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Test Elements and the Retract Theorem in
Hyperbolic Groups

John C. O’Neill and Edward C. Turner

Abstract. We prove that in many, perhaps all, torsion free hyperbolic groups,
test elements are precisely those elements not contained in proper retracts. We
also show that all Fuchsian groups have this property. Finally, we show that
all surface groups except Z × Z have test elements.
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0. Introduction

Definition 1. If G is a group then g ∈ G is a test element if for any endomorphism
φ : G→ G, φ(g) = g implies that φ is an automorphism.

The notion of test elements was first considered in the context of free groups, in
which they are called test words. The first example was provided in 1918 by Nielsen
[N], who showed that the basic commutator [a, b] = aba−1b−1 is a test word in the
free group F (a, b). Considerable progress has been made recently in understanding
both test elements and test words—see [Tu], for example, and the references cited
there. The following reformulation of the definition makes clear how test elements
are used to recognize automorphisms: g is a test element if φ(g) = α(g) for some
automorphism α implies that φ is an automorphism. Thus the issue of deciding
whether φ is an automorphism is replaced by that of deciding whether φ(g) and g
are equivalent under the action of the automorphism group Aut(G). The classic
algorithm of J. H. C. Whitehead [W] decides very effectively when two elements
of a free group F are equivalent under the action of Aut(F )—in a forthcoming
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paper, D. J. Collins and the second author will show how to do the same thing in
a torsion-free hyperbolic group.

Producing non-test elements is quite easy. Suppose, for example, that the sub-
group R of G is a proper retract , i.e., the image of a non-surjective map ρ : G→ G,
called a retraction, with the property that ρ(r) = r for all r ∈ R. Then no element
of R can be a test element. In [Tu] the following theorem—the Retract Theorem
for free groups—was proven, characterizing test words in free groups.

Theorem. A word w in a free group F is a test word if and only if w is not in
any proper retract.

We are interested in deciding whether the Retract Theorem is true for gen-
eral hyperbolic groups. (By hyperbolic we mean word hyperbolic in the sense of
Gromov—see, e.g., [GH]. In particular, hyperbolic groups are finitely generated.)
We succeed in proving it for torsion free hyperbolic groups that are stably hyperbolic
in the following sense.

Definition 2. A hyperbolic group is stably hyperbolic if for every endomorphism
ϕ : G→ G, there are arbitrarily large values of n so that ϕn(G) is hyperbolic.

Any hyperbolic group with the property that every finitely generated subgroup is
hyperbolic (hyperbolic surface groups, for example) clearly satisfies this property. A
famous application of the Rips construction [R] shows that some hyperbolic groups
have finitely generated non-hyperbolic subgroups. We modify this construction
in Section 1 to produce an example in which such a subgroup is the image of
an endomorphism. It’s relatively easy to extend this to find endomorphisms of
hyperbolic groups that have arbitrarily many non-hyperbolic forward images, but
in all cases we’ve studied, the images are eventually hyperbolic. It seems quite
possible that all hyperbolic groups are actually stably hyperbolic.

Our specific results are the following.

Theorem 1. If G is a torsion free stably hyperbolic group and g ∈ G, then g is a
test element if and only if g is not in any proper retract.

Theorem 2. If H is a finitely generated Fuchsian group and h ∈ H, then h is a
test element if and only if h is not in any proper retract. This applies in particular
if H is a finite free product of cyclic groups.

Theorem 3. If G is a surface group other than Z × Z then G has test elements.

The situation for surface groups is interesting—all surface groups except Z × Z

have test elements (explicit examples given in Section 3) and all except the funda-
mental group of the Klein bottle 〈a, b | aba−1 = b−1〉 satisfy the Retract Theorem.
(In [V2] it was shown that b lies in no proper retract but is nevertheless not a test
word since it is fixed by ϕ(a) = a3, ϕ(b) = b.)

We will use the following terminology.

