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Seiberg—Witten equations on certain
manifolds with cusps

Luca Fabrizio Di Cerbo

ABSTRACT. We study the Seiberg—Witten equations on noncompact
manifolds diffeomorphic to the product of two hyperbolic Riemann sur-
faces. First, we show how to construct irreducible solutions of the
Seiberg—Witten equations for any metric of finite volume which has a
“nice” behavior at infinity. Then we compute the infimum of the L?-
norm of scalar curvature on these spaces and give nonexistence results
for Einstein metrics on blow-ups. This generalizes to the finite volume
setting some well-known results of LeBrun.
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1. Introduction

In this paper we study the Seiberg—Witten equations on product manifolds
M = X x ¥4, where X is a finite volume hyperbolic Riemann surface and
>, a compact Riemann surface of genus g.

The main problem with Seiberg-—Witten theory on noncompact manifold
is the lack of a satisfactory existence theory. Following Biquard [4], we solve
the SW equations on M by working on the compactification M. Here the
compactification M is the obvious one coming from the compactification of

Y. More precisely, we produce an irreducible solution of the unperturbed
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SW equations on M as limit of solutions of the perturbed SW equations on
M. From the metric point of view, starting with (M, g) where g is assumed
to be of finite volume and with a “nice” behavior at infinity, one has to
construct a sequence (M, g;) of metric compactifications that approximate
(M, g) as j goes to infinity. The irreducible solution of the SW equations
on (M, g) is then constructed by a bootstrap argument with the solutions
of the SW equations on (M, gj) with suitably constructed perturbations.

When M = ¥ x CP! this construction was carried out by Rollin in [21].

An outline of the paper follows. Section 2 describes explicitly the metric
compactifications (M, g;). These metrics are completely analogous to the
one used by Rollin and Biquard in [21] and [4]. Furthermore, few results
concerning the scalar curvatures and volumes of the spaces (M, g;) are given.

In Section 3 we recall some basic facts about the L? cohomology of com-
plete noncompact manifolds. Moreover, a scalar curvature estimate for finite
volume manifolds which admits irreducible solutions of the unperturbed SW
equations is given.

In Section 4 we compute the L2-cohomology of (X x ¥g4,9) when g is a
metric C° asymptotic to a product metric g_1 4 g2, where g_; is a hyperbolic
metric on ¥ and g2 any metric on X,.

Sections 5 and 6 contain the uniform Poincaré inequalities on functions
and 1-forms needed for the bootstrap argument. Moreover the convergence,
as j goes to infinity, of the harmonic forms on (M, g;) is studied in detail.

In Section 7 the bootstrap argument is worked out. The existence result
so obtained is summarized in Theorem A.

In Section 8, Theorem A is applied to derive several geometrical conse-
quences. First, we give the sharp minimization of the Riemannian functional
J sgd,ug on M, where by s we denote the scalar curvature. Second, an ob-
struction to the existence of Einstein metrics on blow-ups of M is given.
These results are summarized in Theorem B and Theorem C. These the-
orems are the finite volume generalization of some well-known results of
LeBrun for closed four-manifolds, see for example [16] and the bibliography
therein.

2. The metric compactifications

Let X be a finite volume hyperbolic Riemann surface and denote with ¥, a
compact Riemann surface of genus ¢g. In this chapter, we study the Seiberg—
Witten equations on manifolds that topologically are products of the form
Y x ¥4. Recall that ¥ is conformally equivalent to a compact Riemann
surface ¥ with a finite number of points removed, say {p1,...,p}, satisfying

the condition that 2¢(3) — 241 > 0. Conversely, given a compact Riemann
surface Y and points {p1,...,p} such that 2¢g(X) — 2 +1 > 0, the open
Riemann surface ¥ = X\{p1,...,p;} admits a finite volume real hyperbolic
metric. In summary, a finite volume hyperbolic Riemann surface (3, g_1)

is a manifold with finitely many cusps corresponding to the marked points
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of the associated compactification . Our hyperbolic cusps are modeled on
Rt x S! with the metric g_1 = dt?> + e~2!df#?. We can now fix a metric go
on the compact Riemann surface 3, and consider the Riemannian product
(X x ¥g4,9-1 + g2). For simplicity we define M = ¥ x ¥ . It is then clear
that M is a complete finite volume manifold with cusp ends modeled on
RT x St x >, with the metric g = dt? + e 2d6? + go.

Definition 1. A metric § on M of the form g_1+go will be called a standard
model.

We now want to study the natural compactification of M. It is clear
that each of the cusp end of M can be closed topologically as a manifold by
adding a compact genus g Riemann surface. Let us denote by IV the disjoint
union of these embedded curves. Denoted with M the compactification of
M, we then have M\N ~ M. If we know consider ¥ and ¥, as complex
manifolds, it is clear that M can be compactified as a complex manifold by
adding a finite number of genus ¢ divisors with trivial self intersection.

