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Image partition regularity over the reals

Neil Hindman

Abstract. We show that many of the natural analogues of known character-
izations of image partition regularity and weak image partition regularity of
matrices with rational entries over the integers are valid for matrices with real
entries over the reals.
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1. Introduction

In 1933 R. Rado published [8] his famous theorem characterizing those finite
matrices A with rational entries that have the property that whenever N is finitely
colored, there must be some �x in the kernel of A all of whose entries are the same
color (or monochrome). This characterization was in terms of the columns condition
which we shall describe below.

In 1943 Rado published a paper [9], among whose results was the fact that the
same condition characterized those finite matrices with real entries that have the
property that whenever R is finitely colored, there is some �x in the kernel of A
whose entries are monochrome.

Definition 1.1. Let u, v ∈ N, let S ∈ {N,Z,R+,R}. Let F = Q if S = N or S = Z,
and let F = R if S = R+ = {x ∈ R : x > 0} or S = R. Let A be a u × v matrix
with entries from F .
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(a) The matrix A is kernel partition regular over S provided that, whenever S\{0}
is finitely colored, there exists �x ∈ F v such that A�x = �0 and all entries of �x
are the same color.

(b) The matrix A satisfies the columns condition over F if and only if there is
a partition {I1, I2, . . . , Im} of {1, 2, . . . , v} such that,

∑
i∈I1

�ci = �0 and for
each t ∈ {2, 3, . . . ,m}, if any,

∑
i∈It

�ci is a linear combination over F of{
�ci : i ∈ ⋃t−1

k=1 Ik

}
.

The results of Rado referred to above are that A is kernel partition regular over S
if and only if A satisfies the columns condition over F . (Proofs of Rado’s Theorem
for the case S = N can be found in [4] and [7].)

Rado’s Theorem, in any of its forms, is quite powerful. For example, it has as a
corollary van der Waerden’s Theorem [11], which says that whenever N is finitely
colored, there must be arbitrarily long monochromatic arithmetic progressions. But
one must be careful. For example, with a length four arithmetic progression {a, a+
d, a+2d, a+3d} one might let x1 = a, x2 = a+d, x3 = a+2d, and x4 = a+3d and
say that one was precisely asking that x2 − x1 = x3 − x2, and x3 − x2 = x4 − x3,
that is that the matrix ( −1 2 −1 0

0 −1 2 −1

)
is kernel partition regular. Unfortunately, x1 = x2 = x3 = x4 is a solution to these
equations, and one must strengthen the result, for example by demanding that the
increment have the same color.

By way of contrast, if one asks that entries of the image of A be monochrome,
van der Waerden’s theorem is very simply represented. The length four version
mentioned above is asking that the entries of

1 0
1 1
1 2
1 3

 (
a
d

)

be monochrome. Many other theorems such as Schur’s Theorem [10] are naturally
represented in terms of images of matrices.

Definition 1.2. Let u, v ∈ N, let S ∈ {N,Z,R+,R}. Let F = Q if S = N or S = Z,
and let F = R if S = R+ or S = R. Let A be a u× v matrix with entries from F .

(a) The matrix A is image partition regular over S provided that, whenever S\{0}
is finitely colored, there exists �x ∈ (S \ {0})v such that all entries of A�x are
the same color.

(b) The matrix A is weakly image partition regular over S provided that, whenever
S \ {0} is finitely colored, there exists �x ∈ F v such that all entries of A�x are
the same color.

Notice that the notions of weakly image partition regular over N and weakly
image partition regular over Z are equivalent as are the notions of weakly image
partition regular over R+ and weakly image partition regular over R. (For example,
given a coloring of R+ with r colors, one colors R \ {0} with 2r colors, using r new
colors for negative values and giving x < 0 and y < 0 the same color if and only
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if −x and −y have the same color. Given �x ∈ Rv with the entries of A�x the same
color, one also has that the entries of A(−�x) are the same color.)

Certain image partition regular matrices were used by W. Deuber [1] in 1973 to
prove a famous conjecture of Rado, namely that if a set C ⊆ N has the property
(called partition regular in [1]) that for any u×v matrix A which is kernel partition
regular over N there exists �x ∈ Cv with A�x = �0, and C is divided into finitely many
pieces, then one of those pieces also has that property.

Deuber’s image partition regular matrices were examples of first entries matrices.