Definition 3. If G is a group and ϕ : G→ G is an endomorphism, then

ϕn = ϕ |ϕn(G): ϕn(G) → ϕn(G), and

ϕ∞ = ϕ |ϕ∞(G): ϕ∞(G) → ϕ∞(G),

where ϕ∞ =
⋂∞

i=1 ϕ
n(G).

The group G is Hopfian if it is not isomorphic to any of its proper quotients and
is co-Hopfian if it is not isomorphic to any of its proper subgroups.
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1. Torsion free hyperbolic groups

This section is devoted to a proof of Theorem 1. Our proof of Theorem 1 is
modeled on the proof of the Retract Theorem in [Tu], the main technical tool being
Proposition 1, whose proof we defer to the end of the section.

Proposition 1. Suppose that G = G1 ∗ G2 ∗ · · · ∗ Gm is a free product of infinite
cyclic and freely indecomposable co-Hopfian groups. If ϕ : G → G is a monomor-
phism, then ϕ∞ (G) is a free of factor G.

Proposition 2. If G is a torsion-free hyperbolic group and ϕ : G → G is an
endomorphism with the property that ϕn (G) is hyperbolic for arbitrarily large n,
then ϕ∞ (G) is a free factor of ϕN (G) for some N .

Proof. It was proven by Sela [Se2] that if ϕ : G → G is an endomorphism of a
torsion-free hyperbolic group G then ϕ|ϕn(G) : ϕn(G) → ϕn(G) is a monomorphism
for large enough n. Let n be large enough so that ϕ|ϕn(G) is a monomorphism and
that ϕn(G) is hyperbolic and consider the free product decomposition ϕn(G) =
H1 ∗ · · · ∗ Hm into freely indecomposable hyperbolic factors. Sela [Se1] has also
proven that every freely indecomposable torsion free hyperbolic group is either
co-Hopfian or infinite cyclic. Proposition 2 now follows from Proposition 1. �

Proof of Theorem 1. The fact that elements of proper retracts are not test el-
ements is trivially true in all groups since a proper retraction is not an automor-
phism. To prove the converse, we begin with the following general observation:
if µ : G → G is a monomorphism of a group G, then µ∞ is an automorphism of
µ∞(G). It is clear that µ∞ is injective. To see that µ∞ is surjective, let g ∈ µ∞ (G) ;
then for every n, there exists gn ∈ µn (G) such that g = µ (gn); since µ is injective,
gm = gn for all m,n. Hence g1 ∈ µ∞ (G), and µ is surjective.

Now suppose that G is a stably hyperbolic group, that g is not a test element
and that ϕ is a endomorphism which is not an automorphism so that ϕ(g) = g—we
show that g lies in a proper retract by showing that ϕ∞(G) is a proper retract.

For large enough n, ϕ is a monomorphism by [Se2]; since (ϕn)∞ = ϕ∞, ϕ∞ is an
automorphism by the observation above. According to Proposition 2, ϕ∞ (G) is a
free factor of ϕN (G) for some N : choose such an N and let π : ϕN (G) → ϕ∞ (G)
be a free factor projection mapping. Then

ρ = ϕ−N
∞ ◦ π ◦ ϕN : G→ ϕ∞ (G)

is a retraction mapping. Thus ϕ∞ is a retract. �

It may be that the Retract Theorem is true for general hyperbolic groups: Theo-
rem 2 is a partial result in this direction. It may also be the case that all hyperbolic
groups are stably hyperbolic. However, the following example, suggested by G. A.
Swarup, shows that it may be that ϕ(G) is not hyperbolic (but in this case ϕ2(G)
is trivial).

Example. Suppose that

F2 ⊕ F2 = 〈x1, x2, x3, x4 | [x1, x3] , [x1, x4] , [x2, x3] , [x2, x4]〉
and let

ψ : F2 ⊕ F2 → F2 ⊕ F2 by ψ (xi) = x1 for 1 ≤ i ≤ 4.
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In [Dr] it was shown that ker (ψ) has rank 4 and is not finitely presented and is
therefore not a hyperbolic group.

