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C*-algebra of the Z"-tree

Menassie Ephrem

ABSTRACT. Let A = Z" with lexicographic ordering. A is a totally
ordered group. Let X = AT « AT. Then X is a A-tree. Analogous to
the construction of graph C™*-algebras, we form a groupoid whose unit
space is the space of ends of the tree. The C*-algebra of the A-tree is
defined as the C*-algebra of this groupoid. We prove some properties
of this C*-algebra.
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1. Introduction

Since the introduction of C*-algebras of groupoids, in the late 1970’s,
several classes of C*-algebras have been given groupoid models. One such
class is the class of graph C*-algebras.

In their paper [10], Kumjian, Pask, Raeburn and Renault associated to
each locally finite directed graph E a locally compact groupoid G, and
showed that its groupoid C*-algebra C*(G) is the universal C*-algebra gen-
erated by families of partial isometries satisfying the Cuntz—Krieger relations
determined by E. In [16], Spielberg constructed a locally compact groupoid
G associated to a general graph E and generalized the result to a general
directed graph.

We refer to [13] for the detailed theory of topological groupoids and their
C*-algebras.

A directed graph E = (EY, E' 0,t) consists of a countable set E° of
vertices and E! of edges, and maps o,t : E' — E° identifying the origin

Received January 15, 2008; revised January 21, 2011.

2000 Mathematics Subject Classification. 46105, 46135, 46L55.

Key words and phrases. Directed graph, Cuntz—Krieger algebra, Graph C*-algebra.

ISSN 1076-9803/2011


http://nyjm.albany.edu/nyjm.html
http://nyjm.albany.edu/j/2011/Vol17.htm

2 MENASSIE EPHREM

(source) and the terminus (range) of each edge. For the purposes of this
discussion it is sufficient to consider row-finite graphs with no sinks.

For the moment, let T" be a bundle of of row-finite directed trees with no
sinks, that is a disjoint union of trees that have no sinks or infinite emitters,
i.e., no singular vertices. We denote the set of finite paths of T' by 7™ and
the set of infinite paths by 97T

For each p € T*, define

V(p) :={px : x € 9T, t(p) = o(x)}.
For p,q € T*, we see that:
V(p) if p = gr for some r € T*

Vip)NVig) =< V(q) if g=pr for somer e T*
0 otherwise.

It is fairly easy to see that:

Lemma 1.1. The cylinder sets {V(p) : p € T*} form a base of compact
open sets for a locally compact, totally disconnected, Hausdorff topology of
oT'.

We want to define a groupoid that has 9T as a unit space. For z =
2122 . .., and y = y1y2 ... € 0T, we say x is shift equivalent to y with lag k €
Z and write x ~y, y, if there exists n € N such that z; = yi; for each ¢ > n.
It is not difficult to see that shift equivalence is an equivalence relation.

Definition 1.2. Let G := {(z,k,y) € 0T X Z x 0T : x ~, y}. For pairs in
G = {((z, k,y), (y,m, 2)) : (2, k,y), (y,m, 2) € G}, we define

(1.1) (x,k,y) - (y,m, z) = (z,k +m,z2).
For arbitrary (z,k,y) € G, we define
(12) (ka>y)_1 = (yy_kax)'

With the operations (1.1) and (1.2), and source and range maps s,7 :
G — OT given by s(z,k,y) =y, r(z,k,y) = x, G is a groupoid with unit
space 0T

For p,q € T*, with t(p) = t(q), define U(p,q) := {pz,l(p) — l(q),qx) :
x € 0T, t(p) = o(x)}, where I(p) denotes the length of the path p. The
sets {U(p,q) : p,q € T*,t(p) = t(¢)} make G a locally compact r-discrete
groupoid with (topological) unit space equal to 9T

Now let E be a directed graph. We form a graph whose vertices are the
paths of E and edges are (ordered) pairs of paths as follows:

Definition 1.3. Let E denote the following graph:
B — B
E'={(p,q) € E* x E*: ¢=pe for some ec E'}
o(p,q) =p, t(p,q9) = ¢
The following lemma, due to Spielberg [16], is straightforward.
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Lemma 1.4. [16, Lemma 2.4] E is a bundle of trees.

Notice that if £ is a row-finite graph with no sinks, then E is a bundle of
row-finite trees with no sinks. _

If G(F) is the groupoid obtained as in Definition 1.2, where E plays the
role of T" then, in [16] Spielberg showed, in its full generality, that the graph
C*-algebra of E is equal to the C*-algebra of the groupoid G(E). We refer
to [16], for readers interested in the general construction and the proof.

We now examine the C*-algebra Oy, which is the C*-algebra of the graph

Denoting the vertex of E by 0 and the edges of E by a and b, as shown in
the graph, the vertices of E are 0, a, b, aa, ab, ba, bb, etc. And the graph FE is
the binary tree.

Take a typical path p of E, say p = aaabbbbbabbaaaa. Writing aaa as 3
and bbbbb as 5, etc. we can write p as 3512’4 which is an element of Z1 *Z*
(the free product of two copies of Z*1). In other words, the set of vertices of
E is G * G5, where Gf = ZT = G5, and the vertex 0 is the empty word.
The elements of OF are the infinite sequence of n’s and m’s, where n € Gf
and m € G .

Motivated by this construction, we wish to explore the C*-algebra of the
case when A is an ordered abelian group, and X is the free product of two
copies of A*. In this paper we study the special case when A = Z" endowed
with the lexicographic ordering, where n € {2, 3, ...}.

The paper is organized as follows. In Section 2 we develop the topology
of the Z™-tree. In Section 3 we build the C*-algebra of the Z"-tree by first
building the groupoid G in a fashion similar to that of the graph groupoid.
In Section 4, by explicitly exploring the partial isometries generating the
C*-algebra, we give a detailed description of the C*-algebra. In Section 5,
we look at the crossed product of the C*-algebra by the gauge action and
study the fixed-point algebra. Finally in Section 6 we provide classification
of the C*-algebra. We prove that the C*-algebra is simple, purely infinite,
nuclear and classifiable.

