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An Eigenvalue Problem for Elliptic Systems

Marco Squassina

Abstract. By means of non-smooth critical point theory we prove existence
of weak solutions for a general nonlinear elliptic eigenvalue problem under
natural growth conditions .
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1. Introduction

Let Ω be a bounded and open subset of R
n and N ≥ 1 . Existence and multi-

plicity results for quasilinear eigenvalue problems of the type :

−

n∑
i,j=1

∂
∂xj

(aij(x, u)∂uk

∂xi
) + 1

2

n∑
i,j=1

N∑
h=1

∂aij

∂uk
(x, u)∂uh

∂xi

∂uh

∂xj
= λ ∂G

∂uk
(x, u) in Ω

k = 1, . . . , N (u, λ) ∈ M × R

on the submanifold of H1
0 (Ω,RN )

M =
{
u ∈ H1

0 (Ω,RN ) :
∫

Ω

G(x, u) dx = 1
}

,

have been firstly studied in 1983 by M. Struwe [15] and recently by G. Arioli [1]
via techniques of non-smooth critical point theory.

The goal of this paper is to study the following more general eigenvalue problem

−div(∇ξL(x, u,∇u)) +∇sL(x, u,∇u) = λ∇sG(x, u) (u, λ) ∈ M × R ,(1)

Received February 23, 2000.
Mathematics Subject Classification. 35J50, 47J10, 58E05.
Key words and phrases. Nonlinear eigenvalue problems, Non-smooth critical point theory.

ISSN 1076-9803/00

95

http://nyjm.albany.edu:8000/j/2000/6-6.html
http://nyjm.albany.edu:8000/j/2000/Vol6.html
http://nyjm.albany.edu:8000/nyjm.html


96 Marco Squassina

on the submanifold of W 1,p
0 (Ω,RN )

M =
{
u ∈ W 1,p

0 (Ω,RN ) :
∫

Ω

G(x, u) dx = 1
}

.(2)

We shall consider functionals f : W 1,p
0 (Ω,RN ) → R defined by

f(u) =
∫

Ω

L(x, u,∇u) dx ,(3)

with 1 < p < n . In general, f is not even locally Lipschitzian unless L does not
depend on u or n = 1, so that classical critical point theory fails.

To overcome this difficulty, we shall use the non-smooth critical point theory
developed in [8, 9, 10, 11, 12] and also the subdifferential for continuous functions
recently introduced in [6].

We shall prove that problem (1) admits a nontrivial weak solution in M × R by
restricting f to M and looking for constrained critical points .

We assume that M �= ∅, that L : Ω × R
N × R

nN → R is measurable in x for
all (s, ξ) ∈ R

N × R
nN , of class C1 in (s, ξ) for a.e. x ∈ Ω and L(x, s, ·) is strictly

convex. Moreover, we shall assume that:

[L1] There exist ν > 0 such that for each ε > 0 there is aε ∈ L1(Ω) and bε ∈ R

with

ν|ξ|p ≤ L(x, s, ξ) ≤ aε(x) + ε|s|p∗ + bε|ξ|p(4)

for a.e. x ∈ Ω and for all (s, ξ) ∈ R
N × R

nN , where p∗ denotes the critical
Sobolev’s exponent.

[L2] There exists b ∈ R such that for each ε > 0 there exists aε ∈ L1(Ω) with

|∇sL(x, s, ξ)| ≤ aε(x) + ε|s|p∗ + b|ξ|p(5)

for a.e. x ∈ Ω and for all (s, ξ) ∈ R
N × R

nN . Moreover there is a1 ∈ Lp
′
(Ω)

with

|∇ξL(x, s, ξ)| ≤ a1(x) + b|s| p∗
p′ + b|ξ|p−1(6)

for a.e. x ∈ Ω and for all (s, ξ) ∈ R
N × R

nN .

