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An Example of a Conservative Exact
Endomorphism which is Not Lim Sup Full

Julia A. Barnes and Stanley J. Eigen

Abstract. We show how to modify a construction of Hamachi to obtain a
conservative exact endomorphism which is not lim sup full.
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1. Introduction

In showing certain endomorphisms are exact, Rohlin [7] developed the notion
of full and showed that in the finite measure preserving case these two notions
are equivalent. However, there are open questions of conservativity and exactness
when measure preserving is not known. To this end, Barnes [1] developed the notion
of lim sup full, and showed that lim sup full, nonsingular, n-to-1 endomorphisms
are conservative and exact whether or not the map is finite measure preserving.
She applied this to certain classes of rational maps, obtaining conservativity and
exactness when measure preserving is not known. The purpose of this note is to
show by example that a conservative exact map need not be lim sup full.

The example is based on a construction (see Section 3) studied by Hamachi [3]
and Krengel [6] and depends strongly on a theorem of Kakutani [5]. As a class, the
general construction gives a family of maps which are conservative, exact shift maps
on the one-sided symbol space with different product measures. By a construction
of Bruin and Hawkins [2] conservative examples can be moved to the Riemann
sphere where they are invariant for certain rational maps whose Julia set is the
entire sphere.
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2. Preliminaries

The transformation constructed by Hamachi was a Bernoulli shift on a two-sided
product space. The example in this paper is a one-sided factor of such a map.

Set Ω =
∏∞

i=−∞{0, 1}i. The transformation T is the shift (Tω)n = ωn+1. Most
of the work presented here deals with the construction of the product measure
P =

∏∞
k=−∞ Pk, where Pk(0) = 1

1+λk
and Pk(1) = λk

1+λk
for some λk ≥ 1. Since Ω

is fixed throughout the paper, we refer to the measure space (Ω, P, T ) as P . We say
T is nonsingular with respect to the measure P if the measures P and P ◦ T−1

are equivalent; conservative if for every set A of positive measure, there is a k > 0
such that P (A∩T−k(A)) > 0; measure preserving if the measures P and P ◦T−1

are identical; ergodic if for any measurable set A, P (A� T−1A) = 0 ⇒ P (A) is
zero or one.

We are interested in a one-sided shift map defined on a factor of Ω. Let X =∏0
i=−∞{0, 1}i with the product measure Q =

∏0
k=−∞ Pk. Define S = T−1, i.e.,

(· · ·x−2x−1x0) 	→ (· · ·x−3x−2x−1). As above, we refer to the measure space
(X,Q, S) as S. We use B to denote the sigma algebra of measurable sets in X.
The same definitions as above are used to define S as nonsingular, conservative,
measure preserving, and ergodic. In addition, we call S exact if ∩∞

0 S−1B contains
only sets of Q-measure one or zero; full if limj→∞Q(SjB) = 1 for all B ∈ B of
positive measure; lim sup full if lim supj→∞Q(SjB) = 1 for all B ∈ B of positive
measure [1].

3. The Shape of the Measure P

The measure P is determined by a fixed probability distribution µ on {0, 1}, a
sequence of probability distributions νi = { 1

1+λi
, λi

1+λi
}, and two sequences of non-

negative integers ni and mi. Hamachi assigns values to λi, ni and mi by induction.
He does this in a way which guarentees that the resulting measure he obtains is
nonsingular, conservative, ergodic and preserves no equivalent finite or infinite in-
variant measure for the two-sided shift. We present a simpler induction process in
the next section. Our goal is for a nonsingular, conservative exact measure which
is not lim sup full for the one-sided shift. Since it is not lim sup full, it follows that
it has no equivalent finite invariant measure. It remains open whether it has an
equivalent infinite invariant measure; it also remains open whether the one-sided
version of Hamachi’s example is lim sup full.

In general the distribution µ occurs on all positive coordinates and on each of
the negative coordinates 0 through −m1+1 of the sequence space. The distribution
ν1 occurs on each of the next n1 negative coordinates. Then µ occurs on each of
the next m2 negative coordinates. Then ν2 occurs on the next n2 — and so on.

The following figures illustrate the measure P displayed on the coordinates of Ω
and the measure Q displayed on the coordinates of X.

