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Green’s Functions for Elliptic and Parabolic
Equations with Random Coefficients

Joseph G. Conlon and Ali Naddaf

Abstract. This paper is concerned with linear uniformly elliptic and par-
abolic partial differential equations in divergence form. It is assumed that
the coefficients of the equations are random variables, constant in time. The
Green’s functions for the equations are then random variables. Regularity
properties for expectation values of Green’s functions are obtained. In par-
ticular, it is shown that the expectation value is a continuously differentiable
function whose derivatives are bounded by the corresponding derivatives of
the heat equation. Similar results are obtained for the related finite difference
equations.
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1. Introduction

Let (Ω,F , µ) be a probability space and a : Ω → R
d(d+1)/2 be a bounded mea-

surable function from Ω to the space of symmetric d× d matrices. We assume that
there are positive constants Λ, λ such that

λId ≤ a(ω) ≤ ΛId, ω ∈ Ω,(1.1)

in the sense of quadratic forms, where Id is the identity matrix in d dimensions. We
assume that R

d acts on Ω by translation operators τx : Ω→ Ω, x ∈ R
d, which are

measure preserving and satisfy the properties τxτy = τx+y, τ0 = identity, x, y ∈ R
d.

We assume also that the function from R
d × Ω to Ω defined by (x, ω) → τxω,

Received May 25, 2000.
Mathematics Subject Classification. 35R60, 60J75.
Key words and phrases. Green’s functions, diffusions, random environments.

ISSN 1076-9803/00

153

http://nyjm.albany.edu:8000/j/2000/6-10.html
http://nyjm.albany.edu:8000/j/2000/Vol6.html
http://nyjm.albany.edu:8000/nyjm.html


154 Joseph G. Conlon and Ali Naddaf

x ∈ R
d, ω ∈ Ω, is measurable. It follows that with probability 1 the function

a(x, ω) = a(τxω), x ∈ R
d, is a Lebesgue measurable function from R

d to d × d
matrices.
Consider now for ω ∈ Ω such that a(x, ω) is a measurable function of x ∈ R

d,
the parabolic equation

∂u

∂t
=

d∑
i,j=1

∂

∂xi

[
ai,j(x, ω)

∂

∂xj
u(x, t, ω)

]
, x ∈ R

d, t > 0,(1.2)

u(x, 0, ω) = f(x, ω), x ∈ R
d.

It is well known that the solution of this initial value problem can be written as

u(x, t, ω) =
∫

Rd

Ga(x, y, t, ω)f(y, ω)dy ,

where Ga(x, y, t, ω) is the Green’s function, and Ga is measurable in (x, y, t, ω).
Evidently Ga is a positive function which satisfies∫

Rd

Ga(x, y, t, ω)dy = 1.(1.3)

It also follows from the work of Aronson [1] (see also [5]) that there is a constant
C(d, λ,Λ) depending only on dimension d and the uniform ellipticity constants λ,Λ
of (1.1) such that

0 ≤ Ga(x, y, t, ω) ≤ C(d, λ,Λ)
td/2

exp
[ −|x− y|2
C(d, λ,Λ)t

]
.(1.4)

In this paper we shall be concerned with the expectation value of Ga over Ω.
Denoting expectation value on Ω by

〈 〉
we define the function Ga(x, t), x ∈

R
d, t > 0 by 〈

Ga(x, 0, t, ·)
〉
= Ga(x, t) .

Using the fact that τxτy = τx+y, x, y ∈ R
d, we see from the uniqueness of solutions

to (1.2) that

Ga(x, y, t, ω) = Ga(x− y, 0, t, τyω),

whence the measure preserving property of the operator τy yields the identity,〈
Ga(x, y, t, ·)

〉
= Ga(x− y, t) .

