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Dedicated to Caroline and Natalie

Abstract. A pseudocharacter of a semigroup S is a real function ϕ on S
satisfying the following conditions.
1) The set {ϕ(xy)− ϕ(x)− ϕ(y); x, y ∈ S} is bounded.
2) For x ∈ S and n ∈ N (and n ∈ Z if S is a group),

ϕ(xn) = nϕ(x).

A description of the space of pseudocharacters on some extensions of free
groups is given.
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1. Introduction

In 1940 S. M. Ulam posed the following problem. Given a group G1, a metric
group (G2, d) and a positive number ε, does there exist a δ > 0 such that if f :
G1 → G2 satisfies d(f(xy), f(x)f(y)) < δ for all x, y ∈ G1, then a homomorphism
T : G1 → G2 exists with d(f(x), T (x)) < ε for all x, y ∈ G1? See S. M. Ulam
(1960) or (1974) for a discussion of such problems, as well as D. H. Hyers (1941,
1983), D. H. Hyers and S. M. Ulam (1945, 1947), Th. M. Rassias (1978), J. Aczèl
and J. Dhombres (1989).
In case of a positive answer to the previous problem, we say that the homomor-

phisms G1 → C2 are stable or that the Cauchy functional equation

ϕ(xy) = ϕ(x)ϕ(y)(1)

is stable.
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The first affirmative answer was given by D. H. Hyers [14] in 1941. Consider the
additive Cauchy equation

ϕ(xy) = ϕ(x) + ϕ(y).(2)

Obviously this equation is exactly the same as equation (1), but with the use of
the additive notation on the right-hand side we emphasize that the range of the
function is in an additive group.

Theorem 1 (D. H. Hyers). Let E1, E2 be Banach spaces and let f : E1 → E2

satisfy the following condition: there is ε > 0 such that

|| f(x+ y)− f(x)− f(y) || < ε for all x, y ∈ E1.(3)

Then there exists T : E1 → E2 such that

T (x+ y)− T (x)− T (y) = 0 for all x, y ∈ E1(4)

and

|| f(x)− T (x) || < ε for all x ∈ E1.(5)

If we carefully look at the proof of Hyers’ Theorem, the existence of the ad-
ditive function T uniformly approximating f , we easily recognize that the result
remains true if we replace the additive group of the Banach space E1 by a commu-
tative semigroup S. So we can conclude that the homomorphisms from an abelian
simigroup into the additive group of a Banach space are stable.
After Hyers’ result a great number of papers on the subject have been published,

generalizing Ulam’s problem and Hyers’ Theorem in various directions. See [11],
[15]–[22], [26]–[28].

Definition 1. Let G be a semigroup and B a Banach space. We say that equa-
tion (2) is stable for the pair (G,B) if, for every function f : G→ B such that

||f(xy)− f(x)− f(y)|| ≤ δ, x, y ∈ G for some δ ≥ 0,
there exists a solution ϕ of (2) such that

||f(x)− ϕ(x)|| ≤ ε, ∀x ∈ G
for some ε depending only on δ.

In [12] it has been proved that B1, B2 are Banach spaces, then (2) is stable for
(G,B1) if and only if it is stable for (G,B2).
Due to this remark we simply say that (2) is stable for a group or a semigroup

G. Thus Hyers’s Theorem says that (2) is stable for any commutative semigroup
G. A remarkable achievement was that of L. Székelyhidi who in [28] replaced the
original proof given by Hyers by a new one based on the use of invariant means.

Theorem 2 (L. Székelyhidi). Let G be a left (right) amenable semigroup, then (2)
is stable for G.

Now a question naturally arises: do groups or semigroups exist for which equa-
tion (2) is not stable? In view of L. Székelyhidi’s Theorem we must look among
non-amenable groups or semigroups and in fact in [4, 5, 7, 8, 10] it was proved
that on a free nonabelian group (or semigroup) the additive Cauchy equation (2)
is not stable. We recall the example of Forti (see [10]). Let F (α, β) be the free
group generated by the two elements α, β. Let each word x ∈ F (α, β) be written in



Pseudocharacters on a Class of Extensions of Free Groups 137

reduced form, i.e., x does not contain pairs of the forms αα−1, α−1α, ββ−1, β−1β
and has no exponents different from 1 and −1. Define the function f : F (α, β)→ R
as follows. If r(x) is the number of pairs of the form αβ in x and s(x) is the number
of pairs of the form β−1α−1 in x, put f(x) = r(x)− s(x).
It is easily seen that for all x, y ∈ F (α, β) we have f(xy) − f(x) − f(y) ∈

{−1, 0, 1}, i.e., f satisfies (3). Now, assume that there is T : F (α, β) → R such
that the relations (4), and (5) hold. But T is completely determined by its values
T (α) and T (β), while f is identically zero on the subgroups A and B generated by
α and β, respectively. Indeed, T (αn) = nT (α) and f(αn) = 0 for n ∈ N. Since
T (αn) − f(αn) = nT (α) for n ∈ N, it follows that T (α) = 0. Similarly we have
T (β) = 0, so that T is identically zero on F (α, β). Hence, f − T = f on F (α, β)
where f is unbounded. This contradiction proves that there is no homomorphism
T : F (α, β)→ R such that the relation (5) holds.
It turns out that the existence of mappings that are “almost homomorphisms”

but are not small perturbations of homomorphisms has an algebraic nature.

Definition 2. A quasicharacter of a semigroup S is a real-valued function f on S
such that {f(xy)− f(x)− f(y) |x, y ∈ S} is bounded.
Definition 3. By a pseudocharacter on a semigroup S (group S) we mean a qua-
sicharacter f such that for x ∈ S and n ∈ N (and for n ∈ Z, if S is group),

f(xn) = nf(x).