P = · · ·
ν3︷︸︸︷· · ·︸︷︷︸
n3

µ︷︸︸︷· · ·︸︷︷︸
m3

ν2︷︸︸︷· · ·︸︷︷︸
n2

µ︷︸︸︷· · ·︸︷︷︸
m2

ν1︷ ︸︸ ︷
· · · −m1︸ ︷︷ ︸

n1

µ︷ ︸︸ ︷
· · · 0︸ ︷︷ ︸

m1

µ︷ ︸︸ ︷
1 · · · · · · · · ·︸ ︷︷ ︸

∞
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Q = · · ·
ν3︷︸︸︷· · ·︸︷︷︸
n3

µ︷︸︸︷· · ·︸︷︷︸
m3

ν2︷︸︸︷· · ·︸︷︷︸
n2

µ︷︸︸︷· · ·︸︷︷︸
m2

ν1︷ ︸︸ ︷
· · · −m1︸ ︷︷ ︸

n1

µ︷ ︸︸ ︷
· · · 0︸ ︷︷ ︸

m1

.

Here µ = { 1
2 ,

1
2} is fixed, and νi = { 1

1+λi
, λi

1+λi
}, where 2 > λi > 1 for all i with

limi→∞ λi = 1.

As in Hamachi [3], the values of λi, ni andmi are chosen by an inductive process -
though not quite in the obvious order. While doing this induction we want to control
three things, the first two of which already appear in [3]: (i) T should be nonsingular
with respect to the measure P ; (ii) T should be conservative with respect to the
measure P ; (iii) S should be not lim sup full with respect to the measure Q. The
nonsingularity and conservativity of S follow from the corresponding properties for
T .

In order to guarantee the nonsingularity of T with respect to P , we use Hamachi’s
version [3] of Kakutani’s theorem [5]. In particular, we choose the λi such that∑∞

i=1

(
log(λi)

)2
< ∞.

In order to guarantee the conservativity of T with respect to P , (again as in [3])
we force the Radon-Nikodym derivatives to sum to infinity, i.e.,

∑∞
i=0

dPT i

dP (ω) = ∞,
almost everywhere mod P . The Radon-Nikodym deriatives for the measure P are
analyzed by dPT i

dP (ω) =
∏∞

k=−∞
dPT i(ωk)
dP (ωk) =

∏∞
k=−∞

Pk−i(ωk)
Pk(ωk) .

In order to guarantee that S is not lim sup full, we construct a distinguished set
of positive measure E in X with the property that limj→∞Q(SjE) = 0. The set E
will be the intersection of a collection of sets Ai based on the disjoint coordinates
associated to the measures νi.

4. The Induction Process

We construct the measure P by finding appropriate values for the sequences
ni,mi, and λi, as well as for sets Ai used in constructing the set E described
above. Along the way, we construct some auxilary increasing sequences Ni,Ki, Li

of integers and set mi = Ni +Ni+1, ni =
∑i

j=1 Nj , and Li =
∑i

j=1 mj + nj . We
also inductively construct reals Ii,j > 0 which are used in controlling the Radon-
Nikodym derivatives.

Fix the sequence 1 > εi > 0 such that
∏∞

i=1(1− εi) > 0. The sequence εi is used
in choosing the sets Ai and eventually in the construction of E.

We use the following lemma to select variables Ai and Ni below.

Lemma 4.1. Given measures ν �= µ on {0, 1}, and given 1 > ε > 0, there is an
N > 0, such that for any natural number n > N there is a set

A ⊂
n∏

j=1

{0, 1}j

with the property that for the finite product measures,

(
n∏
1

µ)(A) < ε (
n∏
1

ν)(A) > 1− ε.
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Proof. Without loss of generality, we assume that µ(1) < ν(1). Put α = µ(1)+ν(1)
2 ,

and define An = {ω ∈ ∏n
i=1{0, 1}i : 1

n

∑n
i=1 ωi > α}. Then (

∏n
1 µ)(An) → 0

and (
∏n

1 ν)An → 1. Thus, for any natural number n > N there is a set A ⊂∏n
j=1{0, 1}j with the property that for the finite product measures, (

∏n
1 µ)(A) < ε

and (
∏n

1 ν)(A) > 1− ε. �
Step 1. Choose 1 < λ1 < 2 to obtain ν1. From Lemma 4.1, we obtain N1 > 0 and
a set A1 satisfying (

∏N1
1 µ)(A1) < ε1 and (

∏N1
1 ν1)(A1) > 1− ε1. Set n1 = N1, and

initialize L0 = N1. Choose K1 such that K1λ
−n1
1 > 1. Define I1,1 = K1λ

−n1
1 .

Note that we have specified n1, λ1, A1 and K1, but we have not yet specified
values for m1 or L1. This is done in Step 2.

Step 2. Choose 1 < λ2 < 1 + 1/2 such that λ−(L0+K1)
2 I1,1 > 1, and define I2,1 =

λ
−(L0+K1)
2 I1,1.
From Lemma 4.1, we obtainN2 > L0+K1 and a set A2 satisfying (

∏N2
1 µ)(A2) <

ε2 and (
∏N2

1 ν2)(A2) > 1 − ε2. Now set m1 = N2 + N1, and n2 = N2 + N1. Let
L1 = n1 +m1 and observe that L1 > n2. Choose K2 such that K2λ

−n2
2 λ−n1

1 > 1.
Define I2,2 = K2λ

−n2
2 λ−n1

1 .
The values for m2 and L2 will be specified in the next step.