Let us now consider a standard model ¢ on M. We want to construct
a sequence of metrics {g;} on M that approximate (M, ). More precisely,
choose coordinates on the cusp ends of M such that the metric g is given
by § = dt? + e 2'd6? + g5 for t > 0. Then define

gj = dt* + @5 (t)d6> + g

where ¢;(t) is a smooth warping function such that:

(1) p;(t) = et fort €0,5+ 1],
(2) @j(t)=T; —tforte[j+1+¢T}],

where € is a fixed number that can be chosen to be small, and T} is an
appropriate number bigger than j + 1 + €. Because of the second condition
above, g; is a smooth metric on M for any j. Moreover the metrics {g,} are
by construction isometric to g on bigger and bigger compact sets of M. For
later convenience we want to prescribe in more details the behavior of ¢;(t)
in the interval ¢t € [j + 1,/ + 1 + €]. We require that 9?¢;(t) decreases from
e~UtD to 0 in the interval [j + 1,5 + 1+ d;] where ¢; is a positive number
less than e. Then for ¢t € [j + 1 + §j,¢], we make 97¢p; very negative in
order to decrease Jyp; to —1 and smoothly glue ¢;(t) to the function T} —t.

Moreover, by eventually letting the parameters J; go to zero as j goes to

infinity, we require % to be increasing in the interval [j + 1,5 + 1 + ¢;].

Finally, we require la;—%' to be bounded from above uniformly in j.

In summary, given a standard model § for M we can always generate a
sequence of metrics {g;} on M approximating (M, §). A similar argument
shows that this is indeed the case for any metric g on M, that is asymptotic
to a standard model. For later convenience, we restrict ourself to metrics
that are asymptotic to a standard model at least in the C? topology. More
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precisely, if ¢ is such a metric we set
9i = (1= X4)9 + Xi9;

where () is a sequence of smooth increasing functions defined on the cusps
of M such that x;(t) =0ift <jand x;(t) =1ift > j+ 1.

Proposition 2.1. The scalar curvature of the metrics {g;} can be expressed

as
02,
_ b R
Sg; = S, 2x; o
where s¥_is a smooth function on M that can be bounded uniformly in j.

9
Proof. For ¢t < j, the metrics g; and g are isometric and therefore s, = s,.
If t € [j,j + 1], the metric g; is close in the C? topology to g and then

Sg; & 8g. Finally if £ > j+1, the scalar curvature function is explicitly given
by

O

Sg; =

We conclude this section with a proposition regarding the volumes of the
Riemannian manifolds (M, g;).

Proposition 2.2. There exists a constant K > 0 such that
Voly, (M) < K
for any j.

3. L? Bochner lemma

We start with a review of some facts about L2-cohomology and its relation
to the space of L?>-harmonic forms. For further details we refer to [1] and
the bibliography therein. Given a orientable noncompact manifold (M, g)
we have, when the differential d is restricted to an appropriate dense subset,
a Hilbert complex

o — LPOFN (M) — LPQE(M) — LPQET (M) — - -

where the inner products on the exterior bundles are induced by g. Define
the maximal domain of d, at the k-th level, to be

Dom"(d) = {a € L*Q5(M), da € L2Q}+ (M)}

where da € LQQ’;“(M ) is to be understood in the distributional sense. The
(reduced) L2-cohomology groups are then defined to be

HY (M) = Zg(M) /dDom*~1(d),
where

Z5(M) = {a € L*Q}(M), do = 0}.
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On (M, g) there is a Hodge-Kodaira decomposition
20k _ k [e'e] — * o0
L7Qg(M) = Hy (M) & dCQF1 @ d*CeOM L,

where
HE(M) = {a € L*QS(M),do = 0,d* o = 0}.

Moreover, if we assume (M, g) to be complete the maximal and minimal
domain of d coincide. In other words

dDom*~1(d) = dCOk-1,
which implies
HE(M) = HE(M).

Here the completeness assumption is crucial in showing that if o € LZQ’; (M)
with da € LQQI;H(M), we can generate a sequence {ay, } € C°QF(M) such
that || — a2 + ||da — day|| 2 — 0.

Summarizing, if the manifold is complete, the harmonic L?-forms compute
the reduced L2-cohomology. Moreover, in this case the L? harmonic forms
can be characterized as follows:

HE(M) = {a € L*Q5(M), (dd* + d*d)a = 0}.

Finally, the orlentablhty of M gives a duality isomorphism via the Hodge *
operator

HE(M) ~ H2H(M).

If the manifold M has dimension 4n it then makes sense to talk about L? self-
dual and anti-self-dual forms on LQQE"(M ). If ?—lg”(M ) is finite-dimensional,
the concept of L2-signature is well-defined.