I am deeply indebted to Jack Spielberg without whom none of this would
have been possible. I also wish to thank Mark Tomforde for many helpful
discussions and for providing material when I could not find them otherwise.

2. The Z™-tree and its boundary

Let n € {2,3,...} and let A = Z" together with lexicographic ordering,
that is, (k1,k2,...,kn) < (m1,ma,...,my,) if either k; < my, or k; = my,
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ceu, kg1 =mg_1, and kg < mg. We set
OAT = {(kl,kﬁz, ce ,kn,l,oo) ck; e NU {OO}, k; =00 = kiJrl = OO}

Let G; = AT ={a € A:a>0}fori=1, 2 and let IG; = OAT
for i = 1, 2. That is, we take two copies of AT and label them as G
and G5, and two copies of OAT and label them as 0G; and 0G3. Now
consider the set X = G1 x Go. We denote the empty word by 0. Thus,
X = Uflil{alaQ...ad La; € Gk = Q41 € Gkil for 1 <1 < d} U {0} We
note that X is a A-tree, as studied in [4].

Let 0X = {alaz...ad ca; € G = i1 € Gk:l:l, forl < i< d-—
land ag—1 € Gy = aq € 0Gpt1} U {a1a2... : a; € Gy = ai41 €
G+ for each i}. In words, 0X contains either a finite sequence of elements
of A from sets with alternating indices, where the last element is from AT,
or an infinite sequence of elements of A from sets with alternating indices.
For a € AT and b € OA™, define a + b € OAT by componentwise addition.

For p=ajas...ar € X and ¢ = b1by...b,, € XUIX, i.e., m € NU{o0},
define pq as follows:

(i) If ag, b1 € G; UOG; (i.e., they belong to sets with the same index),
then pq := aqay . ..ag_1(ax+b1)ba...by. Observe that since ay € A,
the sum aj + by is defined and is in the same set as by.

(ii) If ar and b; belong to sets with different indices, then

pq = ajay. .. akblbg e bm

In other words, we concatenate p and ¢ in the most natural way (using the
group law in A * A).

For p € X and ¢ € X U 90X, we write p < ¢ to mean ¢ extends p, i.e.,
there exists r € X U dX such that g = pr.

For p € 90X and q € X UJX, we write p < ¢ to mean ¢ extends p, i.e.,
for each r € X, r < p implies that r < q.

We now define two length functions. Define I : X U9X — (NU {c0})"
by l(ajaz...ax) = Zle a;.

And define I; : X UOX — NU {oo} to be the i component of [, i.e.,
li(p) is the i*" component of I(p). It is easy to see that both I and I; are
additive.

Next, we define basic open sets of 0.X. For p,q € X, we define

V(p):=={pzr:2€dX} and V(p;iq):=V(p)\V(g).
Notice that

1] ifpAqandqg4p
(2.1) Vip)nV(g)=q V(p) ifg=p
Vig) ifp=gq.
Hence

V(p) ifpAqandqZAp
0 if ¢ <p.
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Therefore, we will assume that p < ¢ whenever we write V(p; q).
Let £ :={V(p):p € X} U{V(piq) : p,q € X}.

Lemma 2.1. & separates points of X, that is, if v,y € 0X and x # y then
there exist two sets A, B € € such that x € A, y € B, and AN B = 0.

Proof. Suppose x,y € 0X and z # y. Let x = ajas...as, y = bibs...bpy.
Assume, without loss of generality, that s < m. We consider two cases:

Case 1. There exists k < s such that ap # by (or they belong to different
Gi’S).

Then z € V(ajaz...ar), y € V(biba...bx) and
V(a1a2 - ak) N V(blbg - bk) = 0.
Case I1. a; = b; for each 7 < s.

Notice that if s = oo, that is, if both x and y are infinite sequences then
there should be a k € N such that ag # by which was considered in Case I.
Hence s < o0o. Again, we distinguish two subcases:

(a) s = m. Therefore x = ajag...as and y = ajay...bs, and ag, by €
0G;, with as # bs. Assuming, without loss of generality, that as; < b,
let as = (k1,ke,...,kn—1,00), and bs = (r1,r2,...,7n—1,00) where
(k1,ko, ..., kn—1) < (r1,r2,...,7n—1). Therefore there must be an
index i such that k; < r;; let j be the largest such. Hence as+e; < bs,
where e; is the n-tuple with 1 at the 4t spot and 0 elsewhere. Letting
c=as+ej, we see that v € A =V (aiaz...as-1;¢), y € B=V(c),
and ANB =0.

(b) s <m. Then y = ajaz...as_1bsbst1...by (M > s+ 1).

Since bsy1 € (G;UIG;)\{0} for i = 1,2, choose ¢ = e, € G; (same
index as bst1 is in). Then z € A = V(ajas...as_1;a102 ... as_1bsc),
y € B=V(aias...as-1bsc), and AN B = (.
This completes the proof. O

Lemma 2.2. £ forms a base of compact open sets for a locally compact
Hausdorff topology on 0X.

Proof. First we prove that £ forms a base. Let A = V(p1;p2) and B =
V(q1;g2). Notice that if p1 A ¢1 and ¢1 A p1 then AN B = ). Suppose,
without loss of generality, that p; < ¢ and let x € AN B. Then by con-
struction, p1 < ¢1 < z and p2 £ x and g2 A x. Since p2 A z and ¢ £ w,
we can choose r € X such that ¢1 <, p2 A7, g2 A7, and z = ra for some
a € 0X. If © £ py and x £ g2 then r can be chosen so that » A ps and
r A g2, hence x € V(r) C AN B.

Suppose now that x < ps. Then x = ra, for some r € X and a € 0X. By
extending r if necessary, we may assume that a € OA™. Then we may write
p2 = rby for some b € AT, and y € X with a < b. Let b’ =b—(0,...,0,1),
and s; = rb/. Notice that z < s; < py and s; # po. If x ﬁ qo then we
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can choose r so that » A ga. Therefore z € V(r;s1) C AN B. If z < g,
construct so the way as s; was constructed, where ¢o takes the place of ps.
Then either s; < s9 or s9 < s1. Set

s—{ s1 if 51 < 89

S9 if S9 j S1.