The set of quasicharacters of semigroup S is a vector space (with respect to the
usual operations of addition of functions and multiplication by scalars), which will
be denoted by KX(S). The subspace of KX(S) consisting of pseudocharacters will
be denoted by PX(S) and the subspace consisting of real additive characters of the
semigroup S, will be denoted by X(S).
We say that a pseudocharacter ϕ of the group G is nontrivial if ϕ /∈ X(G).
In connection with the example of Forti, note that his function is a quasicharacter

of the free group F (α, β) but not a pseudocharacter of F (α, β). In [5, 7] the set
of all pseudocharacters of free groups was described. In [4]–[9] a description of
the spaces of pseudocharacters on free groups and semigroups, semidirect and free
products of semigroups was given.
For a mapping f of the group G into the semigroup of linear transformations

of a vector space, sufficient conditions for the coincidence of the solution of the
functional inequality ||f(xy)−f(x)·f(y)|| < c with the solution of the corresponding
functional equation f(xy) − f(x) · f(y) = 0 were studied in the papers [2, 3]. In
the papers [13, 24], it was independently shown that if a continuous mapping f of
a compact group G into the algebra of endomorphisms of a Banach space satisfies
the relation ‖f(xy)−f(x) ·f(y)‖ ≤ δ for all x, y ∈ G with a sufficiently small δ > 0,
then f is ε-close to a continuous representation g of the same group in the same
Banach space (i.e., we have ‖f(x)− g(x)‖ < ε for all x ∈ G).
Let H be a Hilbert space and let U(H) be the group of unitary operators of

H endowed by operator-norm topology. If H is n-dimensional, n ∈ N, we denote
U(H) by U(n).

Definition 4. Let 0 < ε < 2. Let T be a mapping of a group G into U(H). We
say that T is an ε-representation if for any x, y ∈ G the relation

‖T (xy)− T (x)T (y)‖ < ε
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holds.

V. Milman raised the following question: Let ρ : G → U(H) be an ε-represen-
tation with small ε. Is it true that ρ is near to an actual representation π of the
group G in H, i.e., does there exist some small δ > 0 such that ‖ρ(x)− π(x)‖ < δ
for all x ∈ G ? Answering this question Kazhdan in [24] obtained the following:

Theorem 3 (D. Kazhdan). There is a group Γ with the following property. For
any 0 < ε < 1 and any natural number n > 3

ε there exists an ε-representation ρ
such that for any homomorphism π : G→ U(n) the relation

‖ρ− π‖ = sup{‖ρ(x)− π(x)‖ ; x ∈ Γ} > 1
10

holds.

Note that the group Γ has the following presentation in terms of generators and
relations: Γ = 〈x, y, a, b ‖x−1y−1xya−1b−1ab〉.
By using pseudocharacters a strengthening of Kazhdan’s Theorem was estab-

lished in [9] as follows.
We say that a group G belongs to the class K if every nonunit quotient group of

G has an element of order two.

Theorem 4 (V. Făiziev). Let H be a Hilbert space and let U(H) be its group of
unitary operators. Suppose the groups A and B belong to the class K and the order
of B is more than two. Then the free product G = A∗B has the following property.
For any ε > 0 there exists a mapping T : G → U(H) satisfying the following
conditions.
1) ‖T (xy)− T (x) · T (y)‖ ≤ ε, for all x, y ∈ G.
2) For any representation π : G→ U(H), we have

sup{‖T (x)− π(x)‖ ; x ∈ G} = 2.
There is the following connection of quasicharacters and pseudocharacters with

the theory of Banach algebra cohomology: The definition of a quasicharacter co-
incides with that of a bounded 2-cocycle on the semigroup. Hence, if a semigroup
S has a nontrivial pseudocharacter, i.e., PX(S) \X(S) �= ∅, then arguing as [23],
Proposition 2.8, we obtain H2(S,C) �= 0.
The aim of this paper is to establish an existence of nontrivial pseudocharacters

on some classes of extensions of free groups and to describe the set of pseudochar-
acters on some groups.

2. Pseudocharacters on some extensions of free groups

Let G be a group and let α be an automorphism of G. For any ϕ ∈ PX(G) we
set ϕα(x) = ϕ(xα) ∀x ∈ G. It is clear that ϕα is a pseudocharacter of the group
G.

Definition 5. We shall say that ϕ is invariant under α if ϕα = ϕ. If this relation
is true for each a from H ⊆ AutG, we shall say that ϕ is invariant under H.

Denote by PX(G,H) the subspace of PX(G) consisting of a pseudocharacters
of the group G invariant under H.
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In this article by F we mean a free group with a set of free generators X such
that |X| ≥ 2.
Recall that a word v = xε1

i1
xε2

i2
· · ·xεn

in
(εi ∈ {1,−1}) is reduced if xεk

ik
�= x

−εk+1
ik+1

for k = 1, 2, . . . , n− 1.
By the length of v we mean the number n which we denote by |v|. If v is reduced

and the relation xε1
i1

�= x−εn
in

holds we say that v is cyclically reduced. Denote by
σ(X) the set of reduced words. And denote by c(X) the set of cyclically reduced
words. For a word v denote by σ(v) an element from σ(X) such that v = σ(v). Let
σ(v) = u−1zu, where z ∈ c(X). We set c(v) = z.
Each pseudocharacter of any group is invariant under its inner automorphisms

(see [7] Lemma 15 ). Therefore if A is an automorphism group of the group F ,
then PX(F,A) = PX(F,A · InnF ). Hence below without loss of generality, we
can assume that InnF ⊆ A.
Denote by a the image of the element a ∈ A under the natural epimorphism A→

A/InnF and denote by A the image of the group A under the same epimorphism.