Definition 1.3. Let u, v ∈ N and let A be a u× v matrix with real entries. Then
A is a first entries matrix if and only if:

(a) no row of A is �0,
(b) the first nonzero entry of each row is positive, and
(c) the first nonzero entries of any two rows are equal if they occur in the same

column.

If A is a first entries matrix and d is the first nonzero entry of some row of A, then
d is called a first entry of A.

Given the early established utility of image partition regular matrices and the
fact that they naturally represent many problems of Ramsey Theory, it is surprising
that characterizations of matrices with rational entries that are image partition
regular over N or weakly image partition regular over N were only obtained in
1993 [5]. Additional characterizations of matrices that are image partition regular
over N were obtained in [7] and [6]. (More attention was paid to image partition
regularity than to weak image partition regularity because the former is the more
natural notion — consider again van der Waerden’s Theorem when the increment
is allowed to be 0.)

In this paper we obtain characterizations of matrices with real entries that are
image partition regular or weakly image partition regular over R or R+. These
characterizations include natural analogues of several of the known characteriza-
tions of image partition regularity or weak image partition regularity over N. They
also include some characterizations of weak image partition regularity over R whose
analogues over N, while true, have not been previously published.

Many, but not all, of the proofs given here are simpler than the corresponding
proofs for N. (When working with a matrix A with rational entries and a vector �x
with integer entries, one needs to worry about when the entries of A�x are integers.)
The proofs dealing with weak image partition regularity over R are significantly
simpler than the published versions of the corresponding results for N, based on
ideas of I. Leader and D. Strauss in [6].

We include proofs of all of the nonelementary facts that we use except for some
results from linear algebra, as well as many of the basic facts about the algebra of
the Stone-Čech compactification βS of a discrete semigroup S, for which the reader
is referred to [7]. (We feel more than somewhat guilty about assuming so much,
but do not want to make this paper huge.)

In Section 2 we present several preliminary lemmas. In Section 3 we give our
characterizations of weak image partition regularity over R and R+. Section 4 has
our characterizations of image partition regularity over R+.
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Several of the characterizations involve the notion of central sets. This notion was
introduced (for subsets of N) by Furstenberg [3]. We take the following equivalent
algebraic notion as our definition.

Definition 1.4. Let S be a discrete semigroup. A set C ⊆ S is central if and only
if there is an idempotent p in the smallest ideal K(βS) of βS with C ∈ p.

It is important to note that the notion of central sets is defined in terms of a
discrete semigroup. We shall denote by Rd and R+

d the set of reals with the discrete
topology and the set of positive reals with the discrete topology respectively.

The basic fact that we need about central sets is given by the Central Sets
Theorem, which is due to Furstenberg [3] for the case S = N. (Given a sequence
〈xn〉∞n=1 in a semigroup (S,+), FS(〈xn〉∞n=1) = {∑n∈F xn : F is a finite nonempty
subset of N}.)
Theorem 1.5 (Central Sets Theorem). Let (S,+) be a commutative semigroup,
let C be a central subset of S, let v ∈ N, and for each � ∈ {1, 2, . . . , v}, let 〈y
,n〉∞n=1

be a sequence in S. There exist a sequence 〈an〉∞n=1 in S and a sequence 〈Hn〉∞n=1

of finite nonempty subsets of N such that maxHn < minHn+1 for each n ∈ N and
such that for each f : N → {1, 2, . . . , v}, FS(〈an +

∑
t∈Hn

yf(n),t〉∞n=1) ⊆ C.

Proof. [7, Theorem 14.11]. �

We shall follow throughout the custom of denoting the entries of a matrix by the
lower case version of the capital letter used to denote the matrix itself. (So a2,3 is
the entry in row 2 and column 3 of the matrix A.)

2. Preliminary results

The following lemma is standard.

Lemma 2.1. Let ε > 0. There is a finite coloring of R+ such that, if y, z ∈ R+,

y > z, and y and z have the same color, then either
y

z
< 1 + ε or

y

z
>

1
ε
.

Proof. Let α = 1 + ε and choose r ∈ N satisfying r > 1 + logα

1
ε
. For each

i ∈ {1, 2, . . . , r}, let Pi = {n ∈ N : �logα n� ≡ i mod r}. Let i ∈ {1, 2, . . . , r} and
let y, z ∈ Pi with y > z. Then �logα y� ≥ �logα z�.