Step 3. Choose 1 < λ3 < 1+1/3 such that λ−(L0+K1)
3 I2,1 > 1, and λ−(L1+K2)

3 I2,2 >
1. This is possible since I2,1 and I2,2 are both greater than 1. Define I3,1 =
λ
−(L0+K1)
3 I2,1, and I3,2 = λ

−(L1+K2)
3 I2,2. From Lemma 4.1, we obtainN3 > L1+K2

and a set A3 satisfying (
∏N3

1 µ)(A3) < ε3 and (
∏N3

1 ν3)(A3) > 1 − ε3. Set m2 =
N3 +N2, n3 = N3 +N2 +N1 and L2 = n2 +m2 +L1. Again L2 > n3. Choose K3

such that K3λ
−n3
3 λ−n2

2 λ−n1
1 > 1. Define I3,3 = K3λ

−n3
3 λ−n2

2 λ−n1
1 .

Step t + 1. Suppose that mt−1, Lt−1, nt, λt, At, and Kt have been fixed. Also,
It,1, It,2, ..., It,t are all defined and are greater than 1. Choose λt+1 such that 1 <

λt+1 < 1 + 1/(t+ 1) and λ
−(Lj−1+Kj)
t+1 It,j > 1 for all j ∈ {1, 2, ..., t}, and define

It+1,j = λ
−(Lj−1+Kj)
t+1 It,j . Use Lemma 4.1 to obtain an integerNt+1 > Lt−1+Kt and

a set At+1 satisfying (
∏Nt+1

1 µ)(At+1) < εt+1 and (
∏Nt+1

1 νt+1)(At+1) > 1 − εt+1.
Set mt = Nt+1 + Nt, Lt = nt +mt + Lt−1, and nt+1 = Nt+1 + nt. Choose Kt+1

such that Kt+1

∏t+1
j=1 λ

−nj

j > 1. Let It+1,t+1 = Kt+1

∏t+1
j=1 λ

−nj

j .

Remark 4.2. From the definitions, for fixed i ≥ 1 the sequence It,i is a decreasing
sequence and limt→∞ It,i ≥ 1.

5. Nonsingularity, Conservativity, and Not Lim Sup Full

In this section, we show that the one-sided shift map with the previously con-
structed measure P is a conservative, exact 2-to-1 endormorphism which is not lim
sup full.

Lemma 5.1. T is nonsingular with respect to P .

Proof. From the construction of the measure P we have a sequence λt with the
property that λt < 1 + 1/t for all t > 0. Therefore,

∞∑
i=1

(log(λi))2 ≤
∞∑

i=1

(log(1 + 1/i))2 <
∞∑

i=1

(1/i)2 < ∞.



Lim Sup Full 91

Thus T is nonsingular with respect to P [5]. �

It follows that S is also nonsingular with respect to Q.

Lemma 5.2. S not lim sup full with respect to Q.

Proof. We now construct a set E from the collection of sets Ai obtained in the
previous section.

Let A′
i denote the set of all sequences in X with Ai placed on the leftmost Ni

coordinates of ni. This can be observed by the following illustration:

P = · · ·
µ︷ ︸︸ ︷· · ·︸︷︷︸

N4+N5

ν3︷ ︸︸ ︷
A3 · · ·︸ ︷︷ ︸

N3+N2+N1

µ︷ ︸︸ ︷· · ·︸︷︷︸
N3+N4

ν2︷ ︸︸ ︷
A2 · · ·︸ ︷︷ ︸
N2+N1

µ︷ ︸︸ ︷· · ·︸︷︷︸
N2+N3

ν1︷︸︸︷
A1︸︷︷︸
N1

µ︷ ︸︸ ︷· · ·︸︷︷︸
N1+N2

µ︷ ︸︸ ︷· · · · · · · · ·︸ ︷︷ ︸
∞

.

Hence, for N1 ≤ j ≤ N1 + N2, Q(SjA′
1) < ε1; for N1 + N2 ≤ j ≤ N1 + N2 + N3,

Q(SjA′
2) < ε2; and in general, Q(SjA′

k) < εk for
∑k

i=1 Ni ≤ j ≤ ∑k+1
i=1 Ni.