Then x € V(r;s) C AN B. The cases when A or B is of the form V(p) are
similar, in fact easier.

That the topology is Hausdorff follows from the fact that £ separates
points.

Next we prove local compactness. Given p,q € X we need to prove that
V(p; q) is compact. Since V(p;q) = V(p)\V(q) is a (relatively) closed subset
of V(p), it suffices to show that V(p) is compact. Let Ag = V(p) be covered
by an open cover U and suppose that Ay does not admit a finite subcover.
Choose p; € X such that l;(p1) > 1 and V(pp1) does not admit a finite
subcover, for some ¢ € {1,...,n — 1}. We consider two cases:

Case 1. Suppose no such p; exists.

Let a = e, € G1, b = e, € Ga. Then V(p) = V(pa) U V(pb). Hence
either V(pa) or V(pb) is not finitely covered, say V(pa), then let z; =
a. After choosing xg, since V(pxy...x5) = V(pxy...zs5a) UV (pry ... x5b),
either V(pzy...xz5a) or V(pzy...xsb) is not finitely covered. And we let
Zs41 = a or b accordingly. Now let A; = V(pxy...z;) for j > 1 and let
x = prixe... € 0X. Notice that Ag O A1 D Ay..., and z € ﬂjo-ioAj.
Choose A" € U, q,r € X, such that z € V(q;r) C A’. Clearly ¢ < x and
r 4 x. Once again, we distinguish two subcases:

(a) A 7. Then, for a large enough k we get ¢ < prixs...z; and
pr122...x) A . Therefore Ay = V(pr1z2...21) C A’, which con-
tradicts to that Ay is not finitely covered.

(b) < r. Notice l;(x) = l1(p) and since x = prize... < r, we have
Li(x) = li(p) < lLi(r). Therefore V(r) is finitely covered, say by
B1,Bs,...,Bs € U. For large enough k, g < prizs...xE. Therefore
Ap =V(priaa...2) CV(q) = V(g;r)UV (r) C A’UUj_, Bj, which
is a finite union. This is a contradiction.

Case I1. Let p; € X such that [;(p1) > 1 and V(pp1) is not finitely covered,
for some i € {1,...,n—1}.

Having chosen pi,...,ps let psi1 with l;(psy1) > 1 and V(pp1...pss1)
not finitely covered, for some i € {1,...,n — 1}. If no such ps4; exists then
we are back in to Case I with V(pp1ps ... ps) playing the role of V(p). Now
let © = ppipa... € 0X and let A; = V(pp1...pj). We get Ag 2 A1 D ...,
and z = pp1p2 ... € ;29 A;. Choose A" € U such that x € V(g;r) C A",
Notice that ¢ < z and n — 1 is finite, hence there exists iy € {1,...,n — 1}
such that l;,(x) = oo. Since l;,(r) < 0o, we have x & r. Therefore, for large
enough k, ¢ < pp1 ...py A r, implying Ay C A’, a contradiction.



C*-ALGEBRA OF THE Z"-TREE 7
Therefore V(p) is compact. O

3. The groupoid and C*-algebra of the Z™-tree

We are now ready to form the groupoid which will eventually be used to
construct the C*-algebra of the A-tree.
For z,y € 0X and k € A, we write x ~p y if there exist p,q € X and
z € 0X such that k =1(p) — l(¢q) and = = pz,y = qz.
Notice that:
(a) If z ~ y then y ~_j z.
(b) © ~¢ x.
(¢) If & ~; y and y ~y, 2z then x = pt, y =vt, y =ns, z = PBs for some
p,v,m, e X t,s€dX and k=1(p) —U(v), m=1n)—1U1P).
If I(n) < I(v) then v = nd for some § € X. Therefore y = ndt,
implying s = §t, hence z = (3dt. Therefore x ~, z, where r =
(p) = U(B0) = U(p) — UB) = U(6) = U(u) —U(PB) — (I(v) —Un) =
[[(p) = L)) + [l(n) = U(B)] = k +m.
Similarly, if I(n) > I(v) we get & ~, z, where r = k + m.

Definition 3.1. Let G := {(z,k,y) € 0X x A x 90X : x ~ y}.
For pairs in G* := {((z, k, y), (y,m, 2)) : (2, k,y), (y,m, z) € G}, we define

(31> (x,k,y)- (y,m,z) = (x,k—i—m,z).
For arbitrary (x,k,y) € G, we define
(32) ($7k7y)_1 = (y7_kax)'

With the operations (3.1) and (3.2), and source and range maps s,7 :
G — 0X given by s(z,k,y) =y, r(z,k,y) =z, G is a groupoid with unit
space 0.X.

We want to make G a locally compact r-discrete groupoid with (topolog-
ical) unit space 0.X.

For p,q € X and A € &, define [p,qla = {(pz,l(p) — (q),qz) : x € A}.

Lemma 3.2. Forp,q,r,s € X and A,B € £,

[ 7Q]A N [7", S]B
D, qlanus  if there exists i € X such that r = pp, s = qu
= < [y 8l(uaynp  if there exists p € X such that p =1, q = sp

0 otherwise.

Proof. Let t € [p,q]la N|[r,s]p. Then t = (pz,k,qx) = (ry, m, sy) for some
x € Ay € B. Clearly & = m. Furthermore, pr = ry and gz = sy.
Suppose that I(p) < I(r). Then r = pu for some p € X, hence pr = puy,
implying * = py. Hence qr = quy = sy, implying qu = s. Therefore
t = (pz,k,qx) = (puy, k,quy), that is, t = (px, k, qz) for some z € AN uB.
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The case when [(r) < I(p) follows by symmetry. The reverse containment is
clear. i

Proposition 3.3. Let G have the relative topology inherited from 0X X
A x 0X. Then G is a locally compact Housdorff groupoid, with base D =
{la,bla :a,b € X, A €&} consisting of compact open subsets.