If �logα y� > �logα z�, then �logα y� ≥ �logα z�+ r and thus y > z ·αr−1 > z · 1
ε
.

If �logα y� = �logα z�, then y < α · z = (1 + ε) · z. �

Lemma 2.2. Let A be a u × v matrix with entries from R and assume that A
is weakly image partition regular over R+. There exist m ∈ N and a partition
{I1, I2, . . . , Im} of {1, 2, . . . , u} with the following property: for every ε > 0, there
exists �x ∈ Rv such that �y = A�x ∈ (R+)u and, if i ∈ Ir and j ∈ Is, then 1 − ε <
yj

yi
< 1 + ε if r = s and

yj

yi
< ε if r < s. If A is image partition regular over R+,

such a vector �x may be chosen in (R+)v.

Proof. Suppose that 0 < ε <
1
4

. Choose a coloring of R+ as guaranteed by
Lemma 2.1. and a vector �x ∈ Rv for which the entries of �y = A�x are monochrome
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positive reals. If A is image partition regular over R+, choose such �x ∈ (R+)v. We
define a relation ≈ on {1, 2, . . . , u} by putting i ≈ j if and only if 1−ε < yj

yi
< 1+ε.

Since ε < (1 − ε)2 < (1 + ε)2 <
1
ε
, it is easy to verify that this is an equivalence

relation. It therefore defines a partition P(ε) = {I1(ε), I2(ε), . . . , Im(ε)(ε)} of {1, 2,
. . . , u}. We can arrange the sets in this partition so that, if i ∈ Ir(ε), j ∈ Is(ε),
and r < s, then yj < yi and so

yj

yi
< ε. Since there are only finitely many ordered

partitions of {1, 2, . . . , u}, by the pigeon hole principle there is an infinite sequence
of values of ε converging to 0 for which the partitions P(ε) are all the same. �
Definition 2.3. Let u, v ∈ N, let �c1, �c2, . . . , �cv be in Ru, and let I ⊆ {1, 2, . . . , v}.
The I-restricted span of (�c1, �c2, . . . , �cv) is

{Σv
i=1αi · �ci : each αi ∈ R and if i ∈ I, then αi ≥ 0} .

Lemma 2.4. Let u, v ∈ N, let �c1, �c2, . . . , �cv be in Ru, and let I ⊆ {1, 2, . . . , v}. The
I-restricted span of (�c1, �c2, . . . , �cv) is closed in Ru.

Proof. This is proved in [5, Lemma 3.8] and in [7, Lemma 15.23]. In both places
it is assumed that �c1, �c2, . . . , �cv ∈ Qu, but no use is made of this assumption. �
Lemma 2.5. Let u, v ∈ N and let A be a u × v matrix with entries from R. If A
is weakly image partition regular over R, then there exist m ∈ {1, 2, . . . , u} and a
v × m matrix G with no row equal to �0 such that, if B = AG, then B is a first
entries matrix with nonnegative entries and has all of its first entries equal to 1.
If A is image partition regular over R+, then the entries of G may be chosen to be
nonnegative.

Proof. Let �c1, �c2, . . . , �cv denote the columns of A and let �ei denote the ith unit
vector in Ru. Let {I1, I2, . . . , Im} be the partition of {1, 2, . . . , u} guaranteed by
Lemma 2.2. We claim that for each k ∈ {1, 2, . . . ,m},∑

n∈Ik
�en ∈ c�{∑v

j=1 αj�cj −
∑k−1

i=1

∑
n∈Ii

δn�en : each δn ≥ 0}
and, if A is image partition regular over R+, then∑

n∈Ik
�en ∈ c�{∑v

j=1 αj�cj −
∑k−1

i=1

∑
n∈Ii

δn�en : each αj ≥ 0 and each δn ≥ 0} .
To see this, let k ∈ {1, 2, . . . ,m} and let ε > 0. Choose �x ∈ Rv such that

�y = A�x ∈ (R+)u and, if i ∈ Ir and j ∈ Is, then 1 − ε <
yj

yi
< 1 + ε if r = s

and
yj

yi
< ε if r < s. Pick l ∈ Ik. For j ∈ {1, 2, . . . , v}, let αj =

xj

yl
, noting

that, if xj > 0, then αj > 0. For n ∈ ⋃k−1
i=1 Ii, let δn =

yn

yl
. Then

∑v
j=1 αj�cj −∑k−1

i=1

∑
n∈Ii

δn�en − ∑
n∈Ik

�en = �z where

zn =



yn

yl
if n ∈ ⋃m

i=k+1 Ii

yn

yl
− 1 if n ∈ Ik

0 if n ∈ ⋃k−1
i=1 Ii.

