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K-theory of weight varieties

Ho-Hon Leung

Abstract. Let T be a compact torus and (M, ω) a Hamiltonian T -
space. We give a new proof of the K-theoretic analogue of the Kirwan
surjectivity theorem in symplectic geometry (see Harada–Landweber,
2007) by using the equivariant version of the Kirwan map introduced in
Goldin, 2002. We compute the kernel of this equivariant Kirwan map,
and hence give a computation of the kernel of the Kirwan map. As an
application, we find the presentation of the kernel of the Kirwan map for
the T -equivariant K-theory of flag varieties G/T where G is a compact,
connected and simply-connected Lie group. In the last section, we find
explicit formulae for the K-theory of weight varieties.
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1. Introduction

For M a compact Hamiltonian T -space, where T is a compact torus, we
have a moment map φ : M → t∗. For any regular value µ of φ, φ−1(µ) is
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a submanifold of M and has a locally free T -action by the invariance of φ.
The symplectic reduction of M at µ is defined as M//T (µ) := φ−1(µ)/T .
The parameter µ is surpressed when µ = 0. Kirwan [K] proved that the
natural map, which is now called the Kirwan map,

κ : H∗
T (M ; Q)→ H∗

T (φ−1(0); Q) ∼= H∗(M//T ; Q)

induced from the inclusion φ−1(0) ⊂ M is a surjection when 0 ∈ t∗ is a
regular value of φ. This result was done in the context of rational Borel
equivariant cohomology. In the context of complex K-theory, a theorem of
Harada and Landweber [HL1] showed that

κ : K∗
T (M)→ K∗

T (φ−1(0))

is a surjection. This result was done over Z.
In Section 2, we give another proof of this theorem by using equivariant

Kirwan map, which was first introduced by Goldin [G1] in the context of
rational cohomology. It can also be seen as an equivariant version of the
Kirwan map.

Theorem 1.1. Let T be a compact torus and M be a compact Hamiltonian
T -space with moment map φ : M → t∗. Let S be a circle in T , and φ|S :=
M → R be the corresponding component of the moment map. For a regular
value 0 ∈ t∗ of φ|S, the equivariant Kirwan map

κS : K∗
T (M)→ K∗

T (φ|−1
S (0))

is a surjection.

As an immediate corollary of a result in [HL1], we also find the kernel of
this equivariant Kirwan map.

In Section 3, for the special case G = SU(n), we find an explicit formula
for the K-theory of weight varieties, the symplectic reduction of flag varieties
SU(n)/T . The main result is Theorem 3.5. The results in this section are
the K-theoretic analogues of [G2].

2. Equivariant Kirwan map in K-theory

First we recall the basic settings of the subject. Let G be a compact con-
nected Lie group. A compact Hamiltonian G-space is a compact symplectic
manifold (M,ω) on which G acts by symplectomorphisms, together with a
G-equivariant moment map φ : M → g∗ satisfying Hamilton’s equation:

〈dφ,X〉 = ιX′ω,∀X ∈ g

where G acts on g∗ by the coadjoint action and X ′ denotes the vector field
on M generated by X ∈ g. In this paper, we only deal with a compact torus
action, so we will use the T -action on M as our notation instead. Let T ′

be a subtorus in T , φ|T ′ : M → t′∗ is the restriction of the T -action to the
T ′-action. We call φ|T ′ the component of the moment map corresponding
to T ′ in T .
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We fix the notations about Morse theory. Let f : M → R be a Morse
function on a compact Riemannian manifold M . Consider its negative gra-
dient flow on M , let {Ci} be the connected components of the critical sets
of f . Define the stratum Si to be the set of points of M which flow down
to Ci by their paths of steepest descent. There is an ordering on I: i ≤ j if
f(Ci) ≤ f(Cj). Hence we obtain a smooth stratification of M = ∪Si. For
all i, j ∈ I, denote

M+
i =

⋃
j≤i

Sj , M−
i =

⋃
j<i

Sj

As we are working in the equivariant category, we require that the Morse
function and the Riemannian metric to be T -invariant.

In the following, we will consider the norm square of the moment map. In
general, it is not a Morse function due to the possible presence of singularities
of the critical sets. But the norm square of the moment map still yields
a smooth stratifications and the results of Morse–Bott theory still holds
in this general setting (Such functions are now called the Morse–Kirwan
functions). For the descriptions and properties of these functions, see [K].
Kirwan proved that the Morse–Kirwan functions are equivariantly perfect
in the context of rational cohomology. For more results in this direction, see
[K] and [L]. In the context of equivariant K-theory, the following result is
shown in [HL1]:

Lemma 2.1 (Harada and Landweber). Let T be a compact torus and (M,ω)
be a compact Hamiltonian T -space with moment map φ : M → t∗. Let f =
||φ||2 be the norm square of the moment map. Let {Ci} be the connected
components of the critical sets of f and the stratum Si be the set of points of
M which flow down to Ci by their paths of steepest descent. The inclusion
Ci → Si of a critical set into its stratum induces an isomorphism K∗

T (Si) ∼=
K∗

T (Ci).