Let (M,g) be a complete finite-volume 4-manifold. Let £ be a com-
plex line bundle on M. By extending the Chern—Weil theory for compact
manifolds, we can define the L?-Chern class of £. More precisely, given a
connection A on £ such that Fiq € L2QQ(M ), we may define

a(l) = 5 L [Fal e

where with F4 we indicate the curvature of the given connection. It is an
interesting corollary of the L2-cohomology theory that, on complete mani-
folds, such an L2-cohomology element is connection independent as long as
we allow connections that differ by a 1-form in the maximal domain of the d
operator. More precisely, let A" be a connection on £ such that A" = A+«
with a € L%Qé(M) We then have F,; = F4 4 do and therefore by the
Hodge-Kodaira decomposition we conclude that 5=[Falzz = 5= [Fy]ze.
The associated L?-Chern number ¢2(£) is also well-defined. In fact, a €
Dom'(d) and then we can find a sequence {a,} € CQF(M) such that
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|l — a2 + ||da — day || 2 — 0. This implies that

/ Fy NFypdpg= lim [ (Fa+doy) A (Fa+ doy)dpg
M

n—o0 M

:/ Fa A Fadp,.
M

The following lemma is an easy consequence of the Hodge—Kodaira de-
composition.

Lemma 3.1. Given £ and A as above, we have

[ Bt = 4 (et )

where cf(ﬁ) is the self-dual part of the g-harmonic L? representative of

[e1(L)].
Proof. We have

1
J FE Py =2 [ @) nes(@dug+ 5 [ |Paldu
M M M

1
—2m22(L) + 2/ Fa2dp,.
M

By Hodge Kodaira decomposition, given any L2-cohomology class, we have
a unique harmonic representative that minimizes the L?-norm. Thus, given
Fy € LQQ?J(M ), let us denote by ¢ its harmonic representative. We then

have
1 2 1 2
3 |Fal*dpg > 3 || “dpg
M M

which implies
1
[ 18k Py > 272027+ 5 [ TPy
M 2Jm
= [l Py = a7t (0" 0
M
We can now formulate the L? analogue of the scalar curvature estimate

discovered in [13] for compact manifolds.

Theorem 3.2. Let (M*,g) be a finite volume Riemannian manifold where
g is C% asymptotic to a standard model. Let (A,v) € L3(M, g) be an irre-
ducible solution of the SW equations associated to a Spin® structure ¢ with
determinant line bundle L. Then

| sy = 3227 (£

with equality if and only if g has constant negative scalar curvature, and is
Kdhler with respect to a complex structure compatible with c.
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Proof. Following the strategy outlined in [13], the proof reduces to an in-
tegration by parts using the completeness of g. ([

4. L?%-cohomology of products

Let (X, g—1) be a finite volume hyperbolic Riemann surface. Furthermore,
let (34,92) be a genus g compact Riemann surface equipped with a fixed
metric. Let us consider (X x X4, g—1 + g2), where by g_1 + g2 we denote the
product metric. We then want compute the L? cohomology of (¥ x 4, g)
when g is a metric “asymptotic” to the product metric g_; + go. Following
the definition of Section 2 a metric of the from g_1+gs is referred as standard
metric or model. For simplicity let us define M := X x ¥,. Let us start by
computing the L?-cohomology of M when equipped with a standard metric.

Regarding the L?-cohomology of (M, g_1 + g2), an L?-Kiinneth formula
argument [23] reduces the problem to the computation of the L2-cohomology
of a hyperbolic Riemann surface of finite topological type. This computation
can be achieved by using the following classical theorem.

Theorem 1 (Huber). Let (X,9g) be a complete finite volume Riemann sur-
face with bounded curvature. Then X is conformally equivalent to a compact
Riemann surface 3 with a finite number of points removed.

Proof. See [10]. O

Corollary 4.1. Let (X, g—1) be a complete finite volume hyperbolic Riemann
surface. Then we have the isomorphism

Hi(D,g.1) ~ H* (D).

Proof. We clearly just have to prove that Hi(X) ~ H(X). Since ¥ is
complete, the space of L? harmonic forms computes the L?-cohomology.
Let (X\{p1,...,p},9) as in Theorem 1, where g = e*'g. Since the L*-
cohomology is conformally invariant in the middle dimension, we have that
’H%(i\{pl, -..,pi}) ~ H, (X). But now one can show that any harmonic
field in Hé(f\{pl, ..., }) can be smoothly extended across the cusp points.
For the proof of this simple analytical fact see [5]. We therefore have
?—%(f\{pl, e Dl}) Hé(f). The corollary is now a consequence of the
classical Hodge theorem for closed manifolds. O

We can now formulate the main result of this section.

Proposition 4.2. In the notation above, consider (M, g) where g is a Rie-
mannian metric C° asymptotic a standard model. Then we have the iso-
morphism

H3(M) ~ H*(M;R).

Proof. The L?-cohomology is a quasi-isometric invariant. ([
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5. Poincaré inequalities and convergence of 1-forms

We need to show that, given the sequence of metrics {g;}, we can find a
uniform Poincaré inequality on functions. We have the following lemma.