Proof. That D is a base follows from Lemma 3.2. [a,b]4 is a closed subset
of aA x {l(a) —1(b)} x bA, which is a compact open subset of X x A x 0X.
Hence [a, b4 is compact open in G.

To prove that inversion is continuous, let ¢ : G — G be the inversion
function. Then ¢~!([a,b]a) = [b,a]a. Therefore ¢ is continuous. In fact ¢
is a homeomorphism.

For the product function, let v : G> — G be the product function.
Then ! ([a,b]4) = U.ex(([a,c]a x [¢,b]4) N G?) which is open (is a union
of open sets). O

Remark 3.4. We remark the following points:

(a) Since the set D is countable, the topology is second countable.

(b) We can identify the unit space, 0X, of G with the subset {(x,0,z) :
x € 0X} of G via x — (z,0,x). The topology on 90X agrees with the
topology it inherits by viewing it as the subset {(z,0,z) : z € 0X}
of G.

Proposition 3.5. For each A € £ and each a,b € X, [a,b]4 is a G-set. G
is r-discrete.

Proof.
[a,b]a = {(az,l(a) — I(b),bx) : x € A}
= ([a,b]4) "' = {(bx,1(b) — I(a),azx) : x € A}.
Hence, ((ax,(a)—1(b),bx)(by,1(b)—1(a),ay)) € [a,b]ax([a,b]4)~t N G?if
and only if = y. And in that case, (az,l(a)—1(b), bx)- (bx,l(b)—I(a),azx) =
(ax,0,az) € 0X, via the identification stated in Remark 3.4(b). This gives

[a,b]a - ([a,b]4)~" C 0X. Similarly, ([a,b]a)~" - [a,bla € 0X. Therefore G
has a base of compact open G-sets, implying G is r-discrete. O

Define C*(A) to be the C* algebra of the groupoid G. Thus C*(A) =
span{ys : S € D}.
For A=V(p) €€,

[a,b]a = [a, b]V(p)

{(az,l(a) = I(b),bzx) : x € V(p)}
{(az,l(a) = I(b),bzx) : x = pt, t € X}
{(apt,l(a) —1(b),bpt) : t € 0X}

= [apv bp]aX
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And for A=V (p;q) =V(p) \V(q) €,
[a,b]a = {(az,l(a) = 1(),bx) : x € V(p) \ V(q)}
= {(ax,l(a) = 1(b),bx) : x € V(p)} \ {(az,l(a) = I(b),bz) : x € V(q)}
= [ap, bplox \ [aq, bglox -
Denoting [a,blspx by Ul(a,b) we get:
D ={U(a,b):a,be X} U {U(a,b)\U(c,d) : a,b,c,d € X,a <¢,b=d}.
Moreover X/ (a,p)\U(c,d) = XU(a,b) — XU(c,d)» Whenever a < ¢,b = d. This gives
us:
C*(A) =spai{xp(ap) : @,b € X}.
4. Generators and relations

For p € X, let s, = xy(p,0), Where 0 is the empty word. Then:

sp(2,k,y) = Xvupo) (@, k,y) ™)
= XU(p,0) (y7 —k, l‘)
= Xu(0,p) (T, k, ).
Hence s, = xv(0,p)-
And for p,q € X,

Spsq(kavy) = Z XU(p,O)((ka7y)(y7maz)) XU(q,O)((yamaz)_l)

Y~m=z
= Z XU (p,0) (:Ev k + m, Z) XU(q,0) (Zv —m, y)
Y~m=z
Each term in this sum is zero except when = = pz, with k +m = [(p), and
z = qy, with [(¢) = —m. Hence, k = l(p)—m = I(p)+I1(q), and x = pz = pqy.

Therefore s,84(, k, y) = Xv(pqg,0)(T, k,y); that is, sp8q = XU(pq,0) = Spg-
Moreover,

SPS;(kaay) = Z XU(p,O)((x7k7y)(y7m7 Z)) XU(O,q)((yama 2)71)

Y~mz

= Z XU (p,0) (T, K +m,2) Xu(0,9) (2, =, Y)
Y~m=z

= Z XU (p,0) (33, k+ m, Z) XU(q,0) (yv m, Z)'
Y~m#z

Each term in this sum is zero except when z = pz, k+m = Il(p), y = ¢z,
and I(q) = m. That is, k = l(p) — I(q), and = = pz, y = qz. Therefore
SpS;(i’, k, y) = XU (p,q) ($a k, y); that is, SpS:; = XU(p,q)-

Notice also that

*

Squ($,k,y) = Z XU(O,p)((«T,k',y)(y,m,Z)) XU(q,O)((y7mvz)71)

Y~mz
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= Z XU (0,p) ($, k+m, Z) XU(q,O)(Zv -m, y)
Y~m=

is nonzero exactly when z = px, l(p) = —(k+m), z = qy, and I(q) = —m,
which implies that px = qy, I(p) = —k — m = —k + [(q). This implies that

5,8 is nonzero only if either p < g or ¢ < p.
If p < g then there exists r € X such that ¢ = pr. But —k = I(p) —l(q) =
k=1(g)—Il(p) =U(r). And qy = pry = x = ry. Therefore s}s, = s,. And if
q = p then there exists r € X such that p = gr. Then (s};s,)" = s;

q
Hence s*s, = s*. In short
p-q r ’

Sp = Sp.

sp ifq=pr
Spsq =19 sr ifp=qr
0 otherwise.
We have established that
(4.1) C*(A) = span{sps; : p,q € X}.
Let Gy := {(x,0,y) € G : z,y € 0X }. Then Gy, with the relative topology,

has the basic open sets [a, b] 4, where A € £,a,b € X and [(a) = [(b). Clearly
Go is a subgroupoid of G. And

C*(Go) = span{xu(p,q) : P9 € X, l(p) = l(q)}

C span{X[p,q : 1,4 € X,l(p) =1(q), A € X is compact open}

C C*(%o)-
The second inclusion is due to the fact that [p, ¢] 4 is compact open whenever
A C 09X is, hence X4, € Cc(Go) € C*(Go).