In particular, |zn| < ε for each n ∈ {1, 2, . . . , u}.
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Thus, by Lemma 2.4, we may pick gj,k ∈ R for j ∈ {1, 2, . . . , v} and nonnegative
bn,k for n ∈ ⋃k−1

i=1 Ii such that
∑

n∈Ik
�en =

∑v
j=1 gj,k�cj −

∑k−1
i=1

∑
n∈Ii

bn,k�en. If A
is image partition regular over R+, again by Lemma 2.4, we may assume that each
gj,k ≥ 0. For n ∈ Ik, let bn,k = 1 and for n ∈ ⋃m

i=k+1 Ii, let bn,k = 0.
We have thus defined a v×m matrix G and a u×m first entries matrix B with

nonnegative entries and all first entries equal to 1 such that AG = B. If A is image
partition regular over R+, then all entries of G are nonnegative. We may suppose
that G has no row equal to �0, because we can add any vector in (R+)v to G as a
new final column. �

We now turn to some results about central subsets of R+. Recall that K(βS) is
the smallest ideal of βS.

Lemma 2.6. K(βR+
d ) = K(β(R+ ∪{0})d)∩ βR+

d = K(βRd)∩ βR+
d . In particular

any central subset of R+ is also central in R and in R+ ∪ {0}.
Proof. Let I =

⋂
x∈R+ c�βR(x,∞). We show that I is a left ideal of βRd. To see

this, let p ∈ I. It suffices to show that for each y ∈ R, y + p ∈ I because the map
q �→ q + p is continuous. So let y ∈ R, let x ∈ R+, and note that (x + |y|,∞) ∈ p
and (x+ |y|,∞) ⊆ −y + (x,∞).

Since I is a left ideal of βRd, and thus also of β(R+∪{0})d, it meets K(βRd) and
K(β(R+∪{0})d) and therefore βR+

d ∩K(βRd) �= ∅ and βR+
d ∩K(β(R+∪{0})d) �= ∅.

The conclusion then follows from [7, Theorem 1.65]. �

Lemma 2.7. Let u, v ∈ N, let A be a u × v first entries matrix with entries from
R, and let C be central in R+. There exist sequences 〈x1,n〉∞n=1, 〈x2,n〉∞n=1, . . . ,
〈xv,n〉∞n=1 in R+ such that for every finite nonempty subset F of N, A�xF ∈ Cu,
where

�xF =


Σn∈Fx1,n

Σn∈Fx2,n

...
Σn∈Fxv,n

 .

Proof. Let S = R+∪{0} and note that C is central in S by Lemma 2.6. We proceed
by induction on v. Assume first that v = 1. We can assume A has no repeated
rows, so in this case we have A = (c) for some c ∈ R+. Pick by Theorem 1.5 a

sequence 〈kn〉∞n=1 with FS(〈kn〉∞n=1) ⊆ C and for each n ∈ N let x1,n =
kn

c
. The

sequence 〈x1,n〉∞n=1 is as required.
Now let v ∈ N and assume the theorem is true for v. Let A be a u × (v + 1)

first entries matrix with entries from R. By rearranging the rows of A and adding
additional rows to A if need be, we may assume that we have some r ∈ {1, 2, . . . ,
u− 1} and some d ∈ R+ such that

ai,1 =

{
0 if i ∈ {1, 2, . . . , r}
d if i ∈ {r + 1, r + 2, . . . , u}.

Let B be the r × v matrix with entries bi,j = ai,j+1. Pick sequences 〈z1,n〉∞n=1,
〈z2,n〉∞n=1, . . . , 〈zv,n〉∞n=1 in R+ as guaranteed by the induction hypothesis for the
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matrix B. For each i ∈ {r + 1, r + 2, . . . , u} and each n ∈ N, let

yi,n =
∑v+1

j=2 ai,j · zj−1,n

and let yr,n = 0 for all n ∈ N.
Now C is central in S, so pick by Theorem 1.5 a sequence 〈kn〉∞n=1 in S and a

sequence 〈Hn〉∞n=1 of finite nonempty subsets of N such that maxHn < minHn+1

for each n and for each i ∈ {r, r + 1, . . . , u}, FS(〈kn +
∑

t∈Hn
yi,t〉∞n=1) ⊆ C.