Let E = ∩∞
i=1A

′
i. Since A′

i forms a disjoint collection of sets based in νi blocks,
Q(E) =

∏∞
i=1 Q(A′

i) >
∏∞

i=1(1− εi) > 0.
Let ε > 0. Since limi→∞ εi = 0, there is a natural number K such that for all

k > K, εk < ε. Then for all j > NK , there is a k > K such that
∑k

i=1 Ni ≤
j ≤ ∑k

i=1 Ni+1. So, Q(Sj(E)) =
∑∞

i=1 Q(Sj(A′
i)) ≤ Q(Sj(A′

k)) < εk < ε. Thus,
limj→∞Q(Sj(E)) = 0, and S is not lim sup full. �

Lemma 5.3. T is conservative with respect to P .

Proof. To show conservativity we demonstrate that the sum of the Radon-Nikodym
derivatives sum to infinity.

It is clear that

∞∑
i=1

dPT i

dP
(ω) ≥

L0+K1−1∑
i=L0

dPT i

dP
(ω) + · · ·+

Lt+Kt+1−1∑
i=Lt

dPT i

dP
(ω) + · · · .

We will show that for all t ≥ 0,
∑Lt+Kt+1−1

i=Lt

dPT i

dP (ω) ≥ 1. For each i we have
dPT i

dP (ω) =
∏∞

k=−∞
Pk−i(ωk)
Pk(ωk) . Since the sum

∑Lt+Kt+1−1
i=Lt

dPT i

dP (ω) has Kt+1 terms,

we will show that for all t ≥ 0 the product
∏∞

k=−∞
Pk−i(ωk)
Pk(ωk) ≥ K−1

t+1.
Let aj denote the left-end coordinate of the νj block and bj denote the right-end

coordinate of the νj block. Then

∞∏
k=−∞

Pk−i(ωk)
Pk(ωk)

= · · ·
aj−1∏

bj+1+i+1

Pk−i(ωk)
Pk(ωk)

bj+i∏
k=aj

Pk−i(ωk)
Pk(ωk)

· · ·

. . .

a1−1∏
b2+i+1

Pk−i(ωk)
Pk(ωk)

b1+i∏
k=a1

Pk−i(ωk)
Pk(ωk)

∞∏
k=b1+i+1

Pk−i(ωk)
Pk(ωk)

.

It is immediate that
∏∞

k=b1+i+1
Pk−i(ωk)
Pk(ωk) = 1 since all the Pl(ωk) with k >

b1 + i+ 1 are the same, i.e., { 1
2 ,

1
2}.

Assume L0 ≤ i < L0 +K1.
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Remark 5.4. This means that there are at most L0 +K1 coordinates of each νj

block moving to the left into a µ block, and there are at most L0 +K1 coordinates
from the µ block on the right moving into the νj block. For the ν1 block there are
only n1 < L0+K1 coordinates to move and these move completely into the µ block
to the left.

It is again immediate that for each j,
∏aj−1

bj+1+i+1
Pk−i(ωk)
Pk(ωk) = 1, since all the Pl(ωk)

with bj+1 + i+1 ≤ k ≤ aj−1 are the same, i.e., { 1
2 ,

1
2}. The term

∏b1+i
k=a1

Pk−i(ωk)
Pk(ωk) ≥

λ−n1
1 = I1,1K

−1
1 > K−1

1 because the entire ν1 block, which is of length n1, is moved
into a µ block and simultaneously covered by a µ block. For j > 1, the terms∏bj+i

k=aj

Pk−i(ωk)
Pk(ωk) ≥ λ−i

j ≥ λ
−(L0+K1)
j . This follows from the above remark. Hence,

the product
∏∞

k=−∞
Pk−i(ωk)
Pk(ωk) ≥ limt→∞ It,1K

−1
1 ≥ K−1

1 .
Using a similar argument, we see that for s > 1, Ls−1 ≤ i ≤ Ls−1 + Ks − 1,∏b1+i

k=as

Pk−i(ωk)
Pk(ωk) ≥ ∏s

j=1 λ
−nj

j = Is,sK
−1
s . For all t > s,

∏bt+i
k=at

Pk−i(ωk)
Pk(ωk) ≥ λ−i

t ≥
λ
−(Ls−1+Ks)
t . Therefore,

∏∞
−∞

Pk−i(ωk)
Pk(ωk) ≥ limt→∞ It,sK

−1
s ≥ K−1

s . �

Lemma 5.5. S exact with respect to Q.

Proof. Associated to (S,X,Q) is the usual odometer map R except that the coor-
dinates of X are negative: if x is a point of X with x−i = 1 for i = 0, 1, 2, · · · , k−1
and x−k = 0 then (Rx)−i = 0, i = 0, · · · , k − 1, (Rx)−k = 1 and (Rx)−j = x−j for
all j > k.

From the construction of Q, it follows that (R,X,Q) is a nonsingular ergodic
transformation [4]. It then follows from the Kolmogorov zero-one law that S is
exact. �
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