Lemma 5.1. Consider the metric g = dt*> + g; on the product [0,00) x N,
such that the mean curvature of the cross-section N s uniformly bounded
from below by a positive constant hg. Then, for any function f we have

[ 10ty = 1 [ 1Py -+ ho [ 1Py, = ho / 1,
t= =
Proof. See Lemma 4.1 in [4]. O

Using this lemma, we can now derive the desired uniform Poincaré in-
equality.

Proposition 5.2. There exists a positive constant c, independent of j, such

that
P, > c [ (5P,
M M
for any function f on M such that fﬁ fdpg, = 0.
Proof. See Corollaire 4.3. in [4]. O

Next, we have to derive an uniform Poincaré inequality for 1-forms. Given
a 1-form « the following lemma holds:

Lemma 5.3. There exists T > 0 such that
[ 19af? & Riet (@, )diy = [ (VoaPdy
N N
for any t € [T,T}).

The proof of this lemma consists in a rather lengthy but elementary com-
putation. This computation is based on an idea of Biquard [4], see also [21].
For the analytical details we refer to [6].

Observe now that for [t1,t2] C [T, Tj]

/ afduy, = [ oullaldug i
8{[t1,t2] XN} [tl,tz] xX N

= / Ol dpug, dt + / |a|?Oydpug, dt
[tl,tQ}XN [tl,tQ]XN

_/ Olo|2dpsg, — 2/ ho|dyg,.
[tl,tQ}XN [tl,tQ]XN

We then obtain

[ auaPau, > | afdg, 200 [ oy,
[tl,tQ]XN 8{[t1,t2]><N} [tl,tQ]XN
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where hg is a uniform lower bound for the mean curvature. But now
1
dhlaf® = 2(a, Va,a) < 2|al|Va,al < holal* + ,TOIVataI2

which then implies

(1)

| VaaPdu, = | afdug, + 1 [ ol
[t1,t2]><N 3{[t1,t2} XN} [t1,t2]><N

We summarize the discussion above into the following lemma.

Lemma 5.4. There exist positive numbers ¢ > 0, T' > 0 such that
/ |daf? + ‘d*gja|2dﬂgj > C/ ’O"Zdﬂgj
[tl,tQ]XN [tl,tQ]XN
for any [t1,t2] C [T,T;) and o with support contained in [ty,t2] X N.

Proof. Combining (1) and Lemma 5.3, the result follows from the well-
known Bochner formula for 1-forms. O

The above lemma is almost the desired uniform Poincaré inequality. To
conclude the proof we need few results concerning the convergence of har-
monic 1-forms.

Proposition 5.5. Let [a] € Hip(M) and {c;} be the sequence of harmonic
representatives with respect the metrics {g;}. Then {a;} converges, with

respect to the C*° topology on compact sets, to a harmonic 1-form o €
LQQ;(M ).

Proof. See Proposition 4.4. in [4]. O

It is now possible to refine Proposition 5.5 and analyze the convergence
in more details. Notice that 8 can be chosen as follows:

B:Bc+’7

where . is a smooth closed 1-form with support not intersecting the cusp
points {p1,...,p} and v € H(Z4;R). The metric g is C? asymptotic to a
standard model, as a result

lim d*y =0

t—o0

since v can be chosen harmonic with respect to the metric g. Furthermore,
given € > 0 we can find T" big enough that lim;_, ||d*f'y||L§.(t>T) <e.
(=

In other words we proved:

Lemma 5.6. Given ¢ > 0, there exists T big enough such that

| laplan < e [ lapPdu, <
t>T t>T

We can now prove:
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Lemma 5.7. Given ¢ > 0, there exists T big enough such that

[ JaPduy<e [ jogPau, <e
t>T t>T

Proof. Recall that by construction a; = 8 + df;, thus

/>T g, = [ gy ey / @y £y,
t= t>

t

But now
dYa; =d9+dYdf; =0 = d"df; = —d" 5,
thus
[ by = [ sinsdys [ @8, i,
By the Cauchy inequality

(@B, f)dpg; <l fjllzz 1478l L2 w>m)
tZT 935 95

and then this term can be made arbitrarily small. It remains to study the
term ft:T fj N #dfj. Recall that f; — f in the C°° topology on compact
sets. Thus, for a fixed T'

/t:Tfj/\*dfjﬁ/t:Tf/\*df.

It remains to show that ft:T f Axdf can be made arbitrarily small by taking
T big enough. Define the function F(s) = [,__f df, since f € L? we
have F(s) € L'(R*) and then we can find a sequence {s,} — oo such that
F(Sk) — 0. O

Proposition 5.8. There exists ¢ > 0 independent of j such that

/|d04|2 +[d" a2 dpg, > C/|a’2dﬂga’
M M

for any o L H;j.