For each n ∈ N, let x1,n =
kn

d
and note that kn = kn +

∑
t∈Hn

yr,t ∈ C ⊆ R+.

For j ∈ {2, 3, . . . , v + 1}, let xj,n =
∑

t∈Hn
zj−1,t. We claim that the sequences

〈xj,n〉∞n=1 are as required. To see this, let F be a finite nonempty subset of N. We
need to show that for each i ∈ {1, 2, . . . , u}, ∑v+1

j=1 ai,j · ∑
n∈F xj,n ∈ C. So let

i ∈ {1, 2, . . . , u} be given.

Case 1. i ≤ r. Then
v+1∑
j=1

ai,j ·
∑
n∈F

xj,n =
v+1∑
j=2

ai,j ·
∑
n∈F

∑
t∈Hn

zj−1,t

=
v∑

j=1

bi,j ·
∑
t∈G

zj,t ∈ C

where G =
⋃

n∈F Hn.

Case 2. i > r. Then
v+1∑
j=1

ai,j ·
∑
n∈F

xj,n = d ·
∑
n∈F

x1,n +
v+1∑
j=2

ai,j ·
∑
n∈F

xj,n

=
∑
n∈F

dx1,n +
∑
n∈F

∑
t∈Hn

v+1∑
j=2

ai,jzj−1,t

=
∑
n∈F

(kn +
∑

t∈Hn

yi,t) ∈ C.

�

Lemma 2.8. Let u, v ∈ N and let A be a u× v matrix with entries from R. Define
ϕ : (R+)v → Ru by ϕ(�x) = A�x and let ϕ̃ : β

(
(R+

d )v
) → (βRd)u be its continuous

extension. Let p be an idempotent in K(βR+
d ) with the property that for all C ∈ p

there exists �x ∈ (R+)v with A�x ∈ Cu and let

p =


p
p
...
p

 .

There exists an idempotent q ∈ K
(
β
(
(R+

d )v
))

such that ϕ̃(q) = p.

Proof. By Lemma 2.6 we have that p ∈ K(βRd). Therefore by [7, Theorem
2.23] p ∈ K(β(Rd)u). By [7, Corollary 4.22] ϕ̃ is a homomorphism. We claim that
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p ∈ ϕ̃
[
β
(
(R+

d )v
)]

. This is true because ϕ̃
[(
β(R+

d )v
)]

is closed and, whenever C ∈ p,
Cu ∩ ϕ[

(R+)v
] �= ∅.

Let M = {q ∈ β
(
(R+

d )v
)

: ϕ̃(q) = p}. Then M is a compact right topological
semigroup so by [2, Corollary 2.10] pick an idempotent w ∈ M . By [7, Theo-
rem 1.60] pick an idempotent q ∈ K

(
β
(
(R+

d )v
))

such that q ≤ w. Since ϕ̃ is a
homomorphism, ϕ̃(q) ≤ p and thus, since p is minimal, ϕ̃(q) = p. �

3. Weak image partiton regularity over R

In this section we obtain several characterizations of matrices that are weakly im-
age partition regular over R, including the nontrivial fact that weak image partition
regularity over R implies image partition regularity over R. Notice that conditions
(d) and (i) are, by virtue of the 1943 version of Rado’s Theorem, effectively com-
putable.

Theorem 3.1. Let u, v ∈ N and let A be a u× v matrix with entries from R. The
following statements are equivalent:

(a) A is weakly image partition regular over R.
(b) A is weakly image partition regular over R+.
(c) A is image partition regular over R.
(d) Let l = rank(A). Rearrange the rows of A so that the first l rows are linearly

independent over R. Let �r1, �r2, . . . , �ru be the rows of A. For each t ∈ {l+1, l+
2, . . . , u}, if any, let γt,1, γt,2, . . . , γt,l ∈ R be determined by �rt =

∑l
i=1

γt,i · �ri.
If u > l, let D be the (u− l)× v matrix such that, for t ∈ {1, 2, . . . , u− l} and
i ∈ {1, 2, . . . , u},

dt,i =


γ

l+t,i if i ≤ l

−1 if i = l + t

0 otherwise.