For a smooth stratification M = ∪Si defined by a Morse–Kirwan function
f , i.e., the strata Si are locally closed submanifolds of M and each of them
satisfies the closure property Si ⊆ M+

i . We have a T -normal bundle Ni to
Si in M . By excision, we have

K∗
T (M+

i ,M−
i ) ∼= K∗

T (Ni, Ni\Si).

If Ni is complex, by the Thom isomorphism we have

K∗
T (Ni, Ni\Si) ∼= K

∗−d(i)
T (Si)

where the degree d(i) of the stratum is the rank of its normal bundle Ni.
Since the collection of the sets M+

i gives a filtration of M , we obtain a
filtration of K∗

T (M) and a spectral sequence

E1 =
⊕
i∈I

K∗
T (M+

i ,M−
i ) =

⊕
i∈I

K
−d(i)
T (Si), E∞ = GrK∗

T (M)
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which converges to the associated graded algebra of the equivariant K-theory
of M . By Lemma 2.1, the spectral sequence becomes

E1 =
⊕
i∈I

K
∗−d(i)
T (Ci), E∞ = GrK∗

T (M).

Definition 2.2. The function f is called equivariantly perfect for equivariant
K-theory if the above spectral sequence for equivariant K-theory collapses
at the E1 page, or equivalently speaking, we have the following short exact
sequences:

0 −→ K
∗−d(i)
T (Ci) −→ K∗

T (M+
i ) −→ K∗

T (M−
i ) −→ 0

for each i ∈ I.

In [HL1], Harada and Landweber showed the following theorem. (Indeed,
they showed it for a compact Lie group G. But in our paper, we only need
to consider the abelian case.)

Theorem 2.3 (Harada and Landweber). Let T be a compact torus and
(M,ω) be a compact Hamiltonian T -space with moment map φ : M → t∗.
The norm square of the moment map f = ||φ||2 is an equivariantly perfect
Morse–Kirwan function for equivariant K-theory. By Bott periodicity in
complex equivariant K-theory, we can rewrite the short exact sequences as:

0 −→ K∗
T (Ci) −→ K∗

T (M+
i ) −→ K∗

T (M−
i ) −→ 0.

Let φ|S : M → R be the component of the moment map φ corresponding
to a circle S in T . Equivalently we are considering a compact Hamilton-
ian S-manifold with the moment map φ|S . By Theorem 2.3 above, the
norm square of the moment map ||φ|S ||2 is an equivariantly perfect Morse–
Kirwan function for equivariant K-theory. We can now give our proof of
Theorem 1.1.

Proof of Theorem 1.1. Our proof is essentially the K-theoretic analogue
of Theorem 1.2 in [G1]. For the Morse–Kirwan function f = ||φ|S ||2, denote
C0 = f−1(0) = φ|−1

S (0).
First, we need to show that K∗

T (M+
i )→ K∗

T (φ|−1
S (0)) is surjective for all

i ∈ I. We will show it by induction.
Notice that K∗

T (M+
0 ) ∼= K∗

T (C0) = K∗
T (φ|−1

S (0)) by Theorem 2.3. Assume
the inductive hypothesis that K∗

T (M+
i ) → K∗

T (C0) is surjective for 0 ≤ i ≤
k − 1. By the equivariant homotopy equivalence, we have

K∗
T (M−

k ) ∼= K∗
T (M+

k−1).

Hence, we now have the surjection of

(1) K∗
T (M−

k ) ∼= K∗
T (M+

k−1)→ K∗
T (C0).

By Theorem 2.3, we know that K∗
T (M+

i ) → K∗
T (M−

i ) is a surjection for
each i. By Equation (1), K∗

T (M+
k )→ K∗

T (C0) is a surjection and hence our
induction works.
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Given that K∗
T (M) = K∗

T (lim−→M+
i ) = lim←−K∗

T (M+
i ), these equalities hold

because we have the surjections K∗
T (M+

i ) → K∗
T (M−

i ) for all i. Hence we
have the surjection result for κS : K∗

T (M) → K∗
T (C0) = K∗

T (φ|−1
S (0)), as

desired. �

Corollary 2.4. Let T be a compact torus and M be a compact Hamiltonian
T -space with moment map φ : M → t∗. Suppose that T acts freely on the
zero level set of the moment map. Then

κ : K∗
T (M)→ K∗(M//T )

is a surjection.

Proof. Choose a splitting of T = S1 × S2 × · · · × SdimT where each Si is
quotiented out one at a time. Since T acts freely on the zero level set of the
moment map, by Theorem 1.1, we have

κS1 : K∗
T (M)→ K∗

T (φ|−1
S1

(0)) ∼= K∗
T/S1

(M//S1)

is a surjection. By reduction in stages, we have

K∗
T (M)→ K∗

T/S1
(M//S1)→ K∗

T/(S1×S2)(M//(S1 × S2))→
· · · → K∗

T/T (M//T ) = K∗(M//T )

as desired. �

We compute the kernel of our equivariant Kirwan map, which can be seen
as a K-theoretic analogue of [G1].