Now let G = (F2⊕F2)∗Fr, Fr = 〈y1, . . . , yr〉 and ψ̃ : G→ Fr+1 = 〈x1, y1, . . . , yr〉
by

ψ̃(xi) = ψ(xi),

ψ̃(yi) = yi.

and let P = ker
(
ψ̃

)
. Then P has rank 4.

Now the Rips construction [R] produces a hyperbolic group H with rank 6 + r
that maps onto G by a map ε with kernel generated by two added generators a and
b. Then H ′ = ε−1(P ) is a non-hyperbolic subgroup of H of rank at most 6.

1
↓

H ′ ε→ P
↓ ↓

1 → 〈a, b〉 → H
ε→ G → 1

↓ ψ̃
Fr+1

↓
1

Now let r ≥ 5, π : Fr+1 → H ′ be a surjection and ϕ = π ◦ ψ̃ ◦ ε : H → H ′. Then H
is hyperbolic and φ is an endomorphism whose image H ′ is not hyperbolic.

Proof of Proposition 1. We begin by observing that it suffices to show that
ϕ∞(G) is a free factor of ϕn(G) for some n (in fact we will show that this is
true for all sufficiently large n). For if ϕn(G) = ϕ∞(G) ∗G′ for some G′, then the
monomorphism

ϕn : G→ ϕn(G)

pulls this factorization back to G:

G = ϕ−n(ϕ∞(G)) ∗ ϕ−n(G′).

But it is straightforward to show that ϕ−n(ϕ∞(G)) = ϕ∞(G).
The proof is a geometric generalization of the Takahasi Theorem [Ta] and is

modeled on the proof of the Takahasi result outlined in problem 33 on page 118 of
[MKS]). We will need the following slight variant of the usual normal form measure
of length in a free product (which depends on the product decomposition).

Definition 4. If G = G1 ∗G2 ∗ · · · ∗Gm is a free product of freely indecomposable
factors, then the length |g|G is

|g|G =
t∑

j=i

|gj |Gij
.

where g has free product normal form g = g1g2 . . . gt, 1 �= gj ∈ Gij for some ij ,
|gj |Gij

= 1 if Gij �∼= Z and |gj |Gij
= n if Gij

∼= Z and gj is the nth power of a
generator.
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We order the factors of G so that Gi
∼= Z for 1 ≤ i ≤ �; thus

G = F� ∗G�+1 ∗ · · · ∗Gm.

Let X be the natural 2-complex with fundamental group G which is the wedge
of � circles and 2-complexes K�+1, . . . ,Km, π1(Ki) = Gi, each of which is joined to
the wedge point by a line segment.

The nested sequence of subgroups

G ≥ ϕ (G) ≥ ϕ2 (G) ≥ · · · ≥ ϕn (G) ≥ · · · ≥ ϕ∞ (G)

determines a sequence of coverings of X

X∞ · · · pk+2→ Xk+1
pk+1→ Xk

pk→ . . . X1
p1→ X

where π1(Xk) = ϕk(G). Let Pk = p1 ◦ p2 ◦ · · · ◦ pk : Xk → X.
In the covering space Xk, a connected component K̂i of P

−1
k (Ki) will be called

an essential Ki-country if π1

(
K̂i

)
�= 1 and an inessential Ki-country otherwise.

Let Mk be a contractable subspace of Xk which is the union of a maximal tree in
Xk (fixed for the remainder of the argument) with all the the inessential countries
in Xk. ThenMk—which we call a representing subspace—determines a free product
representation for ϕk(G) as in the Kurosh Subgroup Theorem.

We define a unit path in Xk to be a path in Xk that begins and ends at a lift of
the basepoint of X and never passes through:

i) an intermediary basepoint,
ii) an inessential country,
iii) an edge of the maximal tree.

Clearly each path in Xk is uniquely a product of unit paths and paths without unit
subpieces. If g ∈ ϕk (G) and f̃ is the lift to Xk of a closed loop f representing g,
then relative to the free product representation corresponding to Mk, |g|ϕk(G) is
just the number of unit paths in f̃ .