Then l = u or D is kernel partition regular over R.
(e) There exist m ∈ {1, 2, . . . , u} and a v × m matrix G with no row equal to

�0 such that, if B = AG, then B is a first entries matrix with nonnegative
entries which has all of its first entries equal to 1.

(f) There exist m ∈ {1, 2, . . . , u} and a v ×m matrix G with no row equal to �0
such that, if B = AG, then B is a first entries matrix which has all of its first
entries equal to 1.

(g) There exist m ∈ {1, 2, . . . , u} and a u×m first entries matrix B such that for
all �y ∈ Rm there exists �x ∈ Rv such that A�x = B�y.

(h) For every central subset C of R+, there exists �x ∈ Rv such that A�x ∈ Cu.
(i) There exist t1, t2, . . . , tv ∈ R \ {0} such that, if

T =


t1 0 . . . 0
0 t2 . . . 0
...

...
. . .

...
0 0 . . . tv

 ,

then (AT − I) is kernel partition regular over R, where I is the u×u identity
matrix.
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(j) There exist b1, b2, . . . , bv ∈ R \ {0} such that, if

B =


b1 0 . . . 0
0 b2 . . . 0
...

...
. . .

...
0 0 . . . bv

 , then
(
B
A

)

is weakly image partition regular over R.

(k) For each �p ∈ Rv \ {�0} there exists b ∈ R \ {0} such that
(
b�p
A

)
is weakly

image partition regular over R.

Proof. We have already remarked that (a) ⇔ (b).
We show next that (a) ⇔ (d). Assume first that A is image partition regular

over R and that l < u. Let R \ {0} be finitely colored and pick �x ∈ Rv such that
the entries of �w = A�x are monochrome. Then D�w = DA�x = O�x = �0, where O is
the (u− l) × v matrix with all zero entries.

Now assume that A satisfies (d) and assume first that l = u. By rearranging
columns we may presume that the first l columns of A are linearly independent.
Let A∗ consist of those first l columns, and find �x ∈ Rl such that (A∗)�x = �1, the
vector with all entries equal to 1. Let yi = xi if i ∈ {1, 2, . . . , l} and let yi = 0 if
i ∈ {l + 1, l + 2, . . . , v}. Then A�y = �1.

Now assume that l < u. We may again assume that the first l columns of A
are linearly independent and let A∗ consist of the upper left l × l corner of A. Let
R \ {0} be finitely colored and pick a monochrome �x ∈ Ru such that D�x = �0.
Choose �w ∈ Rl such that

A∗ �w =


x1

x2

...
xl

 .

Let yj = wj if j ∈ {1, 2, . . . , l} and let yj = 0 if j ∈ {l + 1, l + 2, . . . , v}. We claim
that A�y = �x. If t ∈ {1, 2, . . . , l}, then

∑v
j=1 at,j · yj =

∑l
j=1 at,j · wj = xt. If

t ∈ {l + 1, l + 2, . . . , u}, then
∑l

i=1 γt,i · xi = xt because D�x = 0 and therefore

v∑
j=1

at,j · yj =
l∑

j=1

at,j · wj =
l∑

j=1

wj ·
l∑

i=1

γt,iai,j

=
l∑

i=1

γt,j ·
l∑

j=1

ai,j · wj =
l∑

i=1

γt,i · xi = xt.

That (a) implies (e) follows from Lemma 2.5, and trivially (e) implies (f) and (f)
implies (g).

To see that (g) implies (h), let C be a central subset of R+ and pick by Lemma 2.8
some �y ∈ (R+)m such that B�y ∈ Cu.

Since any finite partition of R+ must have at least one cell which is central, it is
trivial that (h) implies (a).
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We now show that (e) implies (i). For each i ∈ {1, 2, . . . , v} let ti be the first
nonzero entry in row i of G. Then

(AT − I)
(
T−1G
B

)
= B −B = O .

The first nonzero entry in each row of T−1G is 1 so
(
T−1G
B

)
is a first entries

matrix.
Let R+ be finitely colored. Then some color class is central. Pick by Lemma 2.7

some �x ∈ (R+)m such that the entries of
(
T−1G
B

)
�x all lie in this color class. Let

�y =
(
T−1G
B

)
�x. Then the entries of �y are monochrome and (AT −I)�y = O�y = �0.