From (1.3), (1.4) we have ∫
Rd

Ga(x, t)dx = 1, t > 0,

0 ≤ Ga(x, t) ≤ C(d, λ,Λ)
td/2

exp
[ −|x|2
C(d, λ,Λ)t

]
, x ∈ R

d, t > 0.(1.5)

In general one cannot say anything about the smoothness properties of the function
Ga(x, y, t, ω). We shall, however, be able to prove here that Ga(x, t) is a C1 function
of (x, t), x ∈ R

d, t > 0.
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Theorem 1.1. Ga(x, t) is a C1 function of (x, t), x ∈ R
d, t > 0. There is a

constant C(d, λ,Λ), depending only on d, λ,Λ such that∣∣∣∣∂Ga

∂t
(x, t)

∣∣∣∣ ≤ C(d, λ,Λ)
td/2 + 1

exp
[ −|x|2
C(d, λ,Λ)t

]
,∣∣∣∣∂Ga

∂xi
(x, t)

∣∣∣∣ ≤ C(d, λ,Λ)
td/2 + 1/2

exp
[ −|x|2
C(d, λ,Λ)t

]
.

The Aronson inequality (1.5) shows us that Ga(x, t) is bounded by the kernel
of the heat equation. Theorem 1.1 proves that corresponding inequalities hold for
the first derivatives of Ga(x, t). We cannot use our methods to prove existence of
second derivatives of Ga(x, t) in the space variable x. In fact we are inclined to
believe that second space derivatives do not in general exist in a pointwise sense.
As well as the parabolic problem (1.2) we also consider the corresponding elliptic

problem,

−
d∑

i,j=1

∂

∂xi

[
ai,j(x, ω)

∂u

∂xj
(x, ω)

]
= f(x, ω), x ∈ R

d.(1.6)

If d ≥ 3 then the solution of (1.6) can be written as

u(x, ω) =
∫

Rd

Ga(x, y, ω)f(y, ω)dy,

where Ga(x, y, ω) is the Green’s function and is measurable in (x, y, ω). It follows
again by Aronson’s work that there is a constant C(d, λ,Λ), depending only on
d, λ,Λ, such that

0 ≤ Ga(x, y, ω) ≤ C(d, λ,Λ)/|x− y|d−2, d ≥ 3.(1.7)

Again we consider the expectation of the Green’s function, Ga(x), defined by〈
Ga(x, y, ·)

〉
= Ga(x− y).

It follows from (1.7) that

0 ≤ Ga(x) ≤ C(d, λ,Λ)/|x|d−2, d ≥ 3.
Theorem 1.2. Suppose d ≥ 3. Then Ga(x) is a C1 function of x for x 
= 0. There
is a constant C(d, λ,Λ) depending only on d, λ,Λ, such that∣∣∣∣∂Ga

∂xi
(x)

∣∣∣∣ ≤ C(d, λ,Λ)
|x|d−1

, x 
= 0.

We can also derive estimates on the Fourier transforms of Ga(x, t) and Ga(x).
For a function f : Rd → C we define its Fourier transform f̂ by

f̂(ξ) =
∫

Rd

f(x)eix·ξdx, ξ ∈ R
d.

Evidently from the equation before (1.5) we have that |Ĝa(ξ, t)| ≤ 1
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Theorem 1.3. The function Ĝa(ξ, t) is continuous for ξ ∈ R
d, t > 0, and differen-

tiable with respect to t. Let δ satisfy 0 ≤ δ < 1. Then there is a constant C(δ, λ,Λ)
depending only on δ, λ,Λ, such that

|Ĝa(ξ, t)| ≤ C(δ, λ,Λ)
[1 + |ξ|2t]δ ,∣∣∣∣∣∂Ĝa

∂t
(ξ, t)

∣∣∣∣∣ ≤ C(δ, λ,Λ)|ξ|2
[1 + |ξ|2t]1+δ

,

where |ξ| denotes the Euclidean norm of ξ ∈ R
d.

Remark 1.1. Note that the dimension d does not enter in the constant C(δ, λ,Λ).
Also, our method of proof breaks down if we take δ → 1.