Proof. Let us proceed by contradiction. Assume the existence of a sequence
{a;} € (H})* such that ||o| 12(,.) = 1 and for which
J g; J (95)

/M\daj|2 +|d"5 | *dpg; — 0

as j — oco. By eventually passing to a subsequence, a diagonal argument
shows that {«;} converges, with respect to the C* topology on compact
sets, to a 1-form a € L?Q}(M). By construction o € H}(M). On the other
hand, Lemma 5.7 combined with the isomorphism Hi(M) ~ H'(M) gives
that o € (H;)l. We conclude that o = 0. Lemma 5.4 can now be easily
applied to derive a contradiction. O
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6. Convergence of 2-forms

In this section we have to study the convergence of 2-forms. The first
result is completely analogous to the case of 1-forms.

Proposition 6.1. Let [a] € H3p(M) and {o;} be the sequence of harmonic
representatives with respect the sequence of metrics {g;}. Then {co;} con-
verges, with respect to the C* topology on compact sets, to a harmonic
2-forms o € L*Q2(M).

Proof. Given an element a € H2,(M), take a smooth representative of the
form 8 = B. 4+ v where (. is a closed 2-form with support not intersecting
the cusp points and v € HQ(EQ;R). Given g;, let a; be the harmonic
representative of the cohomology class determined by a. By the Hodge
decomposition theorem we can write o; = 8 + do; with o € (7—[51]1.)l such
that d*o; = 0. Thus

0=d" B+ d"do; = d*do; = —d* 3.

Taking the global L? inner product of d*do; with o; we obtain the estimate

(2) (d*do, ;) a(q,) = lldojllL> = /M(Uj,d*ﬁ)dﬂgj
< |lojll2gld*BllLz(g))-
By Proposition 5.8, we conclude that
3) o122 < elldos 2
Combining (2) and (3) we then obtain
lojl172(q,) < €lldojliZzgy,) < cllojllizg) |7 BllLag,)-

Since |[d"7 B]|p2(y,) is bounded independently of j, we conclude that the same
is true for ||o]|2(4;) and [|doj||12(g,)- By the elliptic regularity, we conclude
that ||loj||z2(y,) is uniformly bounded. Now a standard diagonal argument
allows us to conclude that, up to a subsequence, {o;} weakly converges to
an element o € L%. Using the elliptic equation

Ao =—diB

and a bootstrapping argument it is possible to show that o; — o in the C*°
topology on compact sets. This proves the proposition. O

We know want to obtain a refinement of Proposition 6.1. We begin with
the following simple lemma.

Lemma 6.2. Given ¢ > 0, there exists T big enough such that

[ taosPany < [ Japln, <
£>T £>T
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Proof. Since 8 = . + v with ~ a fixed element in H2(EQ;R), the lemma

follows from the definition of the metrics {g;}. O
An analogous result holds for the 2-forms {do;}.

Lemma 6.3. Given ¢ > 0, there exists T big enough such that

/ |do|*duy < e, / |daj]2dugj <e
t>T t>T

Proof. The first inequality follows easily from the fact that a € L*Q2(M).
By Lemma 6.2, given € > 0 we can find T such that

% 2 €
ol [ 10aPan, } < 5
t>T

independently of the index j. Now

/ ydaj|2dugj:/ aj/\*jdaj—/ (d*doj,o;)dpg,
t>T t=T t>T

but d*do; = —d*i 3, thus
/ |d0’j’2d,ug. SE-F / oj N\ *jdo;
t>T 7T 2 =T

Since o; — o in the C'°° topology on compact sets, we have that ft:T oj N\
xjdoj — [_.0 A*gdo. But now o € L3(g) and therefore we can conclude
the proof of the proposition. ([

Lemma 6.4. o is orthogonal to the harmonic 1-form on (M,g).

Proof. By construction we have o; € (H;J_)J-. Recall that fixed a cohomol-

ogy element [a] € H}n(M), denoted by {7;} the sequence of the harmonic
representatives with respect to the {g;}, given € > 0 we can chose 7" such that
Jisr |'yj|2d,ugj <. Now, given v € ”H}] we want to show that (o,7)r2(4) = 0.

Since H}p(M) = ”H; (M), we can find a sequence of harmonic 1-forms {v;}
such that v; — 7 in the C'°° topology on compact sets. Let K be a compact
set in M, then

(1) \ s Lo

can be made arbitrarily small by choosing the compact K big enough. Since
(Ujﬁj)m(ﬂvgj) = 0, we have

/(Ujﬁj)dugj = —/ (05,7j)d g,
K M\K

and then the integral |, 1 (05,75)dpg,; can be made arbitrarily small. On the

other hand
‘/ (o,7)dpg| < ’/ (o,7)dug
M K

< HUjHngIIWHng(M\K)

+ llollz2rg IVl z2an i) -
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Since v € L*Q,(M) we conclude that o € (H;)L. O

We now want to study the intersection form of (M, g;) and eventually
show the convergence to the L? intersection form of (M,g). Recall the
isomorphism H3,(M) ~ H%*(M), moreover given [a] € H3,(M) we can
generate {a;} € ng (M) that converges in the C* topology on compact
sets to a o € /Hg(M ). We also have that, fixed a compact set K, then
x;j = *4 for j big enough. As a result

HT 95 oM % - HT9pH .
Indeed

ot - g ke g —kGQ
aj = a; —i—ozj = 5 + 2

7. Biquard’s construction

—ats a9 = Qg.