We wish to prove that the C*-algebra C*(Gp) is an AF algebra. But
first notice that for any p € X, V(u) = V(uel,) UV (uey), where e, = e, =
0,...,0,1) € Gy and €]} = e, € Ga.

Take a basic open set A =V (1) \ (Upy V(vx)). It is possible to rewrite
Aas V(p)\ ( ) V(rk)) with p # p. Here is a relatively simple example
(pointed out to the author by Spielberg): V(u)\ V(uel,) = V(uel), where
e, =e, € Gy and €] = e, € Gs.

Lemma 4.1. Suppose A=V (u)\ (Uj_; V(1vi)) # 0. Then we can write
Aas A=V (p)\ (U, V(prk)) where l(p) is the largest possible, that is, if
A=V(g)\ (Uj2, Vigs;)) then I(q) < 1(p)-

Proof. We take two cases:
Case 1. For each k = 1,...,s, there exists i € {1,...,n—1} with [;(v;) > 1.

Choose p = u, rp = v for each k (i.e., leave A the way it is). Suppose
now that A =V(q)\ (Um2 V(gs;)) with I(p) < I(q). We will prove that
I(p) = l(g). Assuming the contrary, suppose I(p) < l(q). Let z € A =
z = qy for some y € 9X. Since qy € V(p) \ (Ur—y V(prr)), p < qy. But
l(p) < 1(q) = p = q. Let ¢ = pr, since p # q, r # 0. Let r = ajag...aq.
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Either a; € G1\{0} or a; € G2\{0}. Suppose, for definiteness, a; € G1\{0}.
Take t = (0,...,0,00) € 9Gy. Since l(r) > I(t) for each k = 1,...,s, we
get pr £ pt for each k = 1,...,s, moreover pt € V(p ) Hence pt € A. But
prApt=q £ pt=pt ¢ V(g =pt ¢ Vig\ (U2 Vigs;) which is a
contradiction to A = V(q) \ (U . V(gs;)). Therefore I(p) = I(g). In fact,
pP=4q.

Case II. There exists k € {1,...,s} with [;(v;) =0, foreachi =1,...,n—1.

After rearranging, suppose that [;(v;) = 0 for each k = 1,..., « and each
i =1,...,n—1; and that for each k = a + 1,...,s, l;(vx) > 1 for some
i <n —1. We can also assume that {(v1) is the largest of [(1)’s for k < a.

Then
\ (U V(Wk))

(G ()]

Let me,, = l(v1) which is non zero. We will prove that if we can rewrite A as
Vig)\ (Up2, V(gsk)) with I(u) < I(g) then ¢ = pr with 0 < I(r) < m(ep).
Clearly if A ¢, then ANV (q) = 0. So, if ANV (q) \ (U3, V(gsk)) # 0
then p < q. Now let ¢ = pr, and let 1 = ajas...aq. Observe that since
for each j, a; € A" and that l;(v1) = 0 for each k < n — 1, we have
lg(aj) = 0 for all k < n — 1. Also, by assumption, [(v;) > 0, therefore
either ag € G1 \ {0} or a4 € Go2 \ {0}. Suppose, for definiteness, that
aq € G1\{0}. Let a), = ag—e, and let v/ = ajaz...a), (or just aras...a4-1,
if a; = 0). If V(u') N A = () then we can replace v; by v/ in the ex-
pression of A and and (after rearranging the v/s) choose a new v;. Since
A # () this process of replacement must stop with V(uv') N A # (). Letting
e, =e, € Gy and € = e, € Gy, then V() = V(u/el,) UV (w/'el) =
V() UV (u/el). Since V(uv) N A =0, ANV (u/'el) # () hence Vel ¢
{vi,...,Vq}. Take t' = (0,...,0,00) € 9G; and t" = (0,...,0,00) € 8G2.
Then p'elt’, u/'elt” e V( )\ (Up—y V(pr)). Moreover, for each k =
a+1,...,s, wehave l(Velt'), [(Velt") < 1(v), implying pv/el't’, pv/ellt” €
V() \ (Urzas1 V(). Hence p/ent’, w/ept” € Vig) \ (Up2, (qsk)).
Therefore ¢ <X pv'ell = pr X p'ell = 0 <I(r) <Il(Vel) =1(V)+e, = mey,.
Therefore there is only a finite posable r’s we can choose form. [In fact, since
r < Vel there are at most m of them to choose from.| O

To prove that C*(Gp) is an AF algebra, we start with a finite subset U of
the generating set {xy(p,q) : P»q € X,l(p) = I(q)} and show that there is a
finite dimensional C*-subalgebra of C*(Gp) that contains the set U.

Theorem 4.2. C*(Gy) is an AF algebra.
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Proof. Suppose that U = {Xt(p,,q1)> XU(p2,g2)7 - - - XU(ps,gs)} 15 @ (finite) sub-
set of the generating set of C*(Gy). Let

S = {V(pl)a V(q1)7 V(pg), V(QQ)7 EER) V(ps), V(qs)}

We “disjointize” the set S as follows. For a subset F of S, write

Ap = () 4\ [ 4
AEF  AgF
Define
C:={Ar :F C S}.
Clearly, the set C is a finite collection of pairwise disjoint sets. A routine
computation reveals that for any F € S, E = |J{C € C: C C E}. It follows
from (2.1) that for any F C S, (4cp A = V(p), for some p € X, if it is not
empty. Hence,
k
Ap = V(p)\ [JV(pr:)
i=1
for some p € X and some r; € X. Let pp € X be such that Ap = V(p) \
Ule V(pri) and I(pr) is maximum (as in Lemma 4.1). Then

k

= prCF,

where Cp = 0X'\ (Uf:1 V(ri)). Now V (pa) = pr,Cr,Upp,Cr,U. . .Upr, CF,
where {F1,Fs,....,Fy} = {F C S : V(pa) € F}. Notice that pp,Cr, C
V (pa) for each i, hence po =< pr,. Hence pp,Cr, = patiCF,, for some t; € X.
Therefore V(pa) = paUi UpaUz U ... U paU, where U; = t;C,. Similarly
V(ga) = ¢aV1 U qaVa U ... U qa Vi, where each ¢, V; € C is subset of V(qq,).
Consider the set

B :={[p,qdlcnp : pC,qD € C and p = pa,q = qa, 1 < o < s}

Since C is a finite collection, this collection is finite too. We will prove that
B is pairwise disjoint.