Theorem 2.5. Let T be a compact torus and M be a compact Hamiltonian
T -space with moment map φ : M → t∗. Let T ′ be a subtorus in T . Let φ|T ′
be the corresponding moment map for the Hamiltonian T ′-action on M . For
0 a regular value of φ|T ′, the kernel of the equivariant Kirwan map

κT ′ : K∗
T (M)→ K∗

T (φ|−1
T ′ (0))

is the ideal 〈Kt′
T 〉 generated by Kt′

T = ∪ξ∈t′K
ξ
T where

Kξ
T = {α ∈ K∗

T (M) | α|C = 0 for all connected components C

of MT with 〈φ(C), ξ〉 ≤ 0}.

Proof. Choose a splitting of T ′ = S1 × S2 × · · · × SdimT ′ where each Si is
quotiented out one at a time. By Theorem 3.1 in [HL2], the kernel of the
equivariant Kirwan map κSi is generated by Kξ

T and K−ξ
T for a choice of

generator ξ ∈ si. By successive application of this result to each Si where
i = 1, 2, 3, . . . ,dimT ′, we get our desired result. �
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3. K-theory of weight varieties

3.1. Weight varieties. If G = SU(n), we can naturally identify the set of
Hermitian matrices H with g∗ by the trace map, i.e., tr : (H)→ g∗ defined by
A 7→ i.tr(A). So λ ∈ t∗ is a real diagonal matrix with entries λ1, λ2, . . . , λn

in the diagonal. Through this identification, M = Oλ is an adjoint orbit of
G through λ. The moment map corresponding to the T -action on Oλ takes
a matrix to its diagonal entries, call it µ ∈ t∗. Hence, Oλ//T (µ), µ ∈ t∗

is the symplectic quotient by the action of diagonal matrices at µ ∈ t∗.
The symplectic quotient consists of all Hermitian matrices with spectrum
λ = (λ1, λ2, . . . , λn) and diagonal entries µ = (µ1, µ2, . . . , µn). We call this
symplectic quotient Oλ//T (µ) a weight variety.

If λ = (λ1, λ2, . . . , λn) has the property that all entries have distinct
values, then Oλ is a generic coadjoint orbit of SU(n). It is symplectomorphic
to a complete flag variety in Cn. In this section, we mainly deal with the
generic case unless otherwise stated. For more about the properties of weight
varieties, see [Kn]. For the Weyl element action of any γ ∈W on λ ∈ t∗, we
are going to use the notation λγ = (λγ−1(1), . . . , λγ−1(n)) in our proofs for
our notational convenience.

3.2. Divided difference operators and double Grothendieck poly-
nomials. Let f be a polynomial in n variables, call them x1, x2, . . . , xn (and
possibly some other variables), the divided difference operator ∂i is defined
as

∂if(. . . , xi, xi+1, . . . ) =
f(. . . , xi, xi+1, . . . )− f(. . . , xi+1, xi, . . . )

xi − xi+1
.

The isobaric divided difference operator is

πi(f) = ∂i(xif) =
xif(. . . , xi, xi+1, . . . )− xi+1f(. . . , xi+1, xi, . . . )

xi − xi+1
.

The top Grothendieck polynomial is

Gid(x, y) =
∏
i<j

(
1− yj

xi

)
.

Note that the isobaric divided difference operator acts on Gid naturally by
πi(Gid). And πi(P.Q) = πi(P )Q provided that Q is a symmetric polynomial
in x1, x2, . . . , xn. So this operator preserves the ideal generated by all dif-
ferences of elementary symmetric polynomials ei(x1, . . . , xn)− ei(y1, . . . , yn)
for all i = 1, . . . , n, denote this ideal by I. That is, the operator πi acts on
the ring R defined by

R =
Z[x±1

1 , . . . , x±1
n , y±1

1 , . . . , y±1
n ]

I
.
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For any element ω ∈ Sn, ω has reduced word expression ω = si1si2 . . . sil
(where each sij is a transposition between ij , ij+1). We can define the cor-
responding operator:

πsi1
si2

...sil
= πsi1

. . . πsil

which is independent of the choice of the reduced word expression.
For any µ ∈ Sn, the double Grothendieck polynomial Gµ is:

πµ−1Gid = Gµ.

Define the permuted double Grothendieck polynomials Gγ
ω by

Gγ
ω(x, y) = Gγ−1ω(x, yγ) = πω−1γGid(x, yγ)

where yγ means the permutation of the y1, . . . , yn variables by γ.

Example 3.1. For G = SU(3),W = S3, we have

Gid =
(
1− y2

x1

)(
1− y3

x1

)(
1− y3

x2

)
,

G
(12)
(23) = π(23)(12)Gid(x, y(12))

= π(23)(12)

(
1− y3

x1

)(
1− y1

x1

)(
1− y3

x2

)
=

π(23)

x1 − x2

[
x1

(
1− y3

x1

)(
1− y1

x1

)(
1− y3

x2

)
− x2

(
1− y3

x2

)(
1− y1

x2

)(
1− y3

x2

)]
= π(23)

(
1− y3

x1

)(
1− y3

x2

)
=

(
1− y3

x1

)
.