[L3] For a.e. x ∈ Ω and for all (s, ξ) ∈ R
N × R

nN

∇sL(x, s, ξ) · s ≥ 0 .(7)

[L4] If N > 1, there exists a bounded Lipschitz function ψ : R → R such that

∇sL(x, s, ξ) · expσ(r, s) +∇ξL(x, s, ξ) · ∇ expσ(r, s, ξ) ≤ 0(8)

for a.e. x ∈ Ω, for all ξ ∈ R
nN , σ ∈ {−1, 1}N and r, s ∈ R

N where

(expσ(r, s))h := σh exp[σh(ψ(rh)− ψ(sh))]

and
[∇ expσ(r, s, ξ)]hi := − exp[σh(ψ(rh)− ψ(sh))]ψ′(sh)ξhi

for each h = 1, . . . , N and i = 1, . . . , n .
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[G1] G(x, s) is measurable in x and of class C1 in s with G(x, 0) = 0 a.e. in Ω. If
g(x, s) denotes ∇sG(x, s), for every ε > 0 there exists aε ∈ L

np
n(p−1)+p (Ω) such

that

|g(x, s)| ≤ aε(x) + ε|s|p∗−1(9)

for a.e. x ∈ Ω and all s ∈ R
N .

[G2] For a.e. x ∈ Ω and for each s �= 0 we have g(x, s) · s > 0 .

Under the preceding assumptions, the following is our main result.

Theorem 1. The eigenvalue problem

−div(∇ξL(x, u,∇u)) +∇sL(x, u,∇u) = λg(x, u) (u, λ) ∈ M × R ,(10)

has at least one nontrivial weak solution (u, λ) ∈ M × R .

In the vectorial case (N > 1), to my knowledge, problem (1) has only been
considered in [15] and in [1] in the particular case

L(x, s, ξ) =
1
2

n∑
i,j=1

N∑
h,k=1

ahkij (x, s)ξ
h
i ξ
k
j ,(11)

for coefficients ahkij : Ω× R
N → R

n2
of the type ahkij (x, s) = δhkαij(x, s).

In [15, Theorem 3.2] the statement is essentially of perturbative nature, since it
says that if for each k ∈ N there exists a "k > 0 with

|∇sαij(x, s)| < "k for a.e. x ∈ Ω, for all s ∈ R
N ,(12)

then the problem has at least k distinct weak solutions:

(u�, λ�) ∈ H1
0 (Ω,RN )× R, # = 1, . . . , k .

In other words, the less the coefficients αij(x, s) vary in s, the more solutions we
get.

In [1] a new technical condition is introduced to be compared with (8). It is
assumed that there exist K > 0 and an increasing bounded Lipschitz function ψ
from [0,+∞[ to [0,+∞[ with ψ(0) = 0, ψ′ non-increasing, ψ(s) → K as s → +∞
and such that

n∑
i,j=1

N∑
k=1

∣∣∣∣∂αij∂sk
(x, s)ξiξj

∣∣∣∣ ≤ 2e−4Kψ′(|s|)
n∑

i,j=1

αij(x, s)ξiξj(13)

for a.e. x ∈ Ω, for all ξ ∈ R
n and for all r, s ∈ R

N .
The proof itself of [2, Lemma 6.1] shows that this condition implies assumption

(8) in the case of integrands L like (11). On the other hand, if N ≥ 2, the two
conditions look quite similar. However, our condition (8) seems to be preferable,
because when N = 1 and L is given by (11), it reduces to the inequality∣∣∣∣∣∣

n∑
i,j=1

∂αij
∂s

(x, s)ξiξj

∣∣∣∣∣∣ ≤ 2ψ′(s)
n∑

i,j=1

αij(x, s)ξiξj ,



98 Marco Squassina

which is not so restrictive in view of the ellipticity of αij , while (13) is in this
case much stronger. For a general Lagrangian L, in the case N = 1, condition (8)
reduces to

|DsL(x, s, ξ)| ≤ ψ′(s)∇ξL(x, s, ξ) · ξ
for a.e. x ∈ Ω and all (s, ξ) ∈ R×R

n. This assumption has already been considered
in literature in jumping problems (see e.g. [7]) .