For g ∈ ϕk(G), let ‖g‖ϕk(G) be the length of the shortest representation of g
in ϕk (G) with respect to any free product representation for ϕk (G) into freely
indecomposable factors. Suppose that min

k∈N

{
‖g‖ϕk(G)

}
= t is attained in ϕN (G) =

G′
1 ∗ G′

2 ∗ · · · ∗ G′
m, with G′

i
∼= Z for 1 ≤ i ≤ � and suppose that g = g1g2 . . . gt,

where gj ∈ G′
ij

for some 1 ≤ ij ≤ m.
Applying the Kurosh Theorem to ϕN+1 (G) as a subgroup of ϕN (G) and using

the fact that ϕN (G) ∼= ϕN+1 (G) we get that

ϕN+1 (G) = F ′
� ∗ γ�+1α�+1

(
G′

�+1

)
γ−1

�+1 ∗ · · · ∗ γmαm (G′
m) γ−1

m

where F ′
�
∼= F�, γi ∈ ϕN (G) for � < i ≤ m and αj : G′

j → G′
ij

is a monomorphism
for � < j, ij < m.

The factors of ϕN (G) can be rearranged and ϕ iterated as often as needed so
that

ϕN (G) = F ′
� ∗G′

�+1 ∗G′
�+2 ∗ · · · ∗G′

p ∗G′
p+1 ∗ . . . G′

m

ϕN+r (G) = F ′′
� ∗ γ�+1α�+1

(
G′

�+1

)
γ−1

�+1 ∗ · · · ∗ γpαp

(
G′

p

)
γ−1

p

∗ δp+1βp+1

(
G′

p+1

)
δ−1
p+1 ∗ · · · ∗ δmβm (G′

m) δ−1
m
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where F ′′
�
∼= F ′

� , αi : G′
i → G′

i and βk : G′
k → G′

ik
are monomorphisms, and γi, δj

are elements of ϕN (G) for � < i, ik ≤ p, p < k ≤ m.
Since Gi is co-Hopfian for � < i ≤ p, we may write

ϕN+r (G) = F ′′
� ∗ γ�+1G

′
�+1γ

−1
�+1 ∗ · · · ∗ γpG

′
pγ

−1
p

∗ δp+1βp+1

(
G′

p+1

)
δ−1
p+1 ∗ · · · ∗ δmβm (G′

m) δ−1
m .

We note thatXN+r is a covering space ofXN with the property that any essential
country in XN+r is a cover of a subcomplex K ′

i for � < i ≤ p.
Since ϕ∞ (G) is a subgroup of a finitely generated group, it is countable and

we may list the elements. Let g be the first element in this list and denote by
Ig ⊂ {1, 2, . . . , k} the set of subscripts appearing in the normal form representation
for g. The first main step in the proof of the Proposition is the following claim.

Claim 1. Suppose that ‖g‖ϕN (G) = min
k

{
||g||ϕk(G)

}
= t and furthermore that

g = g1g2 . . . gt, where each gj ∈ G′
ij
, for 1 ≤ ij ≤ m. Then ,k∈IgG

′
k is a free factor

of ϕ∞ (G).

Proof of Claim 1. Suppose that g1 ∈ G′
i1
. There are three cases to consider,

according to the index i1.

Case 1. Suppose that 1 ≤ i1 ≤ �.
Since G′

i1
∼= 〈xi〉, g1 = xn

i for some n. Consider a loop f representing xi in XN

and its lift f̂ in Xk for k > N . If f̂ is not a loop, then it is a contractible path in Xk

which we can extend to a representing space, Mk. Note that ‖g‖ϕk(G) ≤ |g|Mk
< t,

contradicting the assumption that t was minimal. Hence f̂ is a loop, and therefore
G′

i is a free factor of ϕk (G) for all k ≥ N .