3.3. T -equivariant K-theory of flag varieties. We have the following
formula for K∗

T (SU(n)/T ) (see [F]):

K∗
T (SU(n)/T ) ∼= R(T )⊗R(G) R(T ) ∼= R(T )⊗Z R(T )/J

where R(G) ∼= R(T )W and R(T ) are the character rings of G, T , where
G = SU(n), respectively. J ⊂ R(T ) ⊗Z R(T ) is the ideal generated by
a ⊗ 1 − 1 ⊗ a for all elements a ∈ R(T )W . R(T )W is the Weyl group
invariant of R(T ).

R(T ) can be written as a polynomial ring:

R(T ) = K∗
T (pt) ∼= Z[a±1

1 , . . . , a±1
n−1].

In the equation K∗
T (X) = R(T )⊗ZR(T )/J , denotes the first copy of R(T ) by

Z[y±1
1 , . . . , y±1

n−1] and the second copy of R(T ) by Z[x±1
1 , . . . , x±1

n−1]. Then the
ideal J is generated by ei(y1, . . . , yn−1)− ei(x1, . . . , xn−1), i = 1, . . . , n− 1,
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where ei is the i-th symmetric polynomial in the corresponding variables.
Equivalently,

(2) K∗
T (Fl(Cn)) ∼=

Z[y±1
1 , . . . , y±1

n , x1, . . . , xn]
(J, (

∏n
i=1 yi)− 1)

.

Notice that x−1
i , i = 1, . . . , n can be generated by some elements in the ideal

J , where J is the ideal generated by ei(y1, . . . , yn) − ei(x1, . . . , xn), for all
i = 1, . . . , n.

Let GC be the complexification of a compact Lie group G and B ⊂ GC

be a Borel subgroup. In our case, G = SU(n), GC = SL(n, C). Then
G/T ≈ GC/B. GC/B consists of even-real-dimensional Schubert cells, Cω

indexed by the elements in the Weyl Group W . That is,

Cω = BωB/B, ω ∈W.

The closures of these cells are called Schubert varieties:

Xω = BωB/B, ω ∈W.

For each Schubert variety Xω, ω ∈ W , denote the T -equivariant structure
sheaf on Xω ⊂ GC/B by [OXω ]. It extends to the whole of GC/B by defining
it to be zero in the complement of Xω. Since [OXω ] is a T -equivariant coher-
ent sheaf on GC/B, it determines a class in K0(T,GC/B), the Grothendieck
group constructed from the semigroup whose elements are the isomorphism
classes of T -equivariant locally free sheaves. The elements [OXω ]ω∈W form
a R(T )-basis for the R(T )-module K0(T,GC/B). Since there is a canon-
ical isomorphism between K0(T,GC/B) and KT (GC/B) = KT (G/T ) (see
[KK]), by abuse of notation we also denote [OXω ]ω∈W as a linear basis in
K∗

T (G/T ) over R(T ).
On the other hand, the double Grothendieck polynomials Gω, ω ∈ W ,

as Laurent polynomials in variables xi, yi, i = 1, 2, . . . , n form a basis of
KT×B(pt) ∼= R(T )⊗Z R(T ) over KT (pt) ∼= R(T ). By the equivariant homo-
topy principle,

KT×B(pt) = KT×B(Mn×n)
where Mn×n denote the set of all n × n matrices over C. By a theorem
of [KM], we are able to identify the classes generated by matrix Schubert
varieties in KT×B(Mn×n) (matrix Schubert varieties form a cell decomposi-
tion of Mn×n/B) with the double Grothendieck polynomials in KT×B(pt).
The open embedding ι : GL(n, C) → Mn×n induces a map in equivariant
K-theory:

ι∗ : KT×B(Mn×n)→ KT×B(GL(n, C)) = KT (GL(n, C)/B)

= KT (SU(n)/T ).

Under this map, the classes generated by the matrix Schubert varieties in
KT×B(Mn×n) are mapped to the classes, [OXω ] ∈ KT (SU(n)/T ), of the
corresponding Schubert varieties in SU(n)/T . By identifications of the dou-
ble Grothendieck polynomials in KT×B(pt) and the classes generated by
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the matrix Schubert varieties in KT×B(Mn×n), the map ι∗ sends the double
Grothendieck polynomials to the T -equivariant structure sheaves [OXω ]ω∈W ,
as a R(T )-basis in KT (G/T ) ∼= R(T ) ⊗R(G) R(T ). For more results about
the geometry and combinatorics of double Grothendieck polynomials and
matrix Schubert varieties, see [KM].

By abuse of notation, from now on, we will take the double Grothendieck
polynomials Gω(x, y), ω ∈W , as a basis in K∗

T (SU(n)/T ) over R(T ). Under
our notations, notice that the top double Grothendieck polynomial Gid(x, y)
corresponds to the T -equivariant structure sheaf [OXω0

], where ω0 ∈ W is
the permutation with the longest length, i.e., ω0 = snsn−1 . . . s3s2s1.

For more about K-theory and T -equivariant K-theory of flag varieties,
for example, see [F] and [KK].