In this paper we shall be mostly concerned with a discrete version of the parabolic
and elliptic problems (1.2), (1.6). Then Theorems 1.1, 1.2, 1.3 can be obtained as
a continuum limit of our results on the discrete problem. In the discrete problem
we assume Z

d acts on Ω by translation operators τx : Ω → Ω, x ∈ Z
d, which

are measure preserving and satisfy the properties τxτy = τx+y, τ0 = identity. For
functions g : Zd → R we define the discrete derivative ∇ig of g in the i th direction
to be

∇ig(x) = g(x+ ei)− g(x), x ∈ Z
d,

where ei ∈ Z
d is the element with entry 1 in the i th position and 0 in other

positions. The formal adjoint of ∇i is given by ∇∗
i , where

∇∗
i g(x) = g(x− ei)− g(x), x ∈ Z

d.

The discrete version of the problem (1.2) that we shall be interested in is given by

∂u

∂t
= −

d∑
i,j=1

∇∗
i [aij(τxω)∇ju(x, t, ω)] , x ∈ Z

d, t > 0,(1.8)

u(x, 0, ω) = f(x, ω), x ∈ Z
d.

The solution of (1.8) can be written as

u(x, t, ω) =
∑
y∈Zd

Ga(x, y, t, ω)f(y, ω),

where Ga(x, y, t, ω) is the discrete Green’s function. As in the continuous case, Ga

is a positive function which satisfies∑
y∈Zd

Ga(x, y, t, ω) = 1.

It also follows from the work of Carlen et al [3] that there is a constant C(d, λ,Λ)
depending only on d, λ,Λ such that

0 ≤ Ga(x, y, t, ω) ≤ C(d, λ,Λ)
1 + td/2

exp
[
−min{|x− y|, |x− y|2/t}

C(d, λ,Λ)

]
.

Now let Ga(x, t), x ∈ Z
d, t > 0, be the expectation of the Green’s function,〈

Ga(x, y, t, ·)
〉
= Ga(x− y, t).(1.9)
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Then we have ∑
x∈Zd

Ga(x, t) = 1, t > 0 ,

Ga(x, t) ≤ C(d, λ,Λ)
1 + td/2

exp
[
−min{|x|, |x|

2/t}
C(d, λ,Λ)

]
, x ∈ Z

d, t > 0 .(1.10)

The discrete version of Theorem 1.1 which we shall prove is given by the following:

Theorem 1.4. Ga(x, t), x ∈ Z
d, t > 0 is differentiable in t. There is a constant

C(d, λ,Λ), depending only on d, λ,Λ such that∣∣∣∣∂Ga

∂t
(x, t)

∣∣∣∣ ≤ C(d, λ,Λ)
1 + td/2 + 1

exp
[
− min{|x|, |x|2/t}

C(d, λ,Λ)

]
,

|∇iGa(x, t)| ≤ C(d, λ,Λ)
1 + td/2 + 1/2

exp
[
− min{|x|, |x|2/t}

C(d, λ,Λ)

]
.

Let δ satisfy 0 ≤ δ < 1. Then there is a constant C(δ, d, λ,Λ) depending only on
δ, d, λ,Λ such that

|∇i∇jGa(x, t)| ≤ C(δ, d, λ,Λ)
1 + t(d+1+δ)/2

exp
[
− min{|x|, |x|2/t}

C(d, λ,Λ)

]
.(1.11)

Remark 1.2. As in Theorem 1.1, Theorem 1.4 shows that first derivatives of
Ga(x, t) are bounded by corresponding heat equation quantities. It also shows
that second space derivatives are almost similarly bounded. We cannot put δ = 1
in (1.11) since the constant C(δ, d, λ,Λ) diverges as δ → 1.