In this section we show how to construct an irreducible solution of the
Seiberg—Witten equations on (M, g), for any metric g asymptotic to a stan-
dard model g.

Fix a Spin® structure on M, with determinant line bundle L, and let g
be a cuspidal metric on M\Y that is assumed to be C? asymptotic to a
standard model. Let {g;} be the sequence of metrics on M approximating
(M, g) constructed in Section 2. Let (A;,;) be a solution of the perturbed
Seiberg-Witten equations on (M, g;)

Da;ipj =0
{Fj{j + i27rcu]'-F = q(v;)
where w; = ﬁFBj and Bj is the connection 1-form on the line bundle O;(%)
given by
Bj = d — ix;(0wp;)db.
The idea is to show that, up to gauge transformations, the (A;,;) con-

verge in the C*° topology on compact sets to a solution of the unperturbed
Seiberg—Witten equations on (M, g),

Dy =0,
Fi = q(y),

where A = C' + a with C is a fixed smooth connection on L ® O(—%), and
a€ L%(Q;(M)) with d*a = 0.

Lemma 7.1. We have the decomposition

02,
b t¥J
Sqg. = S.. — 2X
9; g;j J 50]
02
Fp, = —ix; t% dt A gpjd9+F;~’

Py
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with sgj and F;’ bounded independently of j.
Proof. See Proposition 2.1. O

Since i2nw; = —Fp;, we can rewrite the perturbed Seiberg-Witten equa-
tions as follows:

Da,ij =0,

Fi —Fg = q(¥;).
Recall that in the case under consideration, the twisted Licherowicz formula
[11] reads as follows

2 o Sg; -
DquzZ)j == vAjVAj'l,Dj + TJ¢] + iFAJ_ . ¢]
By using the SW equations we have

4512 1

Keeping into account the decomposition given in Lemma 7.1 we obtain

* Sg;
0= VAjVAjwj + %1@ +

* ¢ 2
0= V734, Va,¥;+ Pjpj + Pf%’ + | i' )
where
0 i 02
PJ@Z’J:_* J t%%_* j t%(dt/\ Jd9)+ (0

Pj 2™ Pj
with PJI? uniformly bounded in j. Now, it can be explicitly checked that for

a metric of the form dt® 4+ @?dGQ + g2 the self-dual form (dt A ¢;df)* acts by

Clifford multiplication with eigenvalues +i. The eigenvalues of the operator

2.,
P; are then given by 0 and —Xj%-

Lemma 7.2. There exists a constant K > 0 such that
(x)]* < K
for every j and x € M.

Proof. Given a point x € M choose an orthonormal frame {e;} centered at
x such that Ve, €, = 0. We then compute

- Z€¢(6i<¢ja¢j>)m
= - Z{(Veiveiwja ¢J> + 2<Vei¢j7 veﬂ/’j) + <wj7 veiveiwj>}'

Since V2, 1hj = V¢, Ve, and Vi, Va, = — > V2. .. we have

Al |* + 2|V 4,057 = 2Re(Viy, Va5, ¢;).
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Thus, if z; is a maximum point for |¢;|> we have A|wj]§j > 0 and therefore
Re(lej Va;9j,%;) > 0. In conclusion

. ;3
0 =Re(V3, Va, 5, 5)a, + Re({P; + Py by, t5)a; + —
b ¥,
> Re({P) + P, )y + -2
By construction the operator P; + ij is uniformly bounded from below, the
proof is then complete. O

Since FXJ_ — ng = ¢(vj) and by Lemma 7.2 the norms of the 1; are

uniformly bounded, a similar estimate holds for FXJ_ — F;fj .

Lemma 7.3. There exists a constant K > 0 such that
IVa¥ill ez g < K

for any j.