Case 2. Suppose that � < i1 ≤ p.
Let Ki1 be the subcomplex in XN such that π1 (Ki1) = G

′
i1
. Consider the cover

K̂i1 of Ki1 in XN+r which is adjacent to the basepoint. A priori , there are three
possibilities for K̂i1 :

Subcase a. π1

(
K̂i1

)
= 1.

Subcase b. π1

(
K̂i1

)
is a nontrivial subgroup of G′

i1
.

Subcase c. π1

(
K̂i1

)
= G′

i1
.

In all cases, let f be the loop in Ki1 representing g1 and let f̂ be the lift of f in
K̂i1 .

In Subcase a, π1

(
K̂i1

)
= 1, and hence K̂i1 is contractible; we include K̂i1 in an

representing space, MN+r for XN+r. Then ‖g‖ϕk(G) ≤ |g|MN+r
< t, contradicting

the assumption that t was minimal.
In Subcase b, we assume that π1

(
K̂i1

) ∼= H, a nontrivial proper subgroup of
Gi1 . Up to rearrangement of factors, we may assume that

H ∼= G′
p+1 ∗G′

p+2 ∗ · · · ∗G′
p+t
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and so that δp+1 = δp+2 = · · · = δp+t = 1. Therefore, we may rewrite ϕN+r (G) as
follows:

ϕN+r (G) = F ′′
� ∗ γ�+1G

′
�+1γ

−1
�+1 ∗ · · · ∗ γpG

′
pγ

−1
p

∗ βp+1

(
G′

p+1

) ∗ · · · ∗ βp+t

(
G′

p+t

)
∗ δp+t+1βp+t+1

(
G′

p+t+1

)
δ−1
p+t+1 ∗ · · · ∗ δmβm (G′

m) δ−1
m

where γi1 �= 1 (otherwise ϕ is not injective), and if δj = 1, then βj (Gj) is not a
subgroup of Gi1 .

We now turn our attention to

ϕN+2r (G) = F ′′′
� ∗ ϕ (γ�+1)G′

�+1ϕ
(
γ−1

�+1

) ∗ ϕ (γp)G′
�+1ϕ

(
γ−1

p

)
∗ γi1βp+1

(
G′

p+1

)
γ−1

i1
∗ · · · ∗ γi1βq

(
G′

q

)
γ−1

i1

∗ ϕ(δq+1)βq+1

(
G′

q+1

)
ϕ(δ−1

q+1) ∗ · · · ∗ ϕ(δm)βm (G′
m)ϕ(δ−1

m ),

where q = p + t, and consider the cover of Ki1 in XN+2r which is adjacent to the
basepoint, say Ǩi1 . If Ǩi1 were essential, then either ϕ (γi1) = 1, or ϕ (δj) = 1 for
q+1 ≤ j ≤ m. The former contradicts injectivity of ϕ. If the latter occurs, then in
fact δj = 1, but we previously assumed that in this case βj (Gj) was not a subgroup
of Gi1 . Hence Ǩi1 is inessential, and we find that ‖g‖ϕk(G) ≤ |g|MN+2r

< t, which
is a contradiction.

Then Subcase c is the only possibility which does not contradict the minimality
of t. Therefore π1

(
K̂i1

)
= G′

i1
and Gi1 is a free factor of ϕN+r (G) . Similarly,

G′
i1

is a free factor of ϕN+2r (G) for all p ∈ N. Hence, Gi1 is a free factor of ϕk (G)
for all k ≥ N , and it is an easy exercise to prove then that Gi1 is a free factor of
ϕ∞ (G) .

Case 3. Suppose that p < i1 ≤ m.

We note that if min
k∈N

{
|g|ϕk(G)

}
= t and g = g1 . . . gt is in ϕN (G), then gi /∈ G′

j

for p < j ≤ m; if Kj is the subspace of XN with π1 (Kj) = G′
j , and K̂j is the cover

of Kj in XN+r which is adjacent to the basepoint, then K̂j is inessential.
This shows that in all cases G′

i1
is a free factor of ϕ∞ (G).