Definition 6. Two elements u, v from F are called A-conjugate if there is a ∈ A
such that elements ua and v are conjugate in F .

We denote the relation of A-conjugacy by ∼A. It is clear that ∼A is an equiva-
lence relation.

Definition 7. An element u of F is called simple if for each v ∈ F and each n ≥ 2
the relation u �= vn holds.

Denote by P the set of simple elements of the group F . The set P is divided
into classes of A-conjugacy.
Denote by P the set of A-conjugacy classes of elements of P. Denote by P0 subset

of P consisting of classes such that in each of them there is a pair of mutually inverse
elements.
Let us verify that P0 �= P. Let x, y ∈ X; x �= y, m ≥ 1. We check that

the element v = xmyxy−1 is not A-conjugate to v−1. For this we show that for
any a ∈ AutF the element va is not conjugate to v−1 in the group F . Indeed,
suppose that for some b ∈ AutF the element vb is conjugate to v−1 in F . Then
there is α ∈ AutF such that vα = v−1. By Proposition 4.1 from [25] there is an
automorphism β of F which is nonidentity only on a finite subset of X, and such
that vβ = v−1. Let us choose a finite subset X ′

1 = {x1, x2, . . . , xk} of X such that
x, y ∈ X ′

1 and the relations x
β = x ∀x ∈ X \X ′

1 hold. Let us add if necessary to
X ′

1 elements xk+1, . . . , xq from X \ X ′
1 such that all the words x

β
i , i ≤ k, can be

written in alphabet X1 = {x1, x2, . . . , xk, xk+1, . . . , xq}. Let X2 = X \ X1. And
let Fi be the subgroups of F generated by Xi, i = 1, 2 respectively. It is clear
that F is free product F = F1 ∗ F2. Since β is an automorphism of the group F
and F β

2 = F2, F
β
1 ⊆ F1 we obtain that β is an automorphism of F1 too. Direct

calculation shows that if τ is a Whitehead automorphism of the group F1 (see
[25]) such that |c(vτ )| = |c(v)|, then either τ is a permutable automorphism or
there is an element a ∈ X±1

1 such that vτ = a−εvaε, ε ∈ {−1, 1}. Similarly for
the word v−1 from the equality |c((v−1)τ )| = |c(v−1)| it follows that either τ is a
permutable automorphism or for some g ∈ X±1

1 the relation (v−1)τ = g−εiv−1gεi ,
εi ∈ {−1, 1} is valid. It is clear that there is no Whitehead transformation that
transforms the word v into some cyclic permutation of the word v−1. Hence, by
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Proposition 4.19 from [25] we find that there is no element α from AutF1 that
transforms v into v−1. Futhermore, there is no automorphism of the group F that
transforms v into v−1. Hence, the element v = xmyxy−1 is not A-conjugate to v−1.
Let v = x

εi1
i1
x

εi2
i2

· · ·xεin−1
in−1

x
εin
in

be a reduced word. We recall (see [7]) that the
set of “beginnings ” H(v) and the set of “ends” K(v) of the word v is defined as
follows: if n ≤ 1, then H(v) = K(v) = {∧}, where ∧ is empty word. If n ≥ 2, then

H(v) = {∧, xεi1
i1
, x

εi1
i1
x

εi2
i2
, . . . , x

εi1
i1
x

εi2
i2

· · ·xεin
in−1

}
K(v) = {xεi2

i2
· · ·xεin

in
, . . . , x

εin−1
in−1

x
εin
in
, x

εin
in
,∧}.

Let Q = P \ P0.

Lemma 1. There is a set of representatives T of the A-conjugacy classes belonging
to Q such that the following conditions hold.
1) T ⊂ c(X)
2) T−1 = T .
3) H(w) ∩K(w) = {∧} for all w ∈ T .
4) There exists T+ ⊂ T such that T+ ∩ (T+)−1 = ∅ and T = T+ ∪ (T+)−1.

Proof. The Lemmas 3 and 4 from [7] imply that there is a system of representatives
P of classes of conjugacy in F satisfying 1)–4) with P in place of T .
It is clear if q ∈ Q,then q is the union of conjugacy classes in F . Let us choose

as a representative of a class q an element from the set q ∩ P . It is clear that we
can choose the system of representatives such that w is a representative if and only
if w−1 is a representative too. Hence, we can choose T+ ⊆ T such that T+ ⊆ P+,
T+ ∩ (T+)−1 = ∅ and T = T+ ∪ (T+)−1. �
Lemma 2. Let ϕ be a pseudocharacter of F such that |ϕ(uv) − ϕ(u) − ϕ(v)| ≤ c
for any u, v ∈ F and |ϕ(x)| ≤ δ for x ∈ X. Then for any v with |v| ≥ 1, we have

|ϕ(v)| ≤ (|v| − 1)c+ |v|δ.
Proof. For any u, v ∈ F the inequality |ϕ(uv)| ≤ |ϕ(u)|+ |ϕ(v)|+ c holds. Hence,
by induction on the length of the word v we get |ϕ(v)| ≤ (|v| − 1)c+ |v|δ. �
Denote by BPX(FX , A) the subspace of PX(F,A) consisting of pseudocharac-

ters that are bounded on the set X. Let P be the set from the proof of Lemma 1.
Now define a system of measures on the set P . For any pair of reduced words u
and v and for any three reduced words a, b, c such that the word abc is reduced,
too, we define the measures µu,v, µa,b,c λu,v and λa,b,c on the set P as follows.
It is easy to see that for any u, v ∈ σ(X) there is a uniquely defined triple of

words u1, v1, z from σ(X) such that u ≡ u1z, v ≡ z−1v1, u1v1 ∈ σ(X). Now set
γ1(u, v) = u1, γ2(u, v) = v1, α(u, v) = z. We set µu,v(w) = 1 if and only if there
are nonempty words t and τ such that