The elliptic problem corresponding to (1.8) is given by
d∑

i,j=1

∇∗
i [ai,j(τxω)∇ju(x, ω)] = f(x, ω), x ∈ Z

d.(1.12)

If d ≥ 3 then the solution of (1.12) can be written as
u(x, ω) =

∑
y∈Zd

Ga(x, y, ω)f(y, ω),

where Ga(x, y, ω) is the discrete Green’s function. It follows from Carlen et al [3]
that there is a constant C(d, λ,Λ) depending only on d, λ,Λ such that

0 ≤ Ga(x, y, ω) ≤ C(d, λ,Λ)/[1 + |x− y|d−2], d ≥ 3.(1.13)

Letting Ga(x) be the expectation of the Green’s function,〈
Ga(x, y, ·)

〉
= Ga(x− y),

it follows from (1.13) that

0 ≤ Ga(x) ≤ C(d, λ,Λ)/[1 + |x|d−2], d ≥ 3.(1.14)

We shall prove a discrete version of Theorem 1.2 as follows:

Theorem 1.5. Suppose d ≥ 3. Then there is a constant C(d, λ,Λ), depending only
on d, λ,Λ such that

|∇iGa(x)| ≤ C(d, λ,Λ)/[1 + |x|d−1], x ∈ Z
d.
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Let δ satisfy 0 ≤ δ < 1. Then there is a constant C(δ, d, λ,Λ) depending only on
δ, d, λ,Λ such that

|∇i∇jGa(x)| ≤ C(δ, d, λ,Λ)/[1 + |x|d−1+δ], x ∈ Z
d.

Remark 1.3. As in Theorem 1.4 our estimates on the second derivatives of Ga(x)
diverge as δ → 1.

Next we turn to the discrete version of Theorem 1.3. For a function f : Zd → C

we define its Fourier transform f̂ by

f̂(ξ) =
∑
x∈Zd

f(x)eix·ξ, ξ ∈ R
d.

For 1 ≤ k ≤ d, ξ ∈ R
d, let ek(ξ) = 1 − eiek·ξ and e(ξ) be the vector e(ξ) =

(e1(ξ), . . . , ed(ξ)). Let Ĝa(ξ, t) be the Fourier transform of the functionGa(x, t), x ∈
Z
d, t > 0, defined by (1.9). From the equation before (1.10) it is clear that

|Ĝa(ξ, t)| ≤ 1.

Theorem 1.6. The function Ĝa(ξ, t) is continuous for ξ ∈ R
d and differentiable

for t > 0. Let δ satisfy 0 ≤ δ < 1. Then there is a constant C(δ, λ,Λ) depending
only on δ, λ,Λ, such that

|Ĝa(ξ, t)| ≤ C(δ, λ,Λ)
[1 + |e(ξ)|2t]δ ,

|∂Ĝa

∂t
(ξ, t)| ≤ C(δ, λ,Λ)|e(ξ)|2

[1 + |e(ξ)|2t]1+δ
,

where |e(ξ)| denotes the Euclidean norm of e(ξ) ∈ C
d.

In order to prove Theorems 1.1–1.6 we use a representation for the Fourier trans-
form of the expectation of the Green’s function for the elliptic problem (1.12), which
was obtained in [4] . This in turn gives us a formula for the Laplace transform of the
function Ĝa(ξ, t) of Theorem 1.6. We can prove Theorem 1.6 then by estimating
the inverse Laplace transform. In order to prove Theorems 1.4, 1.5 we need to use
interpolation theory, in particular the Hunt Interpolation Theorem [10]. Thus we
prove that Ĝa(ξ, t) is in a weak Lp space which will then imply pointwise bounds
on the Fourier inverse. We shall prove here Theorems 1.4–1.6 in detail. In the
final section we shall show how to generalize the proof of Theorem 1.5 to prove
Theorem 1.2. The proofs of Theorems 1.1 and 1.3 are left to the interested reader.
We would like to thank Jana Björn and Vladimir Maz’ya for help with the proof of
Lemma 2.6.
There is already a large body of literature on the problem of homogenization of

solutions of elliptic and parabolic equations with random coefficients, [4] [6] [7] [8]
[11]. These results prove in a certain sense that, asympotically, the lowest frequency
components of the functions Ga(x) and Ga(x, t) are the same as the corresponding
quantities for a constant coefficient equation. The constant depends on the random
matrix a(·). The problem of homogenization in a periodic medium has also been
studied [2] [11], and similar results been obtained.
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2. Proof of Theorem 1.6

Let Ĝa(ξ, t), ξ ∈ R
d, t > 0, be the function in Theorem 1.6. Our first goal will

be to obtain a formula for the Laplace transform of Ĝa(ξ, t), which we denote by
Ĝa(ξ, η),

Ĝa(ξ, η) =
∫ ∞

0

dt e−ηtĜa(ξ, t) , Re(η) > 0 .