We repeat the argument for all gi involved in g. Each gi is represented by a loop
fi that lifts to a path f̂k

i in Xk which is either a loop adjacent to the basepoint, or
a non-contractible path that lies in a inessential country adjacent to the basepoint.
These essential countries and loops are actually homeomorphic to those countries
they cover. Thus ∗Ij

Gij
for ij ∈ Ij is actually a free factor of Xk for all k ≥ n, and

hence a free factor of ϕ∞ (G), as well. This completes the proof of Claim 1. �

We now reorder the factors of ϕN (G) in the following way:

ϕN (G) = G′
1 ∗ · · · ∗G′

L ∗G′
L+1 ∗ · · · ∗G′

Q ∗G′
Q+1 ∗ . . . G′

m

where
1) for 1 ≤ i ≤ L, G′

i is a free factor of ϕk (G) for all k ≥ N and for each further
iterate of ϕ, the corresponding Kurosh conjugator γi = 1,

2) for L < i ≤ Q, G′
i
∼= Z,

3) for Q < i ≤ m, G′
i is a co-Hopfian group.
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Now let g′ be the first element in the ordering of ϕ∞ (G) so that g′ is not
contained in Γ = ∗L

i=1G
′
i. If one cannot do this, then ϕ∞ (G) = ∗L

i=1G
′
i is a free

factor of ϕk (G) for all k ≥ N , and the Proposition is complete. We define |g′|ϕk(G)|Γ
to be the minimal length of g′ with respect to all free product representations of
ϕk (G) which contain Γ as a free factor. Let

‖g′‖ϕk(G)|Γ = min
k∈N

{
|g′|ϕk(G)|Γ

}
= s

and suppose that this minimum is attained in

ϕN ′
(G) = G′′

1 ∗G′′
2 ∗ · · · ∗G′′

L ∗G′′
L+1 ∗ · · · ∗G′′

Q ∗G′′
Q+1 ∗ · · · ∗G′′

m

where G′′
i = G′

i if 1 ≤ i ≤ L, G′′
i
∼= Z if L < i ≤ Q, and G′′

i is co-Hopfian if
Q < i ≤ m.

Let g′ = g′1 · · · g′s be the normal form of g′ with respect to this representation,
where g′j ∈ G′′

ij
. All of the arguments pertaining to the length of g in Part I of the

argument directly apply to g′; for each G′′
ij
containing g′j in the element g′, we have

a corresponding subspace Kij
in XN ′ that lifts to a homeomorphic copy of itself in

Xk, for k ≥ N ′. If this fails to be the case for some k0 > N ′, then we can find some
k′ ≥ k0 for which |g′|ϕk′ (G)|Γ < ‖g′‖ϕk(G)|Γ , which contradicts the assumption of
the minimality.

In this way, we obtain ∗L′
i=1G

′′
i = Γ′ which is a free factor of ϕk (G) for all k ≥ N ′,

and is hence a free factor of ϕ∞ (G). This completes the proof of the Proposition
since the process must terminate; this is since the free factors of ϕ∞ (G) are also
free factors of ϕM (G) for large enough M , and the number of these free factors is
bounded by m. �

2. The Retract Theorem in Fuchsian groups

In this section, we show that the Retract Theorem holds for a finitely generated
Fuchsian group G generalizing results of Voce [V1] and [V2]. See [B] for background
information on Fuchsian groups. (This theorem also holds, by the same techniques,
for groups of isometries of the hyperbolic plane H that include orientation reversing
isometries.) We begin with the special case of finite free products of cyclic groups.

Lemma 1. If G is a finite free product of cyclic groups, and ϕ is an endomorphism
of G then ϕ∞(G) is a retract. The Retract Theorem therefore holds for G.