Suppose [p, ¢lcnp N [P, ¢']crapr is non-empty. Clearly p(CND) () p' (C'N
D") # 0, and ¢(CN D) N ¢(C"ND") #D. Therefore, among other things,
pCNp'C" # 0 and gD N ¢’ D" # (), but by construction, {pC, ¢D,p'C’,¢' D'}
is pairwise disjoint. Hence pC = p’C”’ and gD = ¢’D’. Suppose, without loss
of generality, that I(p) < I(p). Then p’ = pr and ¢’ = gs for some r,s € X,
hence [p, ¢'|cinpr = [pr, gslonpr- Let (pz,0,qx) € [p, qdlonp Npr; ¢slenpr-
Then px = prt and gx = gst, for some t € C' N D', hence x = rt = st.
Therefore r = s (since I(r) = I(p') — l(p) = I(¢') — l(q) = I(s)). Hence
pC =p'C" = prC’, and qD = ¢'D’ = qrD’, implying C = rC’ and D = rD’.
This gives us CND = rC' NrD = r(C' N D'). Hence [p/,¢|cinp =
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[pr, qrlcinp = [P, dlrcinpry = [P @lonp- Therefore B is a pairwise disjoint
collection.

For each [p,qlcnp € B, since C' N D is of the form V(u)\ Ule V(pw;),
we can rewrite C' N D as uW, where W = OX\Uf:1 V(v;) and I(u) is
maximal (by Lemma 4.1). Then [p,qlcnp = [p,¢luw = [pi, qu]w. Hence
each [p,qlcnp € B can be written as [p, ¢Jy where [(p) = I(¢g) is maximal
and W = 0X \ U, V().

Consider the collection D := {xpq, : [P;¢lw € B}. We will show that,
for each 1 < & < 8, Xy (pa,¢a) 15 @ sum of elements of D and that D is a self-
adjoint system of matrix units. For the first, let V(pa) = paU1 Upo U2 U. ..U
PaUk and V(qo) = ¢aV1Uqa Vo U. ..U ¢aVim. One more routine computation
gives us:

k,m
U(paaQa) = [meOz]c')X = U ([poupoz]Ui : [meOt}c')X : [QCwQQ]V]-)
ij=1
k,m
= U [pCY?qOI}UimVj'
ij=1

Since the union is disjoint,

k,m
XU(pa,qa) = Z XLPOM‘IQ]UZ-OVJ-'
ij=1
vinv, is in the collection D. Therefore U C span(D).

To show that D is a self-adjoint system of matrix units, let X[y, gy s X[r,s]y €
D. Then

And each X[pa,ga]

Xipalw * Xisly (71,0,22) = D X (21,0, 22) (41,0, 42)) * Xrs)y, (42,0, 41)
Y1,Y2

= Z Xipalw (215 0,¥2) - X(r. sy (42, 0, 22),
Y2

where the last sum is taken over all yo such that x1 ~¢ yo ~¢ x2. Clearly
the above sum is zero if x1 ¢ pW or zo ¢ sV. Also, recalling that ¢I¥ and
rV are either equal or disjoint, we see that the above sum is zero if they
are disjoint. For the preselected 1, if 21 = pz then yo = ¢z (is uniquely
chosen). Therefore the above sum is just the single term xp, q,,, (1,0, 92) -
X[r,s]v (Y2, 0,72). Suppose that ¢W = rV. We will show that l(q) = I(r),
which implies that ¢ =7 and W = V.
Given this,

X[p.alw " X[r,slv (1131, 0, ZL‘Q) = Xlp,glw (xlv 0, y2) * Xr,slv (y27 0, x2)
[p,qlw (xlv 0, y2) * Xlg,s]w (y2a 0, x2)

X
X[p,s]w(xla 0, 1132).
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To show that I(¢) = I(r), assuming the contrary, suppose l(q) < I(r)
then r = gc for some non-zero ¢ € X, implying V = ¢W. Hence [r, s]y =

[r, slew = [re, sc]w, which contradicts the maximality of I(r) = I(s). By
symmetry {(r) < [(q) is also impossible. Hence I(¢) = I(r) and W = V.
This concludes the proof. O

5. Crossed product by the gauge action

Let A denote the dual of A, i.e., the abelian group of continuous homo-
morphisms of A into the circle group T with pointwise multiplication: for
t,s € A, (\ts) = (\t)(\, s) for each A € A, where (\,t) denotes the value
of t € Aat \ € A.

Define an action called the gauge action: o : A — Aut(C*(G)) as
follows. For t € A, first define a; : Co(G) — C.(G) by au(f)(z, \,y) =
(A, t)f(x, A\, y) then extend a; : C*(G) — C*(G) continuously. Notice that
(A, A, «) is a C*- dynamical system.

Consider the linear map ® of C*(G) onto the fixed-point algebra C*(G)*
given by

®(a) = /Aat(a) dt, for a € C*(G).

where dt denotes a normalized Haar measure on A.

Lemma 5.1. Let ® be defined as above.

(a) The map ® is a faithful conditional expectation; in the sense that

®(a*a) =0 implies a = 0.

(b) C*(Go) = C*(9)~.
Proof. Since the action « is continuous, we see that ® is a conditional
expectation from C*(G) onto C*(G)“, and that the expectation is faithful.
For p,q € X, as(spsy)(w, U(p) — 1), y) = (Il(p) — U(q), 1) spsy(x, (p) — 1), y)-
Hence if I(p) = I(q) then ay(sps;) = sps;, for each t € A. Therefore « fixes
C*(Gp). Hence C*(Gy) C C*(G)®. By continuity of ® it suffices to show that
(spsy) € C*(Go) for all p,q € X.