In Remarks 2 and 3 we will show examples of L not of the form (11) and satisfying
(8). Finally, we point out that (13) and (8) are not easily comparable to (12).

2. Recollections from non-smooth critical point theory

In this section, we want to recall the relationship between weak solutions to (1)
and constrained critical points of f to M. Let a0 ∈ L1(Ω), b0 ∈ R, a1 ∈ L1

loc(Ω)
and b1 ∈ L∞

loc(Ω) be such that for a.e. x ∈ Ω and for all (s, ξ) ∈ R
N × R

nN

|L(x, s, ξ)| ≤ a0(x) + b0|s|
np

n−p + b0|ξ|p ,(14)

|∇sL(x, s, ξ)| ≤ a1(x) + b1(x)|s|
np

n−p + b1(x)|ξ|p ,(15)

|∇ξL(x, s, ξ)| ≤ a1(x) + b1(x)|s|
np

n−p + b1(x)|ξ|p .(16)

Conditions (15) and (16) imply that for every u ∈ W 1,p
0 (Ω,RN ) we have

∇ξL(x, u,∇u) ∈ L1
loc(Ω,RnN ), ∇sL(x, u,∇u) ∈ L1

loc(Ω,RN ) .

Therefore for every u ∈ W 1,p
0 (Ω,RN ) we have

−div (∇ξL(x, u,∇u)) +∇sL(x, u,∇u) ∈ D′(Ω,RN ) .

We shall now recall two definitions from [6], where a new notion of subdifferential
for continuous functionals on normed spaces has been recently introduced by M.
Degiovanni and I. Campa.

Definition 1. Let X be a real normed space and C ⊆ X. For each u ∈ C, we
denote with TC (u) the set of all v ∈ X such that for each ε > 0, there exist δ > 0
and

ν : (B(u, δ) ∩ C)×]0, δ] → B(v, ε)

continuous with
ξ + tν(ξ, t) ∈ C,

when ξ ∈ B(u, δ) ∩ C and t ∈]0, δ[. TC (u) is said the cone tangent to C at u.

Definition 2. For each u ∈ X, set

∂f(u) := {α ∈ X∗ : (α,−1) ∈ Nepif (u, f(u))} ,
where

Nepif (u) := {ν ∈ X∗ : 〈ν, v〉 ≤ 0 for all v ∈ Tepif (u)} .
∂f(u) is said to be the subdifferential of f at u.
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Via ∂f(u) we shall connect critical points for functionals of calculus of variations
(3) constrained to M , with weak solutions to the related eigenvalue problem. Define
the submanifold of W 1,p

0 (Ω,RN )

M =
{
u ∈ W 1,p

0 (Ω,RN ) : Φ(u) = 1
}
,

where Φ : W 1,p
0 (Ω,RN ) → W−1,p′(Ω,RN ) is of class C1, M �= ∅, 0 �∈ M and

moreover ∇Φ(u) �= 0 for each u ∈ M .
We now recall the fundamental definition of weak slope (see, [8, 9, 10, 11, 12]) .

Definition 3. Let (X, d) be a metric space, f : X → R a continuous function and
u ∈ X. We denote by |df |(u) the supremum of σ ∈ [0,+∞[ such that there exist
δ > 0 and a continuous map

H : Bδ(u)× [0, δ] −→ X

such that for all (v, t) ∈ Bδ(u)× [0, δ]

d(H(v, t), v) ≤ t, f(H(v, t)) ≤ f(v)− σt.

We say that the extended real number |df |(u) is the weak slope of f at u.

It is easy to prove that the map {u �→ |df |(u)} is lower semicontinuous .

Definition 4. Let (X, d) be a metric space, f : X → R a continuous function and
u ∈ X. We say that u is a critical point of f if |df |(u) = 0 .