Proof. We begin by showing that ϕN is a monomorphism for sufficiently large
N . If G = Fr ∗ Zk1 ∗ · · · ∗ Zks then rank (G) = r + s. By the Kurosh Theorem,
the images ϕn(G) all have the same form as well and rank(ϕn(G)) = rn + sn
is a non-increasing function of n. In fact, the values of rn are non-increasing by
the following argument. Abstractly, ϕ is a surjection from Fr ∗ Zk1 ∗ · · · ∗ Zks to
Fr1 ∗ Zk′

1
∗ · · · ∗ Zk′

s1
. Following by projection onto Fr1 , we get a map which must

be trivial on each factor Zki , inducing a surjection of Fr onto Fr1 ; so r1 ≤ r;
similarly, rn+1 ≤ rn. The values of rn are therefore eventually constant and so the
values of sn are also eventually constant. Now replace (G,ϕ) with

(
ϕM (G) , ϕM

)
for sufficiently large M—here the values of rn and sn are constant and it suffices
to prove the Lemma in this case.
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It’s not hard to see that k′1 · · · k′s ≤ k1 · · · ks. (Consider the abelianization
Z

r ⊕
Zk1 · · ·Zks → Z

r ⊕
Zk′

1
· · ·Zk′

s
.) This is true as well for all ϕn, so eventually

this product stops decreasing, at which point ϕN becomes a monomorphism.
The Lemma now follows by the same arguments as in Proposition 1 and Theo-

rem 1. �

Proof of Theorem 2. Suppose that G is a finitely generated Fuchsian group with
fundamental polygon P and orbifold H/G. If there are no cusps, then G is torsion
free and the Retract Theorem holds by Theorem 1. If G is not co-compact (i.e., if
H/G is not compact) or if the genus n is 0, then G is a product of cyclic groups
and the Retract Theorem holds by Lemma 1. We may therefore assume that P is
compact and that G has presentation

G =
〈
a1, b1, . . . , an, bn, c1, . . . , ct | [a1, b1] . . . [an, bn] c1 . . . ct, ciki ∀i〉

with t > 0 and n > 0. By considering the abelianization of G, it is easy to see that
rank(G) = 2n+ t− 1. The orbifold H/G has genus n topologically and has t cone
points with cone angles 2π

k1
, . . . , 2πkt

. Denote the total cone angle of H/G by

ConeG =
t∑

j=1

2π
kj
.

Then by [B, p269], P has area

A = 2π


(2n− 2) +

t∑
j=1

(
1− 1

kj

)
 = 2π(rank(G)− 1)− ConeG.

As before, it suffices to show that for any endomorphism ϕ of G, that ϕ∞(G)
is a retract. Consider first the case in which the index |G : ϕ(G)| of ϕ(G) in G is
infinite, namely |G : ϕ(G)| = ∞. In [HKS], it is proven that a subgroup of infinite
index in a Fuchsian group is a free product of cyclic groups—replacing G and ϕ
with ϕ(G) and ϕ1 completes the argument in this case.

Now assume that ϕ(G) has finite index in G and consider the family of subgroups

G ⊇ ϕ(G) ⊇ ϕ2(G) ⊇ · · · ⊇ ϕ�(G) ⊇ . . .
each of which is Fuchsian. If for any �, ϕ�(G) is either not co-compact or has genus
0 or has no cone points, then the Retract Theorem holds for ϕ�(G) and ϕ∞(G) is
a retract of both ϕ�(G) and of G. So we can assume that for all �, ϕ�(G) is co-
compact, has genus n� > 0, has t� > 0 cone points, has rank r� = 2n� + t� − 1 > 1,
has total cone angle Cone� and area A� = 2π(r� − 1)− Cone�.

The sequence r� is non-increasing, so it eventually stabilizes. The sequence of
indices |ϕ�(G) : ϕ�+1(G)| is also non-increasing and eventually stabilizes at a value
q > 1. (If at any point, ϕ�(G) = ϕ�+1(G) then ϕ�(G) = ϕ∞(G) and we are done.)
So by replacing G and ϕ by ϕ�(G) and ϕ |ϕ	(G) for suitably large �, we may assume
that all the ranks and all the indices are equal.