3.4. Restriction of T -equivariant K-theory of flag varieties to the
fixed-point sets. Since flag variety is compact, Fl(Cn)T , the T -fixed set is
finite. By [HL2], we have the Kirwan injectivity map, i.e., the map

ι∗ : K∗
T (Fl(Cn))→ K∗

T (Fl(Cn)T )

induced by the inclusion ι from Fl(Cn)T to Fl(C) is injective. We com-
pute the restriction explicitly here. Notice that Fl(Cn)T is indexed by the
elements in the Weyl group W = Sn. The T -action on Cn splits into a
sum of 1-dimensional vector spaces, call them l1, . . . , ln. The fixed points of
T -action are the flags which can be written as:

pω = 〈lω(1)〉 ⊂ 〈lω(1), lω(2)〉 ⊂ 〈lω(1), lω(2), lω(3)〉 ⊂
· · · ⊂ 〈lω(1), . . . , lω(n)〉 = Cn

where ω ∈W and call

pid = 〈l1〉 ⊂ 〈l1, l2〉 ⊂ 〈l1, l2, l3〉 ⊂ · · · ⊂ 〈l1, . . . , ln〉 = Cn

the base flag of Cn. The description of the restriction map is as follows:

Theorem 3.2. Let pω be a fixed point in Fl(Cn)T as above. The inclusion
ιω : pω → Fl(Cn) induces a restriction

ι∗ω : K∗
T (Fl(Cn))→ K∗

T (pω) = R(T ) = Z[y±1
1 , . . . , y±1

n ]

such that ι∗ω : y±1
i → y±1

i , ι∗ω : xi → yω(i), i = 1, . . . , n. Also, the inclusion
map ι : Fl(Cn)T → Fl(Cn) induces a map

ι∗ : K∗
T (Fl(Cn))→ K∗

T (Fl(Cn)T ) = ⊕pω ,ω∈W Z[y±1
1 , . . . , y±1

n ]

whose further restriction to each component in the direct sum is just the map
ι∗ω.

Proof. Consider K∗
T (Fl(Cn)) as a module over K∗

T (pt) = Z[y±1
1 , . . . , y±1

n ],
the map

K∗
T (Fl(Cn))→ K∗

T (p)



260 HO-HON LEUNG

induced by mapping any point p into Fl(Cn) is a surjective R(T )-module
homomorphism and K∗

T (Fl(Cn)) has a linear basis over K∗
T (p) = R(T ) =

Z[y±1
1 , . . . , y±1

n ]. Hence we must have ι∗ω : y±1
i → y±1

i , i = 1, . . . , n, for all
ω ∈ W . To find the image of xi under ι∗ω, first, notice that in K∗

T (pt), yi =
[pt×Ci]. Ci corresponds to the action of T = S1×· · ·×S1 on the i-th copy of
Cn = C× · · ·×C with weight 1 and acting trivally on all the other copies of
C. More generally, yω(i) = [pt×Cω(i)]. In K∗

T (pω), yω(i) = [pω×Cω(i)], where
pω × Cω(i) is the T -line bundle over the point pω. By Hodgkin’s result (see
[Ho]), K∗

T (G/T ) = R(T ) ⊗R(G) K∗
G(G/T )(∼= R(T ) ⊗R(G) R(T )). Following

our use of notations in 3.3, xi comes from the second copy of R(T ) (which
is isomorphic to K∗

G(G/T ) under our identification). Hence, each xi is the
class represented by the G-line bundle G×T Ci over G/T . T acts on G×Ci

diagonally and G ×T Ci is the orbit space of the T -action. In particular,
xi is a T -line bundle over G/T by restriction of G-action to T -action. So,
ι∗ω(xi) is simply the pullback T -line bundle of the map ιω : pω → Fl(Cn).
For i = 1, we have ι∗ω(x1) = [pω × Cω(1)] = yω(1). Similarly, ι∗ω(xi) = yω(i)

for i = 2, . . . , n. And hence the result. �

3.5. Relations between double Grothendieck polynomials and the
Bruhat ordering. Recall our definition of the permuted double Grothen-
dieck polynomials Gγ

ω in Section 3.2:

Gγ
ω(x, y) = Gγ−1ω(x, yγ) = πω−1γGid(x, yγ)

where yγ indicates the permutation of y1, . . . , yn by γ. For γ ∈ W , define
the permuted Bruhat ordering by

v ≤γ ω ⇔ γ−1v ≤ γ−1ω.

Notice that the permuted Bruhat ordering is related to the Schubert va-
rieties in the following way: Each of the T -fixed points of a Schubert variety
Xω sits in one Schubert cell Cv (the interior of a Schubert variety) for v ≤ ω.
So the T -fixed point set can be identified as:

(Xω)T = {v | v ≤ ω}.

For a fixed γ ∈W , we can define the permuted Schubert varieties by

Xγ
ω = γBγ−1ωB/B

for any ω ∈W . Then the T -fixed point set of Xγ
ω is

(Xγ
ω)T = {v | v ≤γ ω}.