Definition 5. Let (X, d) be a metric space, c ∈ R and f : X → R a continuous
function. A sequence (uh) ⊆ X is said to be a Palais–Smale sequence at level c
((PS)c–sequence, in short) for f , if f(uh) → c and |df |(uh) → 0 . We say that
f satisfies the Palais–Smale condition ((PS)c in short) at level c if every (PS)c–
sequence admits a convergent subsequence.

We now come to the case when X = W 1,p
0 (Ω,RN ) and f : W 1,p

0 (Ω,RN ) → R

given by (3) . From (14) it follows that f is well defined and continuous.
Since M is metric space endowed with the metric of W 1,p

0 (Ω,RN ), the weak slope∣∣df|M ∣∣ (u) and the (PS)c–condition for f|M may of course be defined .

Theorem 2. For every u ∈ W 1,p
0 (Ω,RN ) there exists λ ∈ R such that∣∣df|M ∣∣ (u) ≥ sup

{∇f(u)(v)− λ∇Φ(u)(v) : v ∈ C∞
c (Ω,RN ), ‖v‖1,p ≤ 1

}
.

In particular, for each (PS)c–sequence (uh) for f|M there exists (λh) ⊆ R such that

lim
h

sup
{∇f(uh)(v)− λh∇Φ(uh)(v) : v ∈ C∞

c (Ω,RN ), ‖v‖1,p ≤ 1
}
= 0.

Proof. By conditions (15) and (16), for every u ∈ M and v ∈ C∞
c (Ω,RN ) there

exists
f ′(u)(v) =

∫
Ω

∇ξL(x, u,∇u) · ∇v dx+
∫

Ω

∇sL(x, u,∇u) · v dx

and the function {u �→ f ′(u)(v)} is continuous from M into R. Now, let us extend
f|M to the functional f∗ : W 1,p

0 (Ω,RN ) → R ∪ {+∞} given by

f∗(u) =

{
f(u) if u ∈ M

+∞ if u �∈ M.
(17)
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We may assume that |df|M |(u) < +∞. Consequently |df∗|(u) = |df|M |(u), so that
by [6, Theorem 4.13] there exists ω ∈ ∂f∗(u) with |df∗|(u) ≥ ‖ω‖−1,p′ . Moreover,
by [6, Corollary 5.4] we have

∂f∗(u) ⊆ ∂f(u) + R∇Φ(u) .

Finally, by [6, Theorem 6.1], we get ∂f(u) = {η} where

〈η, v〉 =
∫

Ω

∇ξL(x, u,∇u) · ∇v dx+
∫

Ω

∇sL(x, u,∇u) · v dx = ∇f(u)(v)

for each v ∈ C∞
c (Ω,RN ) and the proof is complete. �

By the preceding result, each critical point u ∈ W 1,p
0 (Ω,RN ) of f|M is a weak

solution to the eigenvalue problem :

∇f(u) = λ∇Φ(u) (u, λ) ∈ M × R .

3. The Palais–Smale condition

Recall first a very useful conseguence of Brezis–Browder’s Theorem [5].

Proposition 1. Let T ∈ L1
loc(Ω,RN ) ∩W−1,p′(Ω,RN ), v ∈ W 1,p

0 (Ω,RN ) and η ∈
L1(Ω) with T · v ≥ η. Then T · v ∈ L1(Ω) and

〈T, v〉 =
∫

Ω

T · v dx

Proof. Argue as in [13, Lemma 3] . �

As a consequence of assumption [L1] and convexity of L(x, s, ·), for each ε > 0 there
exists aε ∈ L1(Ω) such that

∇ξL(x, s, ξ) · ξ ≥ ν|ξ|p − aε(x)− ε|s|p∗(18)

for a.e. x ∈ Ω and for all (s, ξ) ∈ R
N × R

nN .
We now come to one of the main results of this paper, i.e., the local compactness

property for (PS)c–sequences.