t ∈ K(γ1(u, v)), τ ∈ H(γ2(u, v)), w = tτ ;

otherwise we set µu,v(w) = 0. We set µa,b,c(w) = 1 if and only if b �= ∧ and there
are nonempty words t and τ such that

t ∈ K(a), τ ∈ H(c), w = tbτ ;

otherwise we set µa,b,c(w) = 0. Now we set

λu,v(w) = µu,v(w)− µu,v(w−1), λa,b,c(w) = µa,b,c(w)− µa,b,c(w−1).
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Let v ∈ σ(X). Then there is a uniquely defined pair of words v, z(v) from σ
such that v ≡ z(v)−1vz(v) and the word v is cyclically reduced. Furthermore, for
each pair of reduced words u, v from the group F we define three measures ∆u,v,
νu,v, Θu,v on P as follows:

∆u,v(w) = λγ1(u,v),γ2(u,v)(w)− λγ1(u,v),α(u,v)(w)− λα(u,v)−1,γ2(u,v)(w);

νu,v(w) = λ
σ(uv),σ(uv)

(w)− λ
z(σ(uv))−1,σ(uv)

(w)− λ
σ(uv),z(σ(uv))

(w)

− λ
z(σ(uv))−1,σ(uv),z(σ(uv))

(w)− λu,u(w)− λz(u)−1,u(w)

− λu,z(u)(w)− λz(u)−1,u,z(u)(w)− λv,v(w)

− λz(v)−1,v(w)− λv,z(v)(w)− λz(v)−1,v,z(v)(w);

Θu,v(w) = ∆u,v(w) + νu,v(w).

For any two words u, v we set Θu,v(w) = Θσ(u),σ(v)(w).
Let w ∈ P+ and let v ∈ σ(X). Then either v has no subwords equal to w or

w−1, or

v ≡ t1w
i1t2w

i2 · · · tkwiktk+1.(6)

Here ≡ denotes graphical equality of the words, ij ∈ Z \ {0}, and the words tj
have no occurrences of subwords equal to w or w−1. And in this presentation each
occurrence of the words w and w−1 in v is fixed.
The presentation of v in the form (6) we shall call its w-decomposition.
Now for each element w ∈ P define a function ew on the set of words in the

group alphabet X. First we define ew on cyclically reduced words. Let u be a
cyclically reduced word. Suppose that u has occurrences of wε, ε ∈ {1,−1} and
u = t1w

i1 . . . tkw
iktk+1 is its w-decomposition, then we set

ew(u) =
k∑

j=1

ij + λtk+1,t1(w).

Suppose that u has no occurrences of wε, ε ∈ {1,−1}. Consider two cases.
1) If among the cyclic permutations of u there are no words containing occur-
rences of w or w−1, we set ew(u) = 0.

2) If among the cyclic permutations of u there is a word containing wε, ε ∈
{1,−1}, we set ew(u) = ε.

Now let v ∈ σ(X); then v is uniquely representable in the form v ≡ z(v)−1vz(v),
where v ∈ c(X). In this case we set ew(v) = ew(v). Finally for an arbitrary word
v we set ew(v) = ew(σ(v)).

Lemma 3. The system of pseudocharacters {ew ; w ∈ P+} has the following prop-
erties.
1) |ew(uv)− ew(u)− ew(v)| ≤ 15 for any u, v ∈ F and w ∈ P+.
2) If |w1| < |w2|, then ew2(w1) = 0.
3) If |w1| = |w2| and w1 �= w2, then ew2(w1) = 0.
4) ew(w) = 1 for each w ∈ P+.

Proof. See [7], Theorem 1. �
From these properties we obtain that if w1, w2 ∈ T+, w1 �= w2 and |w1| ≤ |w2|,

then ew2(w1) = 0.
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Definition 8. Let w ∈ T+. We shall say that w satisfies the condition of boundness
(a) if for any v ∈ F there is c(w, v) > 0 such that

card{α ∈ A | ew(vα) �= 0} ≤ c(w, v).(7)

Let M be a subset of T+. We shall say that M satisfies the condition of boundness
(a), if for any w ∈M and any v ∈ F there is c(w, v) > 0 such that the relation (7)
holds.

For w ∈ T+ satisfying the condition of boundness (a) we define a function δw by
setting:

δw(v) =
∑
α∈C

ew(vα) v ∈ F,

where C denotes a system of representatives of cosets of the quotient group A
by InnF . Since any pseudocharacter is invariant under inner automorphisms we
obtain that the definition of the function δw does not depend on the system of
representatives of the cosets of the quotient group A by InnF . Hence, we can
write

δw(v) =
∑
α∈A

ew(vα).

By formula 43 from [7] we have

Θu,v(w) = ew(uv)− ew(u)− ew(v) for all w ∈ P+ and u, v ∈ F .(8)

Starting from the measures Θu,v we define measures ΘA
u,v and Θ

A

u,v on the set
T+ as follows:

ΘA
u,v(w) =

∑
α∈A

Θuα,vα(w), Θ
A

u,v =
1

δw(w)
ΘA

u,v.

Definition 9. Let w ∈ T+. We shall say that w satisfies the condition of boundness
(b) if there is dw > 0 such that

card{α ∈ A |w ∈ suppΘuα,vα} ≤ dw for all u, v ∈ F .(9)

We shall say thatM ⊆ T+ satisfies the condition of boundness (b) if for each w ∈M
there is dw > 0 such that the relation (9) holds.

Lemma 4. Let w ∈ T+ satisfy the conditions of boundness (a) and (b). Then the
function δw is an element of PX(F,A).