Notice that {Xγ
ω}ω∈W also forms a cell decomposition of GC/B ≈ G/T .

We define the support of the permuted double Grothendieck polynomials
by

Supp(Gγ
ω) = {z ∈W | Gγ

ω|z 6= 0}.
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Here we consider Gγ
ω as an element in K∗

T (Fl(Cn)) (see Section 3.3). So Gγ
ω|z

is the image of Gγ
ω under the restriction of the Kirwan injective map at the

point z ∈W . That is,

ι∗|z : K∗
T (Fl(Cn))→ K∗

T (pz).

Notice that the restriction rule follows Theorem 3.2. That is,

Gγ
ω(x, y)|z = Gγ

ω(x1, x2, . . . , xn, y1, . . . , yn)|z
= Gω(yz(1), yz(2), . . . , yz(n), y1, . . . , yn).

Example 3.3. Using the same notations as in Example 3.1,

G
(12)
(23) =

(
1− y3

x1

)
∈ K∗

T (Fl(C3)).

There are six fixed-points for each element in S3,

G
(12)
(23)|(23) 6= 0, G

(12)
(23)|(123) 6= 0, G

(12)
(23)|(13) = 0,

G
(12)
(23)|(132) = 0, G

(12)
(23)|(12) 6= 0, G

(12)
(23)|id 6= 0.

So the support of a permuted double Grothendieck polynomial contains
id, (12), (23), (123). On the other hand,(

X
(12)
(23)

)T
= {v ∈ S3 | (12)v ≤ (12)(23) = (123)}

= {v ∈ S3 | (12)v ≤ id, (12), (23) or (123)}
= {v ∈ S3 | v ≤ (12), id, (123) or (23)}

which is the same as Supp
(
G

(12)
(23)

)
.

Now we will show a fundamental relation between the permuted double
Grothendieck polynomials and the permuted Bruhat Orderings:

Theorem 3.4. The support of a permuted double Grothendieck polynomial
Gγ

ω is {v | v ≤γ ω}.

Proof. We need to show Supp(Gω) = (Xω)T first. We do it by induction
on the length of v ∈ W , l(v), which stands for the minimum number of
transpositions in all the possible choices of word expressions of v.

For ω = id, Gid is just the top Grothendieck polynomial. It is non-
zero only at the identity and zero at all the other elements. Assume the
inductive hypothesis that Supp(Gω) = (Xω)T for all l(ω) ≤ l − 1. Consider
v ∈ W, l(v) = l, write v = si1si2 . . . sil where each sij is a transposition of
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elements ij , ij + 1, let ω = vsil = si1 . . . sil−1
, so l(ω) = l − 1 and

Gv|z = πv−1G|z = πilπil−1
. . . πi1G|z = πilGω|z(3)

=
xilGω(x, y)− xil+1Gω(xsil

, y)

xil − xil+1
|z

=
yz(il)Gω(yz, y)− yz(il+1)Gω(yzsil

, y)

yz(il) − yz(il+1)
.

First, to prove that Supp(Gv) ⊂ (Xv)T , suppose that z 6∈ (Xv)T , then
z 6∈ (Xω)T since ω ≤ v. Since l(ω) = l − 1, we have z 6∈ Supp(Gω). That is
Gω(yz, y) = 0. Hence,

Gv|z =
−yz(il+1)Gω(yzsil

, y)

yz(il) − yz(il+1)
.

We claim that it is zero. If it were not zero, then

Gω(yzsil
, y) = Gω(x, y)|zsil

6= 0.

Equivalently, zsil ∈ Supp(Gω) = (Xω)T . If z < zsil , then z ∈ (Xω)T which
contradicts z 6∈ Supp(Gω) shown before. If z > zsil , then sil increases the
length of zsil . Then zsil ∈ (Xω)T implies that z ∈ (Xv)T which contradicts
z 6∈ (Xv)T . So the claim is proved. I.e., z /∈ (Xv)T ⇒ Gv|z = 0 ⇔ z 6∈
Supp(Gv).

Second, we need to prove that (Xv)T ⊂ Supp(Gv). Suppose that z 6∈
Supp(Gv), i.e., Gv|z = 0. Assume that z ∈ (Xv)T . From (3),

(4) yz(il)Gω(yz, y) = yz(il+1)Gω(yzsil
, y).

Now there are two cases, z = v and z 6= v. We consider these two cases
separately.

If z = v, then z 6≤ w (since l(ω) = l − 1 and l(z) = l(v) = l)⇔ z 6∈
(Xω)T = Supp(Gω) ⇔ Gω|z = 0 ⇔ Gω(yz, y) = 0 ⇔ Gω(yzsil

, y) = 0.
The last equality is by (4). So we now have Gω(x, y)|zsil

= 0 ⇔ zsil 6∈
Supp(Gω) = (Xω)T . Since zsil = vsil = ω ∈ (Xω)T , it’s a contradiction.

If z 6= v, then l(z) < l(v), then l(z) ≤ l − 1. Let t ∈ W with l(t) = l − 1
such that z ≤ t. Although t may not be the same as ω but t = v′sij for
some j ∈ 1, . . . , l (v′ is another word expression for v) By our inductive
hypothesis, Supp(Gt) = (Xt)T , so

(5) z ∈ Supp(Gt)⇔ Gt(yz, y) = Gt(x, y)|z 6= 0.