/ o (5psT) dt = / (U(p) — 1(q), ) 8ps dt = 0, when I(p) # L(q).
A A

It follows from (4.1) that C*(G)* C C*(Gp). Therefore C*(G)* = C*(Go).
U

We study the crossed product C*(G) xq A. Recall that C,(A, A), which
is equal to C (A, A), since A is compact, is a dense *-subalgebra of A x, A.
Recall also that multiplication (convolution) and involution on C'(A, A) are,
respectively, defined by:

(- 9)(s) = /A F(Dau(gt1s)) dt
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and
Fr(s) = a(f(s™)").
The functions of the form f(t) = (A, t)s,s; from A into A form a gen-

erating set for A xo A. Moreover the fixed-point algebra C*(Gy) can be
imbedded into A x, A as follows: for each b € C*(Gy), define the function
b: A — Aasb(t) = b (the constant function). Thus C*(Gy) is a subalgebra
of A xq A.

Proposition 5.2. The C*-algebra B := C*(Gy) is a hereditary C*-subalge-
bra of A xq A.

Proof. To prove the theorem, we prove that B - A X, A - B C B. Since
A x4 A is generated by functions of the form f(t) = (A, t)spsy, it suffices
to show that by - f - bo € B whenever by,bs € B and f(t) = (A,t)spsj; for
AeApqgeX.

wyfmxazAmw%«fmm*AMt

= [ ([ swantatute ) aw) a

= / / bro (f (w)au, (b)) dw dt
AJA
= / / bra({\, w)spsy )bz dw dt, since au,(b2) = ay(ba) = b2
AJA
= / / b1 (A, w)au(spsy )bz dw dt
AJA
— / / by (A, w){l(p) — l(q),t)spstg dw dt
AJA
_ / O, w) duw / (1(p) — 1(q), ) dt bysysih
A A
=0 unless A = 0 and I(p) — I(q) = 0.
And in that case (in the case when A = 0 and I(p) —I(q) = 0) we get (b1 - f -
ba)(z) = bispsybz € B (since I(p) = I(q)). Therefore B is hereditary. O

Let I denote the ideal in A x4 A generated by B. The following corollary
follows from Theorem 4.2 and Proposition 5.2.

Corollary 5.3. Ig is an AF algebra.

We want to prove that A x, A is an AF algebra, and to do this we consider

the dual system. Define & : A = A — Aut(A x, A) as follows: For A € A
and f € C(A, A), we define @\(f) € C(A, A) by: ax(f)t) = (A1) f().
Extend &) continuously.

As before we use - to represent multiplication in A x, A.
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Lemma 5.4. &)\(Ig) C Ip for each X\ > 0.

Proof. Since the functions of the form f(t) = (), ?)s,s; make a generating
set for A x, A, it suffices to show that if A > 0 then Gx(f-b-g) € Ip for

ft)= <)‘1at>8p13217 g(t) = <)‘2>t>5p28;27 and b = SpOSZO, with I(po) = 1(qo)-
First

(f-b-9)(z
/f () ((b-g)(t12)) dt

= [ e | [ vwantotut) du a
/f [/ bovgw (g(w 1tlz)dw)} dt
/f [/ bav (g(w _1z)dw)] dt

://f(t)baw(g(w—lz))dwdt

// (A1, t) splsqlspo q0<)\2, z)aw(sp2 qQ)dwdt

_/A/A<)‘17t>51?13213p0320<>‘27w z)(l(pg)—l(qg), )sms dw dt.
Hence

ax(f-b-g)(
(A 2 // (A1, 1) 8p; 8, 5p0Sqe (A2 W L1 (po) — U(q2), w)sp, sy, dw dt
:AA(Al,t>splszlsposzo<A,w z)()\,w></\2,w712>
(l(p2) — 1(q2), w)sp, 5y, dw dt

://<)\1,t)spls;13pos;0<)\+)\Q,w1z><)\+l(p2)—l(qQ),w>sp2322 dw dt;
AJA

letting A’ = X\ € G, then this last integral gives us

:/A/AO\Lt>8p15218;8)\/81,05205’;/5,\/<)\+)\g,w_lz>
(A +1U(p2) — Uqz), w)sp, sy, dwdt
:/A/A()\l,t>spls§\/qls)\/posjlqo<)\+)\2,w_1z>

(A +1(p2) = 1(q2), w)sxpy sy, dw dt
= (f’ .y -g’)(z),
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where f'() = (A1, t)sp, 83,5 9'(1) = (A + A2, ) sap, 55, and b = sy, %,
Therefore a(f -b-g) € Ip. O

For each A € A define I, := &)(Ig). Clearly each I, is an ideal of
A x4 A and is an AF algebra. Let \; < Ag then Ag — A1 > 0 = I),_), =
Qrg— A\, (Ip) C Ip. Therefore Iy, = OAQ\Q(IB) = Qy, (d)e_)\l (Ig)) C I,. That
is, Iy, 2 I, whenever A\ < Xo. In particular Ip = Iy 2 Iy for each A > 0.
Furthermore, if f € C(A,A) is given by f(t) = (), t)spsy, for A € A and
.0 € X then an()(1) = (5,1 7(0) = (5,1 (st} = (54 A thsys;

For f € C(G) given by f(t) = (A, t)sps;, let us compute f*, f - f* and
f* - f so we can use them in the next lemma.
Ft) = ea(F(EH")
( )\,t_1>sp32)*)
<>\ t— >Oét ( )
= (A t)(U(q) — U(p), t)sqsy G
= A+ 1Uq) —U(p),t)sgsy,

(f - f)=) = [ fOae(f (7 "2)) dt

(N t)spspar (A +1U(q) — l(p),t_lz>sqs;) dt

D) spsg(A +1(g) = Up),t2) (1) — Up), t)sgsy dt

A+ 1g) — 1p), Dysps (A + Ug) — 1(p),t"2)sys d

A+ Uq) = Up), 2)spsysqs, dt

—
=
~—

—l(p), z>sps sq

—U(p),2)s SpSp»

+ +

Il

—

=

~
~

and

(f* D) =((A+1q

) = Up)) +Up) — U(a), 2)sq5,
= (A, 2)8¢8 :;

Lemma 5.5. Let A € A, p,q € X, f(t) = (\t)sgs;, and let g(t) =
<)\,t>sps:;

(a) If A >0 then f € Ip.