Proof. The condition of boundness (a) is used in the definition of the function δw.
From the conditions of boundness (b) we have

|δw(uv)− δw(u)− δw(v)| = |
∑
a∈A

ew((uv)α)−
∑
a∈A

ew(uα)−
∑
a∈A

ew(vα)|

= |
∑
a∈A

[ew(uαvα)− ew(uα)− ew(vα)]|

=
∑
a∈A

|Θuα,vα(w)| ≤ 15 · dw

for any u, v ∈ F . �
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Definition 10. Let T+
n = {w ; w ∈ T+, |w| = n}.

1) We shall say that the set T+
n satisfies the condition of boundness (b′) if there

is d(n) > 0 such that for each w ∈ T+
n ,

card{α ∈ A |w ∈ suppΘuα,vα} ≤ d(n) for all u, v ∈ F .

2) We shall say that the set T+
n satisfies the condition of boundness (c) if there

is c(n) > 0 such that

|T+
n ∩ suppΘA

u,v| ≤ c(n) for all u, v ∈ F .

3) We shall say that the set T+ satisfies the condition of boundness (d) if for
any w ∈ T+ and any v ∈ F such that v ∼A w,

|c(v)| ≤ |w|.
Lemma 5. Let w1, w2 be distinct elements from the set T+ satisfying the condi-
tions of boundness (a), (c) and (d). Then δw2(w1) = 0, δw2(w2) ≥ 1.
Proof. Let |w1| < |w2|. Then the conditions of the Lemma imply that |c(wα

1 )| <
|w2| for all α ∈ A. Hence, from Lemma 3, assertion 2), and from the fact that any
pseudocharacter is invariant under inner automorphisms it follows that δw2(w1) = 0.
Now suppose that |w1| = |w2| and w1 �= w2. Then for each α from A the element wα

1

is conjugate in F neither to w2, nor to w−1
2 . Moreover, the relation |c(wα

1 )| ≤ |c(w2)|
holds. Hence, from Lemma 3, assertions 2) and 3), we get ew2(w

α
1 ) = 0 for all α ∈ A.

The definition of the set T+ implies that elements wα
2 , w

−1
1 are not conjugate in

F and the estimation |c(wα
2 )| ≤ |c(w2)| holds. Hence, from Lemma 3, assertions 2)

and 3), we get that if for some α0 from A the inequality ew2(w
α0
2 ) �= 0 holds, then

ew2(w
α0
2 ) = 1. Now from relation ew2(w2) = 1 we have δw2(w2) ≥ 1. �

Note that the set {δw ; w ∈ T+} is linearly independent. Indeed, let w1, . . . , wn

be pairwise distinct elements from T+ and let λ1, . . . , λn be nonzero numbers such
that

∑n
i=1 λiδwi ≡ 0. We may assume that |w1| ≤ · · · ≤ |wn|. Then Lemma 5

implies ψ(wn) = λnδwn(wn) and we obtain a contradiction to the relation λn �= 0.
Now set

δw(v) =
1

δw(w)
· δw(v).

It is clear that δw(w) = 1. In general the function δw is not an integer-valued
pseudocharacter.

Lemma 6. Let w ∈ T+ and u, v ∈ F . Then

δw(uv)− δw(u)− δw(v) = ΘA
u,v(w),(10)

δw(uv)− δw(u)− δw(v) = Θ
A

u,v(w).(11)

Proof. The equality (11) follows from (10). Let us verify (10). From

ew(uαvα)− ew(uα)− ew(vα) = Θuα,vα(w),
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(see [7] formula 43) we get

δw(uv)− δw(u)− δw(v) =
∑
α∈A

[eα
w(uv)− eα

w(u)− eα
w(v)]

=
∑
α∈A

[ew(uαvα)− ew(uα)− ew(vα)]

=
∑
α∈A

Θuα,vα(w)

= Θu,v(w).

�
Theorem 5. Let n be a positive integer. Let the set T+

n satisfy the conditions of
boundness (a), (b′) and (c) and let t be a bounded function on the set T+

n . Then:
1) The functions

ϕt =
∑

w∈T+
n

t(w)δw

ψt =
∑

w∈T+
n

t(w)δw(12)

belong to the space PX(F,A).
2) ψt(w) = t(w), for all w ∈ T+

n .

Proof. It is obvious that for each α from A, each integer n and each v from F , the
equalities

ϕα
t = ϕt , ψα

t = ψt , ϕα
t (v

n) = nϕt(v) , ψα
t (v

n) = nψt(v)

hold. We verify that the set {ϕt(uv) − ϕt(u) − ϕt(v) ; u, v ∈ F} is bounded. Let
c > 0 be such that sup{|t(w)| ; w ∈ T+

n } ≤ c. Then for any elements u, v from F
we have

ϕt(uv)− ϕt(u)− ϕt(v) =
∑

w∈T+
n

t(w)ΘA
u,v(13)

ψt(uv)− ψt(u)− ψt(v) =
∑

w∈T+
n

t(w)Θ
A

u,v.(14)

Indeed,

ϕt(uv)− ϕt(u)− ϕt(v) =
∑

w∈T+
n

t(w)δw(uv)−
∑

w∈T+
n

t(w)δw(u)−
∑

w∈T+
n

t(w)δw(v)

=
∑

w∈T+
n

t(w)[δw(uv)− δw(u)− δw(v)]

=
∑

w∈T+
n

t(w)ΘA
u,v.

Similarly (14) is established. Further, from the conditions of boundness (b′),(c)
and (13) we have

|ϕt(uv)− ϕt(u)− ϕt(v)| ≤ |
∑

w∈T+
n

t(w)ΘA
u,v| ≤ c · d(n)c(n).
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Similarly
|ψt(uv)− ψt(u)− ψt(v)| ≤ c · d(n)c(n).

