to make Out(G) act faithfully on O(G) just by exploiting the fact that the
homology representation

Out(G)→ Aut(H1(G,Q))

is faithful. Consider Out(AΓ), where Γ is a finite graph and AΓ is the
associated right-angled Artin group. Recall that AΓ is the free group on
the vertices of Γ together with the commutation relations between vertices
whenever they are connected by an edge. See Charney’s expository article
[4] for more details.

Whereas abelian and free groups have very complicated automorphism
groups, it is often the case that right-angled Artin groups have finite outer
automorphism groups. In fact, Charney and Farber have recently proved in
[5] that a “generic” right-angled Artin group has a finite outer automorphism
group.

Proposition 5.1. Let AΓ be a “generic” right-angled Artin group. Then
Out(AΓ) acts faithfully on the abelianization Aab

Γ of AΓ. In particular,
Out(AΓ) acts faithfully on O(G).
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Proof. For a generic right-angled Artin group AΓ, the outer automorphism
group is generated by automorphisms of the graph Γ and inversions of the
vertices of Γ. It follows easily that Out(AΓ) acts faithfully on the abelian-
ization

Aab
Γ = AΓ/γ

T
2 (AΓ).

For any given outer automorphism, one may choose an ordering on Aab
Γ

which is not preserved by the action of that outer automorphism. Any
ordering on AΓ can be pulled back to an ordering on AΓ by the standard
ordering construction of Lemma 3.7. �

6. Some final examples

As claimed in the introduction, it is not true in general that Aut(G) acts
faithfully on the left orderings LO(G), nor is it true that Out(G) acts faith-
fully on the conjugacy classes in LO(G) or on O(G). Consider, for instance,
the fundamental group K of the Klein bottle. We have the presentation

K = 〈x, y | x−1yx = y−1〉.

If P is an ordering on K then P is certainly not bi-invariant. Indeed, either
y ∈ P or y ∈ P−1, but conjugation by x takes y to y−1.

It is known that K admits exactly four left-invariant orderings. A dis-
cussion of this fact and other groups which admit only finitely many left-
invariant orderings can be found in the book [12]. It is easy to find various
automorphisms of K which have infinite order. For instance, the automor-
phism which sends x to xy and fixes y can easily be seen to have infinite
order, whence it follows that Aut(K) is infinite. Thus we see that Aut(K)
cannot act faithfully on the space of left-invariant orderings LO(K).

By the remarks above, we see that there are at most two conjugacy classes
of left-invariant orderings on K, since if an ordering P declares y to be
positive then a conjugate of P declares y to be negative. It follows that
if Out(K) acts faithfully on conjugacy classes of elements of LO(K) then
Out(K) can have at most two elements. However:

Proposition 6.1. Out(K) ∼= Z/2Z× Z/2Z.

One can check directly from the presentation of K that the three non-
inner automorphisms α1 : x 7→ xy, α2 : x 7→ yx, and α3 : x 7→ x−1, where
these are extended to K by letting them fix y in the first two cases and
α3 : y 7→ y−1, generate Out(K) and that they all have order two in Out(K).
Furthermore, α1 and α2 differ by an inner automorphism.

Another way to understand the outer automorphism group of K is by an
analogue of the Dehn–Nielsen–Baer Theorem, which shows that the mapping
class group of the Klein bottle is actually Z/2Z× Z/2Z.

The proof of Proposition 1.3 is now immediate.
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[14] Navas, Andrés; Rivas, Cristóbal. Describing all bi-orderings on Thompson’s

group F . Groups Geom. Dyn. 4 (2010), no. 1, 163–177. MR2566304 (2010m:20063),
Zbl 1193.06015.

[15] Raghunathan, M. S. Discrete subgroups of Lie groups. Ergebnisse der Mathematik
und ihrer Grenzgebiete, 68. Springer-Verlag, New York-Heidelberg, 1972. ix+227 pp.
MR0507234 (58 #22394a), Zbl 0254.22005.

[16] Rhemtulla, Akbar. Right-ordered groups. Canad. J. Math. 24 (1972), 891–895.
MR0311538 (47 #100), Zbl 0247.06019.

[17] Sikora, Adam S. Topology on the spaces of orderings of groups. Bull. London Math.
Soc. 36 (2004), no. 4, 519–526. MR2069015 (2005b:06031), Zbl 1057.06006.

[18] Wise, Daniel T. A residually finite version of Rips’s construction. Bull. London
Math. Soc. 35 (2003), 23–29. MR1934427 (2003g:20047), Zbl 1027.20014.

http://www.ams.org/mathscinet-getitem?mr=2195137
http://www.emis.de/cgi-bin/MATH-item?1157.53049
http://www.ams.org/mathscinet-getitem?mr=1292897
http://www.emis.de/cgi-bin/MATH-item?0817.20038
http://www.ams.org/mathscinet-getitem?mr=0964685
http://www.emis.de/cgi-bin/MATH-item?0649.57008
http://www.ams.org/mathscinet-getitem?mr=2322545
http://www.emis.de/cgi-bin/MATH-item?1152.20031
http://arXiv.org/abs/1006.3378v1
http://www.ams.org/mathscinet-getitem?mr=2463428
http://www.emis.de/cgi-bin/MATH-item?1163.20024
http://www.ams.org/mathscinet-getitem?mr=0919829
http://www.emis.de/cgi-bin/MATH-item?0634.20015
http://www.emis.de/cgi-bin/MATH-item?0634.20015
http://www.ams.org/mathscinet-getitem?mr=1921706
http://www.emis.de/cgi-bin/MATH-item?1044.20028
http://www.ams.org/mathscinet-getitem?mr=1735163
http://www.emis.de/cgi-bin/MATH-item?0951.20029
http://arXiv.org/abs/0902.2810v6
http://www.ams.org/mathscinet-getitem?mr=0048431
http://www.ams.org/mathscinet-getitem?mr=0491396
http://www.emis.de/cgi-bin/MATH-item?0452.06011
http://arXiv.org/abs/0710.2466v6
http://www.ams.org/mathscinet-getitem?mr=2566304
http://www.emis.de/cgi-bin/MATH-item?1193.06015
http://www.ams.org/mathscinet-getitem?mr=0507234
http://www.emis.de/cgi-bin/MATH-item?0254.22005
http://www.ams.org/mathscinet-getitem?mr=0311538
http://www.emis.de/cgi-bin/MATH-item?0247.06019
http://www.ams.org/mathscinet-getitem?mr=2069015
http://www.emis.de/cgi-bin/MATH-item?1057.06006
http://www.ams.org/mathscinet-getitem?mr=1934427
http://www.emis.de/cgi-bin/MATH-item?1027.20014


798 T. KOBERDA

Department of Mathematics, Harvard University, 1 Oxford St., Cambridge,
MA 02138
koberda@math.harvard.edu

This paper is available via http://nyjm.albany.edu/j/2011/17-33.html.

http://nyjm.albany.edu/j/2011/17-33.html

	1. Introduction
	2. Abelian groups
	3. Extensions and pullbacks of orderings
	4. Representations of automorphism groups and the boundary of a hyperbolic group
	5. Homology, orderings, residual finiteness and faithful representations
	6. Some final examples
	References