(b) If \+1(q) > l(p) then g € Ip.
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Proof. To prove (a), sqs; € C*(Go) € Ip. Then f € Ip, since A > 0, by
Lemma 5.4. To prove (b), (g-¢")(z) = (A +l(q) — U(p), z)spsy. By (a),
g-g" € Ip, implying g € Ip. O

Theorem 5.6. A x, A is an AF algebra.

Proof. Let f(t) = (A, t)sps;. Choose 3 € A large enough such that 8+ A+
l(q) > l(p). Then
ap(f)(z) = (B, 2) (A, 2)spsy
= (B+ A\, 2)spsy.
Applying Lemma 5.5(b), ag(f) € Ip. Thus a_g (&s(f)) € I_g, implying
f € I_g. Therefore A xo A =|J,~oIx. Since each Iy is an AF algebra, so
is A x4 A. - O

6. Final results

Let us recall that an r-discrete groupoid G is locally contractive if for
every nonempty open subset U of the unit space there is an open G-set Z

with s(Z) C U and r(Z) G s(Z). A subset E of the unit space of a groupoid
G is said to be invariant if its saturation [E] = r(s71(E)) is equal to E.

An r-discrete groupoid G is essentially free if the set of all 2’s in the unit
space G° with r~!(z) N s71(x) = {2} is dense in the unit space. When the
only open invariant subsets of G° are the empty set and G© itself, then we
say that G is minimal.

Lemma 6.1. G is locally contractive, essentially free and minimal.

Proof. To prove that G is locally contractive, let U € G° be nonempty open.
Let V(p;q) C U. Choose p € X such that p < p, ¢ A p and o £ g. Then
V(i) € V(pia) C U. Let Z = [, 0]y Then Z = Z, s(Z) = V(u)
U, r(Z) = uV(u) G V(p) € U. Therefore G is locally contractive.

To prove that G is essentially free, let z € X. Then r~!(x) = {(z,k,v) :
r ~p yt and s7H(x) = {(z,m,z) : 2 ~p x}. Hence r~1(z) Ns~i(z) =
{(z,k,x) : & ~ x}. Notice that r~!(x)Ns~!(z) = {x} exactly when x ~; x
which implies &k = 0. If k # 0 then = = pt = qt, for some p,q € X, t € 90X
such that I(p) —(¢) = k. If £ > 0 then [(p) > I(¢) and we get ¢ = p. Hence
p = @b, for some b € X\ {0}. Therefore x = ¢bt = ¢t, implying bt = t. Hence
x = gbbb.... Similarly, if ¥ < 0 then x = pbbb..., for some b € X, with
[(b) > 0. Therefore, to prove that G is essentially free, we need to prove
that if U is an open set containing an element of the form pbbb..., with
[(b) > 0, then it contains an element that cannot be written in the form of
qddd . .., with I(d) > 0. Suppose pbbb... € U, where U is open in G". then
U D V(p;v) for some pu,v € X. Choose n € X such that p <7, v A7, and
n 2 v. Then V(n) C V(u;v) C U. Now take a; = (1,0,...,0) € G1, ag =
(2,0,...,0) € Go, ag = (3,0,...,0) € Gy, ag = (4,0,...,0) € G4, etc. Now
t =naiagas ... € V(n) C U, but t cannot be written in the form of gddd. . ..
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To prove that G is minimal, let £ C G° be nonempty open and invariant,
ie, E=r(s"1(FE)). We want to show that E = G°. Since E is open, there
exist p,q € X such that V(p;q) C E. But

s (V(psq) = {(p, W) = Upv), pra) = q £ pua}.
Let * € G° Choose v € X such that py £ ¢ and ¢ £ pv. Then
(z,—l(pv),pvz) € s (V(p;q)) C s~ H(E) and r(z,—I(pv),prvx) = x. That
is, » € 7(s71(V(p;q))), hence E = G°. Therefore G is minimal. O

Proposition 6.2 ([1, Proposition 2.4]). Let G be an r-discrete groupoid,
essentially free and locally contractive. Then every non-zero hereditary C*-
subalgebra of C(G) contains an infinite projection.

Corollary 6.3. C;(G) is simple and purely infinite.
Proof. This follows from Lemma 6.1 and Proposition 6.2. U
Theorem 6.4. C*(G) is simple, purely infinite, nuclear and classifiable.

Proof. It follows from the Takesaki-Takai Duality Theorem that C*(G)
is stably isomorphic to C*(G) x4 A x4 A. Since C*(G) xo A is an AF
algebra and that A = Z? is amenable, C*(G) is nuclear and classifiable. We
prove that C*(G) = C}(G). From Theorem 4.2 we get that the fixed-point
algebra C*(Gp) is an AF algebra. The inclusion C.(Gy) C C.(G) C C*(G)
extends to an injective x-homomorphism C*(Gy) C C*(G) (injectivity follows
since C*(Gp) is an AF algebra). Since C*(Gy) = C(Go), it follows that
C*(Go) € C;(G). Let E be the conditional expectation of C*(G) onto C*(Gy)
and A be the canonical map of C*(G) onto C;(G). IF E" is the conditional
expectation of C}(G) onto C*(Gp), then E" o A = E. It then follows that
A is injective. Therefore C*(G) = C}(G). Simplicity and pure infiniteness
follow from Corollary 6.3. (]

Remark 6.5. Kirchberg—Phillips classification theorem states that simple,
unital, purely infinite, and nuclear C*-algebras are classified by their K-
theory [12]. In the continuation of this project, we wish to compute the
K-theory of C*(Z").

Another interest is to generalize the study and/or the result to a more
general ordered group or even a “larger” group, such as R"
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