Thus, ϕt, ψt ∈ PX(F,A). Let w0 ∈ T+
n , then Lemma 5 and the definition of δw

imply

ψt(w0) =
∑

w∈T+
n

t(w)δw(w0) =
∑

w∈T+
n

t(w)
δw(w0)
δw(w)

=
δw0(w0)
δw0(w0)

= t(w0).

�

Definition 11. We shall say that the set T+ satisfies the condition of boundness
(c′) if for any n ≥ 1 the set T+

n satisfies the condition of boundness (c).

Definition 12. We shall say that the set T+ satisfies the condition of boundness
if it satisfies the conditions of boundness (a), (c′), (d) and for any n ∈ N the set
T+

n satisfies the condition of boundness (b′).

Let the set T+ satisfy the condition of boundness. Denote by E the set of
functions ϕ on the group F that satisfy the following conditions.
1) ϕ(xn) = nϕ(x) for each x ∈ F and each n ∈ Z.
2) ϕ(xα) = ϕ(x) for any x ∈ F and each α ∈ A.
3) ϕ(xy) = ϕ(yx) for all x, y ∈ F .
4) ϕ is bounded on T+

i for each i ∈ N.
Obviously, E is a linear space under the usual operations. Let L(T ) be a linear

space of a real functions t on T+, satisfying the following condition:
t is bounded on T+

i for each i ∈ N.
Let us construct an isomorphism π between the linear spaces E and L(T ). Let

ϕ ∈ E. For any i ∈ N let us define a function ti : T+
i → R as follows. We set

t1 = ϕ
∣∣
T+

1
. The function t1 is bounded. By Theorem 5 the function

ψt1 =
∑

w∈T+
1

t1(w)δw

belongs to the space BPX(FX , A). Now define t2 as follows: for any w from T+
2

we set
t2(w) = (ϕ− ψt1)(w).

It is clear that the function t2 is bounded. Further, the functions ti are defined
by induction: if t1, . . . , tn have been already defined and are bounded, then for each
w ∈ T+

n+1 we set

tn+1(w) = ϕ(w)−
n∑

i=1

ψti(w)(15)

where the functions ψti are pseudocharacters, which are constructed in Theorem 5
by the formula (12). It is obvious that the function tn+1 is bounded. Now define
a function π(ϕ), which we denote by t, as follows: if w ∈ T+

i , then we set
t(w) = ti(w). It is clear that t ∈ L(T+) and that the mapping π is linear. Let us
show that the following equality holds:
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ϕ =
∞∑

i=1

ψti
.(16)

If w ∈ T+
1 , then (12) and Lemma 5 imply that for each i ≥ 2 the equality

ψti(w) = 0 holds. Hence, ϕ(w) = ψt1(w) = t1(w) and the equality (16) is valid.
Suppose the equality (16) has been already established for all w from ∪n

i=1T
+
i . Let

us prove it for w from T+
n+1. Suppose that w ∈ T+

n+1. Then from (15) and the
definition of the functions tn+1 and ψtn+1 we obtain

ψtn+1(w) = ϕ(w)−
n∑

i=1

ψti
(w),

i.e.,

ϕ(w) =
n+1∑
i=1

ψti
(w).

Now from the relation ψtn+1(w) = 0 for i > n+ 1 we get

ϕ(w) =
∞∑

i=1

ψti(w).

Thus the formula (16) is true for all w from T . The functions from the left and
right sides of the equality (16) satisfy conditions 1) and 2) from the definition of
the space E. Hence this equality will be true for all elements of F . Note that if
the τi are bounded functions on T+

i , i ∈ N and ψτi
are pseudocharacters of F , that

are defined by formula (12), then the function ϕ =
∑∞

i=1 ψτi belongs to E and the
following equation

π(ϕ)
∣∣
T+

i

= τi, for each i ∈ N(17)

holds. Indeed, suppose that βi are functions defined on the set T+
i , i ∈ N such that

β1 = ϕ
∣∣
T+

1
and that for n ≥ 1 the function βn+1 is defined by the formula

βn+1 = (ϕ−
n∑

i=1

ψτi)
∣∣
T+

n+1
.

Then β1 = ϕ
∣∣
T+

1
= τ1, β2(w) = ϕ(w) = ψτ2(w) = τ2(w) for each w ∈ T+

2 .
Suppose that βi ≡ τi for i ≤ n. Then using the relation τi(w) = 0 for i > n+1, for
w ∈ T+

n+1 we obtain

βn+1(w) = ϕ(w)−
n∑

i=1

ψτi
(w)

=
∞∑

i=1

ψτi
(w)−

n∑
i=1

ψτi
(w)

=
∞∑

i=n+1

ψτi
(w)

= ψτn+1(w)

= τn+1(w).
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Thus the equality (17) is established. In particular the equality (17) implies that
the mapping π is an epimorphism. Let us show that kerπ = 0. Indeed, suppose
that ϕ ∈ kerπ; then from (16) and (17) we obtain

π(ϕ)
∣∣
T+

k

=
∞∑

i=1

ψti

∣∣
T+

k

= tk = 0 for all k ∈ N.

Hence, for any k ∈ N we have ϕ
∣∣
T+

k

≡ 0 and ϕ ≡ 0. Thus, kerπ = 0 and π is an
isomorphism.
Denote by K(T+) the space of real function β on the set T+ satisfying the

following conditions.
1) β

∣∣
T+

I

is a bounded function for all i ∈ N.
2) There is an ε = ε(β) > 0 such that for each pair of reduced words u, v from

F the following inequality holds:∣∣ ∫
T+
β dΘ

A

u,v

∣∣ ≤ ε.