Proof. We have

- /Re<vzjwj,wj>dugj + /Re<{P;’ Yy,
M M
1
+ Q/MRGM(%)%%WM%
Va3 Bagur gy + [ ReUP + Pyl + 5 [ 16,

but now
[ RelPh+ Py )i, = =l gz,

which then implies

HVA w]” Mg) — kHwJHLQ Mg ij”Lz(Mg
< k312237,

Since by Proposition 2.2 the volumes of the Riemannian manifolds (M, g;)
are uniformly bounded, the lemma follows from Lemma 7.2. (]

Define C; = A; — B; and let C' be a fixed smooth connection on the line
bundle L ® O(—X). By the Hodge decomposition theorem we can write

Cj=C+nj+ 5
where 7; is gj-harmonic and 3; € (H;j)L. Thus

Fg = q(y) = FE +d7B;.
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Since C' is a fixed connection 1-form, ||Fg||,- (Mg;) 19 uniformly bounded in
the index j. As a result, there exists K > 0 such that

+ 3. _
147 Bjll 2 a7.,g,) < K
for any j. By the Stokes’ theorem
14%81 2370,y = 10 Bil iz,

and we then obtain an uniform upper bound on ||d»3j”L2(M )" By Gauge
fixing we can always assume d*f; = 0. The Poincaré inequality given in
Proposition 5.8 can then be used to conclude that

clBillZear,) < NdBi 727,y < 2K
By a diagonal argument we can now extract a weak limit
B — B
with 8 € L?(M, g). Similarly we extract a weak limit
nj—1

with n € L?(M, g) and harmonic with respect to g, see Proposition 5.5.

Define a; = n; + (8; that by construction satisfies d*a; = 0. If we fix a
compact set K C M, there exists jy such that for any j > jo the connection
1-form Bj restricted to K is zero. Thus, for any j > jo we have A; = C; and
then C = A;j — a;. We know that a; is uniformly bounded in L?*(M, g;), by
using Lemma 7.3 we conclude that || Vet;||3, (K.g,) is bounded independently
of j. On this compact set K we can therefore extract a weak limit of the
sequence {1} — 1. By using a diagonal argument and recalling that in
a Hilbert space the norm is lower semicontinuous with respect the weak
convergence, we obtain a weak limit ¢ € L}(M, g).

Recall that on any compact set K, for j big enough we have F;{j = q(v;).
Since

VEL = Va5 @ ¢) + 1 ® Va0 — Re(Va,5,45)1d
we conclude that ||VF;{JH [2(K,g;) 1S uniformly bounded. In summary we

have an L? bound on FXj. Consider now the first order elliptic operator
d™ @ d*. By the elliptic L? estimates we obtain

CH%’HL%(K,gj) < ||aj||L2(K,gj) +l(d* @ d*)“jHL';’(K,gj)
< lajllz2(x.g;) + 147 Bill 12k )

which gives us an uniform L3 bound on a;. Since C = A; —a; on K, we
can write

1
0="Da,¥j = Dc+a,¥j = Doy + 505 ¥,
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in other words
1
(5) Dot = =505 - ¥j-

Combining the L% bound on a; and the L™ bound on 1; with the Sobolev
multiplication L% ® LP — L4, for p big enough, we obtain a L* bound on
—%aj -1pj, that is exactly the forcing term in the first order elliptic equation
given in 5. By the elliptic LP estimates we then obtain

clljlls < Mjlles + 1114

where we define f = —%aj -1p;. This shows 1; € L‘ll that combined with the
Sobolev multiplication L3 ® LT — L3 can be used to obtain a L3 estimate
on f. By applying again the elliptic LP estimate we obtain

clltilliey < Isllze +11F1lzs-

Now the Sobolev multiplication L3 ® L3 — L3 combined with the fact that
P € L3, we obtain a L2 bound on f. Once more the L? elliptic estimates
gives us

clltillz < Isllze +11f1lzz-

By using the Sobolev multiplication Lg ® L% — L% we then obtain a Lg
bound on ¢(7);) and therefore by the Seiberg-Witten equations on F:{j. But
now a L% estimate on FXJ_ gives us a analogous estimate on d*a;. The
argument can now be reiterated to obtain an estimate on [|¢;| 2 for any k.
Then by the Sobolev embedding Li < C*=3 we conclude that the 1); are
indeed smooth. A completely analogous argument can now be used to show

the C* on compact sets of the {¢;}.
Let us summarize the discussion above into a theorem.

Theorem A. Fiz a Spin® structure on M with determinant line bundle L.
Let g be a metric on M asymptotic to a standard model in the C? topology,
and let {g;} the sequence of metrics on M that approximate g. Let {(A;, g;)}
be the sequence of solutions of the SW equations with perturbations {FE]}

on {(M,g;)}. Then, up to gauge transformations, the solutions {(A;,v;)}
converge, in the C* topology on compact sets, to a solution (A,) of the
unperturbed SW equations on (M, g) such that:

o A=C+a where C'is a fized smooth connection on L&O(-X), d*a =0
and a € L3 (Q(M)).
e ) € L3(M,g) and there exists K > 0 such that supzen|t(x)| < K.
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8. Geometric applications

For a compact oriented 4-manifold N, the Gauss—Bonnet and Hirzebruch
theorems state that

MM—AHW%,dM—AMW%

where F(g) and L(g) are respectively the Euler and signature forms associ-
ated to the metric g.