To see that (i) implies (j), for each i ∈ {1, 2, . . . , v} let bi =
1
ti

. Let R \ {0} be

finitely colored and pick a monochrome �y ∈ Ru+v such that (AT − I)�y = �0. For
i ∈ {1, 2, . . . , v} let wi = yi and for i ∈ {1, 2, . . . , u}, let zi = yv+i. Then AT �w = �z.

Let �x = T �w. Then
(
B
A

)
�x = �y.

To see that (j) implies (c), let R \ {0} be finitely colored and pick �x ∈ Rv such

that the entries of
(
B
A

)
�x are monochrome. Then for each i ∈ {1, 2, . . . , v},

ti · xi �= 0 so �x ∈ (R \ {0})v.
Trivially (c) implies (a) so we have now established that conditions (a) through

(j) are equivalent.
To see that (f) implies (k), let �p ∈ Rv \ {�0}. If �pG �= �0, we can choose b so that

the first entry of b�pG is 1. If �pG = �0, we can choose �c ∈ Nv such that �r · �c �= �0 and
add �c to G as a new final column. In this case, we choose b so that b�r · �c = 1. In

either case,
(
b�p
A

)
G is a first entries matrix with all first entries equal to 1 and

so statement (f) holds for
(
b�p
A

)
and therefore statement (a) holds for

(
b�p
A

)
.

Trivially (k) implies (a). �

4. Image partition regularity over R+

We now present several characterizations of the strictly stronger property of
image partition regularity over R+. (The matrix 1 −1

3 2
4 6


satisfies the computable condition (i) of Theorem 3.1 but not the corresponding
condition (g) of Theorem 4.1.) Notice that condition (i) of Theorem 4.1 allows one
to also use the computable condition (d) of Theorem 3.1 to determine whether a
matrix is image partition regular over R+.
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Theorem 4.1. Let u, v ∈ N and let A be a u× v matrix with entries from R. The
following statements are equivalent:

(a) A is image partition regular over R+.
(b) There exist m ∈ {1, 2, . . . , u} and a v ×m matrix G with nonnegative entries

and no row equal to �0 such that, if B = AG, then B is a first entries matrix
with nonnegative entries and has all of its first entries equal to 1.

(c) There exist m ∈ {1, 2, . . . , u} and a v ×m matrix G with nonnegative entries
and no row equal to �0 such that, if B = AG, then B is a first entries matrix
with all of its first entries equal to 1.

(d) There exist m ∈ {1, 2, . . . , u} and a u×m first entries matrix B such that for
all �y ∈ (R+)m there exists �x ∈ (R+)v such that A�x = B�y.

(e) For every central subset C of R+, there exists �x ∈ (R+)v such that A�x ∈ Cu.
(f) For every central subset C of R+, {�x ∈ (R+)v : A�x ∈ Cu} is central in (R+)v.
(g) There exist t1, t2, . . . , tv ∈ R+ such that, if

T =


t1 0 . . . 0
0 t2 . . . 0
...

...
. . .

...
0 0 . . . tv

 ,

then (AT − I) is kernel partition regular over R, where I is the u×u identity
matrix.

(h) There exist t1, t2, . . . , tv ∈ R+ such that, if

T =


t1 0 . . . 0
0 t2 . . . 0
...

...
. . .

...
0 0 . . . tv

 , then
(

I
AT

)

is image partition regular over R+, where I is the v × v identity matrix.
(i) There exist b1, b2, . . . , bv ∈ R+ such that, if

B =


b1 0 . . . 0
0 b2 . . . 0
...

...
. . .

...
0 0 . . . bv

 , then
(
B
A

)

is weakly image partition regular over R.
(j) There exist b1, b2, . . . , bv ∈ R+ such that, if

B =


b1 0 . . . 0
0 b2 . . . 0
...

...
. . .

...
0 0 . . . bv

 , then
(
B
A

)

is image partition regular over R+.

(k) For each �p ∈ Rv \ {�0} there exists b ∈ R \ {0} such that
(
b�p
A

)
is image

partition regular over R+.
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(l) Whenever m ∈ N and φ1, φ2, . . . , φm are nonzero linear mappings from Rv to
R, there exists b ∈ Rm such that whenever C is central in R+, there exists
�x ∈ (R+)v such that A�x ∈ Cu and for each i ∈ {1, 2, . . . ,m}, bi · φi(�x) ∈ C.

(m) For every central subset C of R+, there exists �x ∈ (R+)v such that �y = A�x ∈
Cu, all entries of �x are distinct, and for all i ∈ {1, 2, . . . , u}, if rows i and j
of A are unequal, then yi �= yj.