But zsij 6≤ t implies that zsij 6∈ (Xt)T = Supp(Gt). By (4), (but now we
have ω replaced by t), Gt(yzsij

, y) = 0. By (3) and (5), we have Gv|z 6= 0
contradicting our initial assumption that z /∈ Supp(Gv).

Hence, we have z 6∈ Supp(Gv)⇒ z 6∈ (Xv)T . The induction step is done.
Then we need to show that the statement holds for the permuted dou-

ble Grothendieck polynomials, i.e., Supp(Gγ
ω) = (Xγ

ω)T . By definition,
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Gγ
ω(x, y) = Gγ−1ω(x, yγ), so,

SuppGγ−1ω(x, y) = (Xγ−1ω)T = {v ∈W | v ≤ γ−1ω}.
By permuting the y’s variables by γ, we obtain

Supp(Gγ
ω) = SuppGγ−1ω(x, yγ)

= {γv ∈W | v ≤ γ−1ω}
= {v ∈W | γ−1v ≤ γ−1ω}
= {(Xγ

ω)T }. �

3.6. Main theorem. In this subsection, we prove the following result:

Theorem 3.5. Let Oλ be a generic coadjoint orbit of SU(n). Then

K∗(Oλ//T (µ)) ∼=
Z[x1, . . . , xn, y±1

1 ]
(I, ((

∏n
i=1 yi)− 1), πvG(x, yr))

for all v, r ∈ Sn such that
∑n

i=k+1 λv(i) <
∑n

i=k+1 µr(i) for some k =
1, . . . , n−1. I is the difference between ei(x1, . . . , xn)− ei(y1, . . . , yn) for all
i = 1, . . . , n, where ei is the i-th elementary symmetric polynomial.

This is a K-theoretic analogue of the main result in [G2].
To make the symplectic picture more explicit, we denote

M = Oλ ≈ SU(n)/T

to be the generic coadjoint orbit. So we have

K∗
T (M) = K∗

T (Oλ) = K∗
T (Fl(Cn)).

For λ ∈ t∗, λ = (λ1, . . . , λn), assume that λ1 > λ2 > · · · > λn, and λ1 +
· · · + λn = 0. Since M = Oλ is compact, MT has only a finite number of
points. The kernel of the Kirwan map κ is generated by a finite number of
components, see Theorem 2.5 and [HL2]. More specifically, let Mµ

ξ ⊂M, ξ ∈
t be the set of points where the image under the moment map φ lies to one
side of the hyperplane ξ⊥ through µ = (µ1, . . . , µn) ∈ t∗, i.e.,

Mµ
ξ = {m ∈M | 〈ξ, φ(m)〉 ≤ 〈ξ, µ〉}.

Then the kernel of κ is generated by

Kξ = {α ∈ K∗
T (M) | Supp(α) ⊂Mµ

ξ }.

That is,
ker(κ) =

∑
ξ∈t

Kξ.

Now, we are going to compute the kernel explicitly. Our proof is sim-
ilar to the results in [G2]. In [G2], Goldin proved a very similar result
in rational cohomology by using the permuted double Schubert polynomi-
als as a linear basis of H∗

T (M) over H∗
T (pt). In K-theory, the permuted

double Grothendieck polynomials are used as a linear basis of K∗
T (M) over
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K∗
T (pt) ∼= R(T ). The following lemma will be used in our proof of Theo-

rem 3.5.

Lemma 3.6. Let Oλ be a generic coadjoint orbit of SU(n) through λ ∈ t∗.
Let α ∈ K∗

T (Oλ) be a class with Supp(α) ⊂ (Oλ)µ
ξ . Then there exists some

γ ∈W such that if α is decomposed in the R(T )-basis {Gγ
ω}ω∈W as

α =
∑
ω∈W

aγ
ωGγ

ω

where aγ
ω ∈ R(T ), then aγ

ω 6= 0 implies Supp(Gγ
ω) ⊂ (Oλ)µ

ξ . Indeed, γ can be
chosen such that ξ attains its minimum at φ(λγ), where

λγ = (λγ−1(1), . . . , λγ−1(n)) ∈ t∗.

Proof. The proof is essentially the same as Theorem 3.1 in [G2]. �

Proof of Theorem 3.5. Let ei be the coordinate functions on t∗. That is,
for λ = (λ1, λ2, . . . , λn) ∈ t∗, ei(λ) = λi. For γ ∈ Sn, define ηγ

k by

ηγ
k =

n∑
i=k+1

eγ(i).

We compute Mµ
ηγ

k
explicitly:

Mµ
ηγ

k
= {m ∈M | 〈ηγ

k , φ(m)〉 ≤ 〈ηγ
k , µ〉}

= {m ∈M | ηγ
k (φ(m)) ≤ ηγ

k (µ)}

=
{

m ∈M | ηγ
k (φ(m)) ≤

∑n

i=k+1
µγ(i)

}
.