For noncompact manifolds the above curvature integrals might be not
defined or dependent on the choice of the metric. Nevertheless, if the man-
ifold has finite volume and bounded curvature these curvature integrals are
defined. In this case it remains to study their metric dependence. Here, we
want to compute

XW@ZAF@MndM@ZAUW%

when g is a metric C? asymptotic to a standard model for M. The > idea is
to approximate the metric g with the sequence of metrics {g;} on M. We
then have

x(M,g) = lim E(gj)dpg;, o(M,g) =/ L(gj)dpg; -

I Ji<j+1 t<j+1
Thus
X(M,g) = x(M) — lim E(g;)dug,
I7ee Jizj+1
and
o(M,g) = o(M) — lim L(§)dpg; -
J7o0 Ji>j+1

In other words, the characteristic numbers of (M, g) are computed in terms
of x(M) and o(M) plus a contribution coming from the cusps. More pre-
cisely we have the following proposition.

Proposition 8.1. Let M be equipped with a metric g asymptotic in the C?
topology to a standard model. Then, we have the equalities

X(M,g) = x(M) = Ix(Zy), o(M,g)=0(M)=0,
where | is the number of cusp ends of M.

Proof. See Proposition 3.4. in [4]. O

A simple Mayer—Vietoris argument can now be used to show that

X(M) = x(M) — Ix(Zg).

We then conclude that x(M,g) = x(M). This discussion can then be sum-
marized into the following proposition.
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Proposition 8.2. The Gauss—Bonnet theorem is valid on (M,g) for any
metric g asymptotic in the C? topology to a standard model.

We can now study the Riemannian functional | M sgdug restricted to the
space of metrics asymptotic to a standard model.

Theorem B. Let M be equipped with a metric g asymptotic to a standard
model in the C? topology. Then
1
o [ Sy = 2 x(2)
with equality if and only if g is the product of two -1 hyperbolic metrics on
Y and Y.

Proof. Let us consider the standard Spin® structure associated to the com-
plex structure of M. Theorem A can be used to construct an irreducible
solution of the SW equations on (M, g). Furthermore, by applying Theo-
rem 3.2 we conclude that

1 _
327 /M Sgdug Z (Cl(Kﬂl — 2)+)2.

By the adjunction formula we have
(c1(Bq = 2)7)? > (el — %)% = 2(x(M) +2(g — 1)])
where [ is the number of cusp ends. By Propositions 8.1 and 8.2
X(M) = x(M) +2i(g — 1),

and we conclude that

1
3972 /M Sgdug = 2X(E) 'X(Eg)

with equality if and only if g is Kéhler with constant negative scalar cur-
vature and the harmonic representative of ¢;(L£) is self-dual. The latter
condition implies that g is Kdhler—Einstein. We can now apply Theorem A
for a Spin® structure of complex type compatible the reversed oriented M.
This implies that g must be Kéhler—Einstein with respect to the commuting
complex structures J and J on M. This implies that g is the product of two
hyperbolic —1 metrics on ¥ and 3. O

Finally, we present an obstruction for Einstein metrics on blow-ups.

Theorem C. Let (M, g) as above. Let M be obtained from M by blowing up
k points. If k > %X(E)X(Zg), then M’ does not admit a cuspidal Einstein
metric.

Proof. By a result of Morgan-Friedman [7], we know that the manifold
MtkCP? admits at least 2F different Spin® structures with determinant line
bundles

_ g1
L_KMiElimiEk



510 DI CERBO

for which the SW equations have irreducible solutions for each metric. Since

(@(D)P)? = ()" +Ef +--- £ EF)?
2
= (M) +2> (M) - £E" + (Z iEj)

we can chose a Spin® structure whose determinant line bundle satisfies
(e (L)F)? = (r(M)F)? > er(M)? = F(M).

We can now apply Theorem A for any of the Spin® structure above and with
respect to the metric g on M ". We then construct 2% irreducible solutions
(A, ) € L3(M',g), where A = C + a with C a fixed smooth connection
on L ® O(—X) and a € L%(Q;(M/)) By appropriately choosing the Spin®
structure and using Theorem 3.2 we compute

1
3272 /M/ s2dpg > (c1(L® O(=%))F)?
> (a(L)T)? + 5%+ 2K - 8
> c}(M) +2K57- %

where in the last inequality we used the fact that ¥ has trivial self intersec-
tion. By the adjunction formula we have

[ sy = G0 + (g - 1)
M/

= 2x(M) +4i(g — 1),

where k is the number of distinct components of the divisor . By an obvious
modification of Proposition 8.1 one has

X(M',g) = x(M) + k +21(g - 1)
U(Mlvg) =—k
Thus, if we assume g to be Einstein
EM)+4l(g—1) —k =2x(M') + 30(M")
1 2

S
= W12 d

1 2
> d
_967r2/M'S Hg

> LA +4ilg - 1)

so that

ST +4i(g - 1)) > k.
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In other words if

we cannot have a cuspidal Einstein metric on M#kCP2. The equality case
can also be included and the proof goes as in the compact case. For more
details, see [16]. The proof is then complete. g
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