It is clear that K(T+) is a subspace of L(T+). Let us verify that BPX(FX , A)
is subspace of E. It is clear from the conditions defining the space E that we
must verify only 3). Let us show that this follows from Lemma 2. Indeed, if
ϕ ∈ BPX(FX , A), then the function ϕ

∣∣
T+

1
is bounded. From the fact that ϕ is a

pseudocharacter it follows that there is c > 0 such that for any u, v from F the
inequality |ϕ(uv) − ϕ(u) − ϕ(v)| ≤ c holds. Let |ϕ(x)| ≤ δ for all x ∈ X. Then
Lemma 2 implies that |ϕ(v)| ≤ |v| ·δ+(|v|−1) ·c for all v ∈ F . Hence, BPX(FX , A)
is a subspace of E.

Theorem 6. Let the set T+ satisfy the condition of boundness. Then:
1) The mapping π is an isomorphism between the spaces BPX(FX , A) and

K(T+).
2) Each element ϕ from BPX(FX , A) is uniquely representable in the form

ϕ =
∑

w∈T+

β(w)δw,

where β ∈ K(T+).

Proof. 1) Suppose that ϕ ∈ BPX(FX , A) and that |ϕ(uv)− ϕ(u)− ϕ(v)| ≤ ε for
some ε > 0 and any u, v ∈ F . Let π(ϕ) = β and βi = β

∣∣
T+

i

for i ∈ N. Using (11)
we obtain the following equation that is valid for any u, v ∈ F .
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∫
T+
β dΘ

A

u,v =
∞∑

i=1

∫
T+

i

β dΘ
A

u,v(18)

=
∞∑

i=1

∑
w∈T+

i

β(w)Θ
A

u,v(w)

=
∞∑

i=1

∑
w∈T+

i

β(w)[δw(uv)− δw(u)− δw(v)]

=
∞∑

i=1

∑
w∈T+

i

β(w)δw(uv)−
∞∑

i=1

∑
w∈T+

i

β(w)δw(u)

−
∞∑

i=1

∑
w∈T+

i

β(w)δw(v).

Now using formula (16), the definition of pseudocharacters ψβi
and formula (18)

we get

∣∣ ∫
T+
β dΘ

A

u,v

∣∣ = ∣∣ ∞∑
i=1

∫
T+

i

β dΘ
A

u,v

∣∣
=

∣∣ ∞∑
i=1

ψβi(uv)−
∞∑

i=1

ψβi(u)−
∞∑

i=1

ψβi(v)
∣∣

= |ϕ(uv)− ϕ(u)− ϕ(v)| ≤ ε.

Thus, π(ϕ) ∈ K(T+). Now let β ∈ K(T+) and βi = β
∣∣
T+

i

. Then as was shown
above, if ψβi are the pseudocharacters defined by the formula (12) and if

ϕ =
∞∑

i=1

ψβi ,

then π(ϕ) = β, i.e., ϕ = π−1(β). Let us show that ϕ belongs to BPX(FX , A). Let
ε > 0 such that

∣∣ ∫
T+ β dΘ

A

u,v

∣∣ ≤ ε for any u, v ∈ F . Then

|ϕ(uv)− ϕ(u)− ϕ(v)| = ∣∣ ∞∑
i=1

ψβi
(uv)−

∞∑
i=1

ψβi
(u)−

∞∑
i=1

ψβi
(v)

∣∣
=

∣∣ ∞∑
i=1

[ψβi(uv)− ψβi(u)− ψβi(v)]
∣∣

=
∣∣ ∞∑

i=1

∑
w∈T+

i

βi(w)[δw(uv)− δw(u)− δw(v)]
∣∣

=
∣∣ ∞∑

i=1

∑
w∈T+

i

βi(w)Θ
A

u,v(w)
∣∣

=
∣∣ ∫

T+
β dΘ

A

u,v

∣∣ ≤ ε.
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Hence, ϕ ∈ BPX(FX , A) and π is an isomorphism between BPX(FX , A) and
K(T+)
The assertion 2) follows from assertion 1). �

The following result was obtained in [6].

Theorem 7. Suppose that f is a quasicharacter of a semigroup S and that c > 0
is such that

|f(xy)− f(x)− f(y)| < c

for all x, y ∈ S. Then the function

f̂(x) = lim
n→∞

1
2n
f(x2n

)(19)

is well-defined and is a pseudocharacter of S such that

|f̂(xy)− f̂(x)− f̂(y)| < 4c for all x, y ∈ S.
Corollary 1. Suppose that f is a quasicharacter of a group G and that c > 0 is
such that

|f(xy)− f(x)− f(y)| < c

for all x, y ∈ G. Then the function

f̂(x) = lim
n→∞

1
2n
f(x2n

)

is well-defined and is a pseudocharacter of G such that

|f̂(xy)− f̂(x)− f̂(y)| < 4c for all x, y ∈ G.
Proof. Theorem 7 implies that in order to prove that f̂ is a pseudocharacter of
group G it remains to verify that for each x ∈ G the equality f̂(x−1) = −f̂(x)
holds. From the relation f̂(xn) = nf̂(x) for all x ∈ G and n ∈ N, we obtain
nf̂(1) = f̂(1n) = f̂(1). The latter is possible only if f̂(1) = 0. Hence, |f̂(1) −
f̂(x)− f̂(x−1)| < 4c for all x ∈ G and |f̂(x) + f̂(x−1)| < 4c for all x ∈ G. Whence
follows the inequality n|f̂(x)+ f̂(x−1)| = |f̂(xn)+ f̂((x−1)n)| < 4c for all x ∈ G

and n ∈ N. This is possible only if f̂(x−1) = −f̂(x). Now let k > 0. Then we have
f̂(x−k) = f̂((xk)−1) = −f̂(xk) = −kf̂(x). �

Proposition 1. Let A be a finite group. Then there exists T+ satisfying the con-
dition of boundness.