Now A�+1 = qA� since a fundamental polygon for ϕ�+1(G) is q non-overlapping
fundamental polygons for ϕ�(G). Thus

lim
�→∞

(A�) = ∞ =⇒ lim
�→∞

(Cone�) = −∞.
This is a clear contradiction, completing the argument. �
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3. Test elements in surface groups

In this section, we will prove the existence of test elements in the fundamental
groups of orientable surfaces other than the torus. For the remainder of this section,
we will consider the surface Sn of genus n with fundamental group

Γn = 〈x1, x2, . . . , x2n | [x1, x2] [x3, x4] . . . [x2n−1, x2n]〉 .
Theorem 3. The group Γn, for n ≥ 2, contains test elements. In particular the
words

wk = xk
1x

k
2 . . . x

k
2n, k > 1

are test elements.

Proof. The Retract Theorem holds for Γn since it is Fuchsian, so it suffices to
show that for k > 1, wk lies in no proper retract of Γn.

Suppose that ρ : Γn → Γn is a proper retraction with H = ρ(Γn) and that
wk ∈ H. In general a subgroup K of Γn is a surface group and if [Γn,K] = k <∞,
then the Euler characteristics and ranks are related by

χ(K) = kχ(Γn), rank(K) = k(2n− 2) + 2 > 2n = rank(Γn).

Since the rank(H) ≤ rank(Γn), H has infinite index. Let SH be the covering space
of Sn corresponding to H. Since SH is a non-compact surface, H is free.

Consider the standard CW complex structure on Sn, with one 0-cell, 2n 1-cells
and one 2-cell, and the map f : S1 → S

(1)
n that represents wk ∈ π1

(
S

(1)
n

) ∼= F2n

(where S1 is the circle and S(1)
n is the 1-skeleton of Sn). Since [f ] = wk ∈ H, f lifts

to a map f̃ as indicated.

SH
(1)

��

�� SH

��
S1

f ��

f̃
���������������
Sn

(1) �� Sn

Claim 2. There is a map f ′ : S1 → S
(1)
n homotopic in Sn to f so that the image

f̃ ′
(
S1

)
of the lift f̃ ′ is contained in a topological retract V of SH . The subgroup

K ⊂ F2n represented by V is a retract of F2n.

SH

��
S1

f ′
��

f̃ ′
���������������
Sn

Proof of Claim 2. The non-compact surface SH retracts onto a homotopy equiv-
alent compact subsurface (with boundary) T which contains f̃(S1). Then T strong
deformation retracts onto a subset V of its 1-skeleton T (1); for example, perform
the sequence of simple homotopies that push in on a free edge of any remaining
2-cell. This strong deformation retract will homotop the map f̃ to a map f̃ ′ whose
image is again in the 1-skeleton; f ′ is defined by projecting to Sn. Since a graph
retracts onto any of its connected subgraphs, f̃ ′

(
S1

)
is a retract of V , which is in

turn a retract of SH ; thus f̃ ′
(
S1

)
is a retract of SH .
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The diagram of spaces on the left determines the diagram of groups on the right
below, in which ε is the presentation map, α is the inverse of the isomorphism
induced by the deformation retraction, and iK and iH are inclusion maps.

V

��

�� SH

��

K

iK

��

α �� H

iH

��
Sn

(1) �� Sn F2n
ε �� Γn

The retraction of F2n to K is α−1 ◦ρ◦ε. This completes the proof of the Claim. �
Now let vk ∈ K ⊂ F2n be the element represented by f ′. Since K is a proper

retract of F2n, the retract index δ(vk) of vk is 1 (see [Tu]). On the other hand,
δ(vk) = δ(wk) since the definition of δ depends only on the image in Z

2n and δ(vk)
and δ(wk) have the same image in Γn (F2n → Γn → Z

2n). But δ(wk) is a multiple
of k [Tu, page 262]. This contradicts the existence of the retraction ρ. �
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