Theorem 3. Let (uh) be a bounded sequence in W 1,p
0 (Ω,RN ) and set

〈wh, v〉 =
∫

Ω

∇ξL(x, uh,∇uh) · ∇v dx+
∫

Ω

∇sL(x, uh,∇uh) · v dx,(19)

for all v ∈ C∞
c (Ω,RN ). If (wh) is strongly convergent to some w in W−1,p′(Ω,RN ),

then (uh) admits a strongly convergent subsequence in W 1,p
0 (Ω,RN ).

Proof. Since (uh) is bounded in W 1,p
0 (Ω,RN ), we find a u in W 1,p

0 (Ω,RN ) such
that, up to subsequences,

∇uh ⇀ ∇u in Lp(Ω,RN ), uh → u in Lp(Ω,RN ), uh(x) → u(x) a.e. x ∈ Ω.

By [4, Theorem 2.1], up to a subsequence, we have

∇uh(x) → ∇u(x) a.e. x ∈ Ω .

Therefore, by (6) we get

∇ξL(x, uh,∇uh) ⇀ ∇ξL(x, u,∇u) in Lp
′
(Ω,RnN ).
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We now want to prove that we have

〈w, u〉 =
∫

Ω

∇ξL(x, u,∇u) · ∇u dx+
∫

Ω

∇sL(x, u,∇u) · u dx.(20)

Let ψ be as in [L4] and test equation (19) with the following functions

vh = ϕ(σ1 exp{σ1(ψ(u1)− ψ(u1
h))}, . . . , σN exp{σN (ψ(uN )− ψ(uNh ))}),

where ϕ ∈ C∞
c (Ω), ϕ ≥ 0 and σi = ±1 for all i = 1, . . . , N . By direct computation

we obtain for a.e. x ∈ Ω

Djvhi = (σiDjϕ+ (ψ′(ui)Djui − ψ′(uhi)Djuhi)ϕ) exp[σi(ψ(ui)− ψ(uhi))]

for each i = 1, . . . , N and j = 1, . . . , n. Therefore, with the notation

[exp{σ(ψ(u)− ψ(uh))}ψ′(uh)∇uh]ij := exp{σi(ψ(ui)− ψ(uhi))}ψ′(uhi)Djuhi

for each i = 1, . . . , N and j = 1, . . . , n, we get∫
Ω

∇ξL(x, uh,∇uh) · [σ∇ϕ+ ψ′(u)∇uϕ] exp{σ(ψ(u)− ψ(uh))} dx
− 〈wh, ϕσ exp{σ(ψ(u)− ψ(uh))}〉

+
∫

Ω

{
∇sL(x, uh,∇uh) · σ exp{σ(ψ(u)− ψ(uh))} dx

−∇ξL(x, uh,∇uh) · exp{σ(ψ(u)− ψ(uh))}ψ′(uh)∇uh

}
ϕdx = 0 .

Observe that if v = (σ1ϕ, . . . , σNϕ) we have

lim
h

〈wh, ϕσ exp{σ(ψ(u)− ψ(uh))}〉 = 〈w, v〉.

Since uh ⇀ u in W 1,p
0 (Ω,RN ), we have

lim
h

∫
Ω

∇ξL(x, uh,∇uh) · [σ∇ϕ+ ψ′(u)∇uϕ] exp{σ(ψ(u)− ψ(uh))} dx

=
∫

Ω

∇ξL(x, u,∇u) · ∇v dx+
∫

Ω

∇ξL(x, u,∇u) · ψ′(u)∇uϕdx.

Note now that by assumption (8) for each h ∈ N we have

∇sL(x, uh,∇uh) · σ exp{σ(ψ(u)− ψ(uh))}
− ∇ξL(x, uh,∇uh) · exp{σ(ψ(u)− ψ(uh))}ψ′(uh)∇uh ≤ 0.