For any ω ∈W ,

ηγ
k (λω) =

n∑
i=k+1

eγ(i)(λω) =
n∑

i=k+1

eγ(i)(λω−1(1), . . . , λω−1(n))

=
n∑

i=k+1

λω−1γ(i).

Notice that ηγ
k attains minimum at λγ (due to our assumption that λ1 ≥

λ2 ≥ · · · ≥ λn) and respects the permuted Bruhat ordering, i.e.,

ηγ
k (λv) ≤ ηγ

k (λω)

if v ≤γ ω. By restriction to the domain

Supp(Gγ
ω) = (Xγ

ω)T = {v ∈W | v ≤γ w} = {v ∈W | γ−1v ≤ γ−1ω},

ηγ
k attains its maximum at λω and minimum at λγ . If

ηγ
k (λω) =

∑n

i=k+1
λω−1γ(i) <

∑n

i=k+1
µγ(i),
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then for v ∈ (Xγ
ω)T ,

ηγ
k (λv) =

n∑
i=k+1

λv−1γ(i) ≤
n∑

i=k+1

λω−1γ(i) <

n∑
i=k+1

µγ(i)

and hence

Supp(Gγ
ω) = (Xγ

ω)T = {v ∈W | γ−1v ≤ γ−1ω} ⊂Mµ
ηγ

k
.

Since Gγ
ω(x, y) = πω−1γG(x, yγ), we have

πvG(x, yγ) ∈ ker(κ) if
∑n

i=k+1
λv(i) <

∑n

i=k+1
µγ(i).

For the other direction, we need to show that the classes πvG(x, yγ) with
v, γ ∈ W having the property that

∑n
i=k+1 λv(i) <

∑n
i=k+1 µγ(i) for some

k ∈ {1, . . . , n− 1} actually generate the whole kernel. Let α ∈ K∗
T (M) be a

class in ker(κ), so Supp(α) ⊂Mµ
ξ for some ξ ∈ t. We take γ ∈W such that

ξ(λγ) attains its minimum. Decompose α over the R(T )-basis {Gγ
ω}ω∈W ,

α =
∑
ω∈W

aγ
ωGγ

ω

where aγ
ω ∈ R(T ). By Lemma 3.6, we need to show that Supp(Gγ

ω) ⊂ Mµ
ηγ

k

for some k. Since ηγ
k is preserved by the permuted Bruhat ordering and

attains its maximum at λω in the domain Supp(Gγ
ω), we just need to show

that

(6) ηγ
k (λω) < ηγ

k (µ)

for some k. It is actually purely computational: Suppose (6) does not hold
for all k. We have

λω−1γ(n) ≥ µγ(n)

...
λω−1γ(2) + · · ·+ λω−1γ(n) ≥ µγ(2) + · · ·+ µγ(n).

For ξ =
∑n

i=1 biei, b1, . . . , bn ∈ R (recall that ξ attains its minmum at λγ by
our choice of γ ∈W ), we have ξ(λγ) ≤ ξ(λsiγ) where si is a transposition of
i and i + 1. And hence

biλγ−1(i) + bi+1λγ−1(i+1) ≤ biλγ−1(i+1) + bi+1λγ−1(i).
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By our assumption that λi > λi+1, we get bγ(i) ≤ bγ(i+1). And hence
bγ(1) ≤ bγ(2) ≤ · · · ≤ bγ(n). Then,

(bγ(n) − bγ(n−1))λω−1γ(n) ≥ (bγ(n) − bγ(n−1))µγ(n)

(bγ(n−1) − bγ(n−2))(λω−1γ(n−1) + λω−1γ(n)) ≥ (bγ(n−1) − bγ(n−2))

· (µγ(n−1) + µγ(n))
...

(bγ(2) − bγ(1))(λω−1γ(2) + · · ·+ λω−1γ(n)) ≥ (bγ(2) − bγ(1))

· (µγ(2) + · · ·+ µγ(n)).

Using
∑n

i=1 λi = 0 =
∑n

i=1 µi and summing up all the above inequalities to
get

n∑
i=1

bγ(i)λω−1γ(i) ≥
n∑

i=1

biµi

⇔
n∑

i=1

biλω−1(i) ≥
n∑

i=1

biµi

⇔ ξ(λω) ≥ ξ(µ).

The last inequality contradicts Supp(α) ⊂ Mµ
ξ since λω has the property

that ω ∈ Supp(α). So (6) is true.
So the kernel ker(κ) is generated by the set πvG(x, yγ) for v, γ ∈ W

satisfying
∑n

i=k+1 λv(i) <
∑n

i=k+1 µγ(i) for some k = 1, . . . , n − 1. By (2)
and the surjectivity of the Kirwan map κ,

κ : K∗
T (SU(n)/T ) = K∗

T (Oλ)→ K∗
T (φ−1(µ)) ∼= K∗(Oλ//T (µ)).

This implies that

K∗(Oλ//T (µ)) = K∗
T (Oλ)/ ker(κ).

With ker(κ) explicitly computed and by (2), Theorem 3.5 is proved. �
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