Proof. Let k be the order of the group A. It is clear that each class of A-conjugacy
is the union of at most k classes of conjugacy in F . From this fact we find that
the set q ∩ P contains at most k elements. Hence, one can choose an element of
maximal length in the set q∩P . Hence, there is a set of representatives T of classes
of A-conjugacy belonging to q such that the following relations hold.
1) w ∈ T if and only if w−1 ∈ T .
2) Every element w ∈ T has maximal length among the elements belonging to
the set c(X) and A-conjugated to w.

Hence, in the set T we can choose subset T+ such that T+ ⊆ P+, T+ ∩
(T+)−1 = ∅ and T = T+ ∪ (T+)−1. Now it easy to verify that the set T+ satisfies
the condition of boundness. �
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Proposition 2. Let H be an invariant subgroup of finite index k in a group G.
Then PX(G) = PX(H,G).

Proof. Let us show that each element from PX(H,G) may be uniquely extended
to a pseudocharacter of the group G. Let ϕ be an element from PX(H,G) and
c > 0 be such that

|ϕ(xy)− ϕ(x)− ϕ(y)| ≤ c

for all x, y ∈ H. Suppose that A is a system of representatives of cosets of G by H,
then each element g ∈ G is uniquely representable in the form

g = α(g)h(g)

where α(g) ∈ A, h(g) ∈ H. By hypothesis the set
{α(α1α2) ; α1, α2 ∈ A}

is finite. Hence, there is δ > 0 such that

|ϕ(α(α1α2))| ≤ δ for all α1, α2 ∈ A.(20)

Now let ϕ1 the function on G defined by formula ϕ1(αh) = ϕ(h), h ∈ H, α ∈ A.
Let us verify that ϕ1 belongs to KX(G). We have

|ϕ1(α1h1α2h2)− ϕ1(α1h1)− ϕ1(α2h2)|
= |ϕ1(α1α2h

α2
1 h2 − ϕ1(α1h1)− ϕ1(α2h2)|

= ϕ1(α(α1α2)h(α1α2)hα2
1 h2)− ϕ1(α1h1)− ϕ1(α2h2)|

= ϕ1(h(α1α2)hα2
1 h2)− ϕ1(h1)− ϕ1(h2)|

= ϕ(h(α1α2)hα2
1 h2)− ϕ(h1)− ϕ(h2)|

= ϕ(h(α1α2)hα2
1 h2)− ϕ(hα2

1 )− ϕ(h2)− ϕ(h(α1α2))

+ ϕ(h(α1α2))− ϕ(hα2
1 h2) + ϕ(hα2

1 h2)|
≤ |ϕ(h(α1α2)hα2

1 h2)− ϕ(h(α1α2))− ϕ(hα2
1 h2)|

+ |ϕ(hα2
1 h2)− ϕ(hα2

1 )− ϕ(h2)|+ |ϕ(h(α1α2))|
Now from (20) we get

|ϕ1(α1h1α2h2)− ϕ1(α1h1)− ϕ1(α2h2)| ≤ 2c+ δ.
Thus ϕ1 ∈ KX(G), hence ϕ′ = ϕ̂1 is a pseudocharacter of the group G. Here
ϕ̂1 is defined by (19). It is clear that ϕ′∣∣

H
= ϕ. Let us verify that the mapping

ϕ→ ϕ′ is one-to-one and maps PX(H,G) “onto” PX(G). Indeed, if f ∈ PX(G),
then ϕ = f

∣∣
H

∈ PX(H,G) and ϕ′ coincides with f on subgroup H. Hence, the
pseudocharacter ψ = f − ϕ′ vanishes on H. From the equality ψ(gk) = kψ(g)
for all g ∈ G we obtain ψ = 0 on G and f = ϕ′. Similarly we verify that if
ϕ1, ϕ2 ∈ PX(H,G) and ϕ1 �= ϕ2, then ϕ′

1 �= ϕ′
2. �

Corollary 2. If a group G is a finite extension of a free group F of finite rank,
then its space of pseudocharacters is described by Theorem 6.

Proof. Let X = {x1, x2, . . . , xk} be a set of free generators of the group F and let
T+ be the set from Proposition 1. Let A be the group of automorphisms of the
group F that are induced by conjugation by elements from G. From the condition
we have that the group A = A/InnA is finite and we can apply Proposition 1.
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From the finiteness of the set X it is clear that every element of PX(F,G)
is bounded on the set X. Hence PX(F,G) = BPX(FX , G). By Proposition 2
we have PX(G) = PX(F,G) = BPX(FX , G) and we obtain that the space of
pseudocharacters of the group G is described by Theorem 6. �

We note that Theorem 6 may be used to describe the space of pseudocharacters
of certain infinite extensions of free groups of infinite rank.

Example. Suppose that F is the free group with free generators X = {xi ; i ∈ Z},
and that A is an infinite cyclic group with generator a. Let G = A · F be the
semidirect product such that F = G where A acts on F as follows:

xa
i = xi+1, i ∈ Z.(21)

By Theorem 2 from [6] we have PX(G) = X(A)+̇PX(F,A), where X(A) is a space
of additive characters of the group A. Let ϕ be an arbitrary element from the space
PX(F,A). From (21) it follows that ϕ is constant on the set X. Hence, we have
PX(F,A) = BPX(FX , A) and the problem of describing of the space PX(G) is
reduced to the problem of describing of BPX(FX , A). Let T+ be some set satisfying
the conditions of Lemma 1 and belonging to P+. It is easy to verify that T+ satisfies
the condition of boundness. From this fact we obtain that the Theorem 6 describes
the space BPX(FX , A) and therefore the space of pseudocharacters of the group
G too.
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