Therefore, Fatou’s Lemma implies that

lim sup
h

{∫
Ω

∇sL(x, uh,∇uh) · σ exp{σ(ψ(u)− ψ(uh))}ϕdx

−
∫

Ω

∇ξL(x, uh,∇uh) · exp{σ(ψ(u)− ψ(uh))}ψ′(uh)∇uhϕdx

}

≤
∫

Ω

∇sL(x, u,∇u) · v dx−
∫

Ω

∇ξL(x, u,∇u) · ψ′(u)∇uϕdx.

Combining the previous inequalities we get∫
Ω

∇ξL(x, u,∇u) · ∇v dx+
∫

Ω

∇sL(x, u,∇u) · v dx ≥ 〈w, v〉
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for each v = (σ1ϕ, . . . , σNϕ), with ϕ ∈ C∞
c (Ω), ϕ ≥ 0. Since we may exchange v

with −v, we obtain∫
Ω

∇ξL(x, u,∇u) · ∇v dx+
∫

Ω

∇sL(x, u,∇u) · v dx = 〈w, v〉.(21)

for each v = (σ1ϕ, . . . , σNϕ) with ϕ ∈ C∞
c (Ω) and ϕ ≥ 0. Since each v ∈

C∞
c (Ω,RN ) is a linear combination of such functions, taking into account Propo-

sition 1, we obtain relation (20). The final step is to prove that (uh) goes to u in
W 1,p

0 (Ω,RN ). To this aim, let us first get the following inequality

lim sup
h

∫
Ω

∇ξL(x, uh,∇uh) · ∇uh dx ≤
∫

Ω

∇ξL(x, u,∇u) · ∇u dx .(22)

Because of (7) Fatou’s Lemma yields∫
Ω

∇sL(x, u,∇u) · u dx ≤ lim inf
h

∫
Ω

∇sL(x, uh,∇uh) · uh dx .(23)

Combining this fact with (20) and taking into account that

〈wh, uh〉 → 〈w, u〉 as h → +∞,

we deduce

lim sup
h

∫
Ω

∇ξL(x, uh,∇uh) · ∇uh dx

= lim sup
h

[
−

∫
Ω

∇sL(x, uh,∇uh) · uh dx+ 〈wh, uh〉
]

≤
[
−

∫
Ω

∇sL(x, u,∇u) · u dx+ 〈w, u〉
]

=
∫

Ω

∇ξL(x, u,∇u) · ∇u dx .

In particular, again by Fatou’s Lemma, we have∫
Ω

∇ξL(x, u,∇u) · ∇u dx ≤ lim inf
h

∫
Ω

∇ξL(x, uh,∇uh) · ∇uh dx

≤ lim sup
h

∫
Ω

∇ξL(x, uh,∇uh) · ∇uh dx

≤
∫

Ω

∇ξL(x, u,∇u) · ∇u dx,

that is

lim
h

∫
Ω

∇ξL(x, uh,∇uh) · ∇uh dx =
∫

Ω

∇ξL(x, u,∇u) · ∇u dx,

which gives convergence in L1(Ω). Therefore, by (18) we conclude that :

lim
h

∫
Ω

|∇uh|p dx =
∫

Ω

|∇u|p dx,

which gives convergence of (uh) to u in W 1,p
0 (Ω,RN ) . �
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Corollary 1. Let (uh) be a bounded sequence in W 1,p
0 (Ω,RN ), (λh) a sequence in

R and set for all v ∈ C∞
c (Ω,RN )

〈λhwh, v〉 =
∫

Ω

∇ξL(x, uh,∇uh) · ∇v dx+
∫

Ω

∇sL(x, uh,∇uh) · v dx .

If (wh) converges to some w �= 0 in W−1,p′(Ω,RN ) then (uh, λh) admits a strongly
convergent subsequence in W 1,p

0 (Ω,RN )× R.

Proof. By density, we can find η ∈ C∞
c (Ω,RN ) such that

lim
h

〈wh, η〉 = 〈w, η〉 > 0.