Proof. That (a) implies (b) is an immediate consequence of Lemma 2.5. And
trivially (b) implies (c).

To see that (c) implies (d), note that if �y ∈ (R+)m, then since the entries of G
are nonnegative and no row is �0, one has that G�y ∈ (R+)v.

To see that (d) implies (e), let C be a central subset of R+ and pick by Lemma 2.7
some �y ∈ (R+)m such that B�y ∈ Cu.

We have that (e) implies (a) because given any finite partition of R+, one cell
must be central in R+.

We have now established that conditions (a), (b), (c), (d), and (e) are equivalent.
Notice in particular that we have established that if A is image partition regular
over R+, then for any idempotent p ∈ K(βR+

d ) and any member C of p, since C is
therefore central, there exists �x ∈ (R+)v such that A�x ∈ Cu.

To see that (a) implies (f), let C be a central subset of R+ and pick an idempotent
p ∈ K(βR+

d ) such that C ∈ p. Let ϕ, ϕ̃, and p be as in Lemma 2.8. Pick q ∈
K

(
β
(
(R+

d )v
))

such that ϕ̃(q) = p. Now (c�C)u is a neighborhood of p so there is

a member D of q such that ϕ[D] ⊆ Cu. Then D ⊆ {�x ∈ (R+)v : A�x ∈ Cu} so
{�x ∈ (R+)v : A�x ∈ Cu} ∈ q and is therefore central in (R+)v.

Trivially (f) implies (e).
The proof that (b) implies (g) can be taken verbatim from the proof that (e) im-

plies (i) in Theorem 3.1. We simply note that since the entries of G are nonnegative
we have that each ti > 0.

To see that (g) implies (h), let R+ be finitely colored. Let Iu and Iv denote the
u×u and the v×v identity matrices respectively. Pick a monochrome �y ∈ (R+)u+v

such that (AT − Iu)�y = �0. For i ∈ {1, 2, . . . , v} let xi = yi and for i ∈ {1, 2, . . . , u}
let zi = yv+i. Then AT�x = �z and so

(
Iv
AT

)
�x = �y.

To see that (h) implies (i), for each i ∈ {1, 2, . . . , v} let bi =
1
ti

. Let R \ {0} be

finitely colored. Then R+ is also finitely colored, so pick �y ∈ (R+)v such that the

entries of
(

I
AT

)
�y are monochrome. Let �x = T�y. Then

(
B
A

)
�x =

(
I
AT

)
�y.

To see that (i) implies (j), let R+ be finitely colored. Since
(
B
A

)
is weakly

image partition regular over R+, pick some �x ∈ Rv such that the entries of
(
B
A

)
�x

are monochrome. In particular, these entries are all positive. Since for each i ∈
{1, 2, . . . , v}, we have that bi · xi > 0 we in fact have each xi > 0.

Trivially (j) implies (a).
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We have now established that statements (a) through (j) are equivalent. The
proof that (c) implies (k) can be taken verbatim from the proof that (f) implies (k)
in Theorem 3.1.

Now we show that (k) implies (l). For each i ∈ {1, 2, . . . ,m}, there exists �pi ∈
Rv \ {�0} such that φi(�x) = �pi ·�x for all �x ∈ Rv. By applying statement (k) m times
in succession (using the fact that at each stage the new matrix satisfies (k) because
(a) implies (k)), we can choose b1, b2, . . . , bm ∈ R for which the matrix

b1�p1

b2�p2

...
bm�pm

A


is image partition regular. The conclusion then follows from the fact that every
image partition regular matrix satisfies statement (e) by Lemma 2.7.

To see that (l) implies (m), we may presume that A has no repeated rows so
that the conclusion regarding �y becomes the statement that all entries of �y are
distinct. For i �= j in {1, 2, . . . , v}, let φi,j be the linear mapping from Rv to R

taking �x to xi − xj . For i �= j in {1, 2, . . . , u}, let ψi,j be the linear mapping
from Rv to R taking �x to

∑v
t=1(ai,t − aj,t) · xt. Applying statement (l) to the set{

φi,j : i �= j in {1, 2, . . . , v}} ∪ {
ψi,j : i �= j in {1, 2, . . . , u}}, we reach the desired

conclusion.
It is trivial that (m) implies (e). �
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