Since of course the sequence{∫
Ω

∇ξL(x, uh,∇uh) · ∇η dx+
∫

Ω

∇sL(x, uh,∇uh) · η dx

}
is bounded, (λh) is also bounded and the assertion follows by Theorem 3. �

In the next result we prove that f satisfies (PS)c–condition.

Lemma 1. Let c ∈ R . Then, for each (PS)c–sequence (uh) for f|M there exists
u ∈ M and λ ∈ R such that, up to subsequences, uh → u in W 1,p

0 (Ω,RN ) and
λh → λ in R. In particular, we have∫

Ω

∇ξL(x, u,∇u) · ∇v dx+
∫

Ω

∇sL(x, u,∇u) · v dx = λ

∫
Ω

g(x, u) · v dx

for each v ∈ C∞
c (Ω,RN ).

Proof. Let (uh) be a (PS)c–sequence for f|M . Since by (4) (uh) is bounded in
W 1,p

0 (Ω,RN ), up to a subsequence (uh) weakly goes to a u ∈ M . Moreover, since by
[G1], g is completely continuous as mapping from W 1,p

0 (Ω,RN ) to W−1,p′(Ω,RN ),
up to a further subsequence, we have

g(x, uh) → g(x, u) in W−1,p′(Ω).

Now, by Theorem 2, there exists a sequence (λh) ⊆ R with

sup
{∫

Ω

∇ξL(x, uh,∇uh) · ∇v dx+
∫

Ω

∇sL(x, uh,∇uh) · v dx

− λh

∫
Ω

g(x, uh) · v dx : v ∈ C∞
c (Ω,RN ), ‖v‖1,p ≤ 1

}
→ 0

as h → +∞. Hence, by applying Corollary 1 to

wh = g(x, uh) + Λh, Λh → 0 in W−1,p′(Ω,RN ),

up to subsequences (uh, λh) converges to (u, λ) in W 1,p
0 (Ω,RN )× R. �

We may now prove the main result of this paper.

Proof of Theorem 1. By assumption [G2] and G(x, 0) = 0 we easily see that
0 �∈ M and g(x, u) �≡ 0 for each u ∈ M . Since f is bounded from below, there exists
a (PS)c–sequence (uh) for f|M at the level

c = inf
u∈M

f(u) .
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Indeed, let (uh) a sequence of minimizers for f in M . Of course we have f(uh) → c.
Moreover, if |df |(uh) �→ 0, we would find a σ > 0 such that |df |(uh) ≥ σ . Then by
[8, Theorem 1.1.11] there exists a continuous deformation

η : M × [0, δ] → M

for some δ > 0 such that for all t ∈ [0, δ] and h ∈ N

f(η(uh, t)) ≤ f(uh)− σt .

This easily yields the contradiction f(η(uh, t)) < c for sufficiently large values of
h ∈ N . Thus (uh) is a (PS)c–sequence for f|M . Lemma 1 now provides a weak
solution (u, λ) ∈ M × R to (1). Of course u �≡ 0 . �

4. Final remarks

We refer the reader to [2] for some concrete examples where the condition (8) is
fulfilled for an integrand L like (11) .

Remark 1. Assume that there exists R > 0 such that

|s| ≥ R =⇒ ∇sL(x, s, ξ) = 0

for a.e. x ∈ Ω and for all (s, ξ) ∈ R
N × R

nN and

|s| ≤ R =⇒
N∑
k=1

|Dsk
L(x, s, ξ)| ≤ 1

4eR
∇ξL(x, s, ξ) · ξ

for a.e. x ∈ Ω and for all (s, ξ) ∈ R
N × R

nN . Then (8) holds for a ψ defined by

ψ(s) =

{
s

4R if 0 ≤ s ≤ R
1
4 if s ≥ R .

(24)

Indeed, (8) is implied by the following condition:

There exist K > 0 and an increasing bounded Lipschitz function ψ : [0,+∞[→
[0,+∞[ with ψ(0) = 0, ψ′ non-increasing, ψ(t) → K as t → +∞ and such that

N∑
k=1

|Dsk
L(x, s, ξ)| ≤ e−4Kψ′(|s|)∇ξL(x, s, ξ) · ξ(25)

for a.e. x ∈ Ω, for all ξ ∈ R
n and for all r, s ∈ R

N .

It is easy to verify that the ψ defined in (24) satisfies (25) .

We now exhibit an example of L satisfying (8) and not of quadratic type.

Remark 2. Let L : Ω× R
N × R

nN → R be defined by

L(x, s, ξ) =
1
p
(ν + arctan |s|2)|ξ|p, ν ≥ e

√
N(

√
3 + π),

for a.e. x ∈ Ω and for all (s, ξ) ∈ R
N × R

nN . By following [2, Example 9.2] it
is possible to show that there exist K > 0 and an increasing bounded Lipschitz
function ψ : [0,+∞[→ [0,+∞[ with ψ(0) = 0, ψ′ non-increasing, ψ(s) → K as
s → +∞ given by

ψ(s) =
√
Ne4K

ν

{
33/4

4 s if s ∈ [0, 3−1/4]
√

3
4 +

∫ s
3−1/4

τ
1+τ4 dτ if s ∈ [3−1/4,+∞[
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such that L satisfies (25). Therefore (8) is fulfilled.

Remark 3. Since condition (8) does not look very nice and it is not clear how
to describe the class of systems that satisfy this assumption, it seems natural to
look for some classes of quasilinear systems with a more particular structure but
requiring a simpler hypothesis . To this aim, consider the eigenvalue problem


−div

(
A1(u1)|∇u1|p−2∇u1

)
+ 1

pA
′
1(u1)|∇u1|p = λg1(x, u) in Ω

...
...

...
...

−div
(
AN (uN )|∇uN |p−2∇uN

)
+ 1

pA
′
N (uN )|∇uN |p = λgN (x, u) in Ω .

(26)

In a variational setting, the weak solutions u = (u1, · · · , uN ) of (26) are the
critical points of f |M where f : W 1,p

0 (Ω,RN ) → R is given by

f(u) =
1
p

N∑
k=1

∫
Ω

Ak(uk)|∇uk|p dx .

and M is as in (2). Consider the following assumptions (k = 1, . . . , N):

[A1] Ak ∈ C1(R) with ak ≤ Ak ≤ ak for some ak, ak > 0 ;

[A2] A′
k(s)s ≥ 0 for each s ∈ R ;

[A3] there exists a bounded Lipschitz function ψ : R → R such that

Ak(s)e−p(ψ(t)−ψ(s)) ≤ Ak(t) ≤ Ak(s)ep(ψ(t)−ψ(s))(27)

for each s, t ∈ R with s ≤ t .

Under the previous assumptions, by exploiting the proof of Theorem 3 it is
possible to see that for system (26) assumption (8) may be replaced by (27). Indeed,
(27) immediately implies that

∀k = 1, . . . , N, ∀s ∈ R : |A′
k(s)| ≤ pAk(s)ψ′(s) .

Of course (27) looks much simpler and more understandable. In some sense,
this condition says that for each s ∈ R and k fixed, Ak(t) must remain within the
“exponential cone” determined by{

t �→ Ak(s)e−p(ψ(t)−ψ(s))
}

and
{
t �→ Ak(s)ep(ψ(t)−ψ(s))

}
for each t ≥ s .

Remark 4. Condition (8) in only needed when N > 1, since in the case N = 1
Theorem 3 may be substituted by [14, Theorem 3.4] where no condition like (8) is
requested in order to get the compactness property of (PS)c–sequences .

Secondly, we remark that in the case N = 1 condition (7) can be assumed only
for large values of |s|, that is, there exists R > 0 such that

|s| ≥ R =⇒ DsL(x, s, ξ) · s ≥ 0(28)

for a.e. x ∈ Ω and for all (s, ξ) ∈ R
N × R

nN (see again [14, Theorem 3.4]) .
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