It is evident that Ĝa(ξ, η) is the Fourier transform of the expectation of the Green’s
function for the elliptic problem,

ηu(x, ω) +
d∑

i,j=1

∇∗
i [ai,j(τxω)∇ju(x, ω)] = f(x, ω) , x ∈ Z

d .(2.1)

In [4] we derived a formula for this. To do that we defined operators ∂i, 1 ≤ i ≤ d,
on functions ψ : Ω → C by ∂iψ(ω) = ψ(τeiω) − ψ(ω), with corresponding adjoint
operators ∂∗

i , 1 ≤ i ≤ d, defined by ∂∗
i ψ(ω) = ψ(τ−eiω)− ψ(ω). Hence for ξ ∈ R

d

we may define an operator Lξ on functions ψ : Ω→ C by

Lξψ(ω) = P

d∑
i,j=1

eiξ·(ei−ej) [∂∗
i + ei(−ξ)] ai,j(ω) [∂j + ej(ξ)]ψ(ω) ,

where P is the projection orthogonal to the constant function and ej(ξ) is defined
just before the statement of Theorem 1.6. Note that Lξ takes a function ψ to a
function Lξψ satisfying 〈Lξψ〉 = 0. Now for 1 ≤ k ≤ d, ξ ∈ R

d, Re(η) > 0, let
ψk(ξ, η, ω) be the solution to the equation,

[Lξ + η]ψk(ξ, η, ω) +
d∑

j=1

eiej ·ξ [∂∗
j + ej(−ξ)

]
[ak,j(ω)− 〈ak,j(·)〉] = 0 .(2.2)

Then we may define a d× d matrix q(ξ, η) by,

qk,k′(ξ, η) =

〈
ak,k′(·) +

d∑
j=1

ak,j(·)e−iej ·ξ [∂j + ej(ξ)]ψk′(ξ, η, ·)
〉

.(2.3)

The function Ĝa(ξ, η) is then given by the formula,

Ĝa(ξ, η) =
1

η + e(ξ)q(ξ, η)e(−ξ)
, ξ ∈ R

d, Re(η) > 0 .(2.4)

We actually established the formula (2.4) in [4] when η is real and positive. In that
case q(ξ, η) is a d× d Hermitian matrix bounded below in the quadratic form sense
by λId. It follows that Ĝa(ξ, η) is finite for all positive η. We wish to establish
this for all η satisfying Re(η) > 0. We can in fact argue this from (2.1). Suppose
the function on the RHS of (2.1) is a function of x only, f(x, ω) = f(x). Then the
Fourier transform û(ξ, ω) of the solution to (2.1) satisfies the equation,

〈û(ξ, ·)〉 = Ĝa(ξ, η)f̂(ξ), ξ ∈ R
d.
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If we multiply (2.1) by u(x, ω), and sum with respect to x, we have by the Plancherel
Theorem,

|η|2
∫

[−π,π]d

|û(ξ, ω)|2dξ ≤
∫

[−π,π]d

|f̂(ξ)|2dξ .

Since f̂(ξ) is an arbitrary function it follows that |Ĝa(ξ, η)| ≤ 1/|η|. We improve
this inequality in the following:

Lemma 2.1. Suppose Re(η) > 0 and ξ ∈ R
d. Let ρ = (ρ1, . . . , ρd) ∈ C

d. Then

Re[η + ρ̄q(ξ, η)ρ] ≥ Re(η) + λ|ρ|2,(2.5)

Im(η)Im[ρ̄q(ξ, η)ρ] ≥ 0.(2.6)

Proof. From (2.2), (2.3) we have that

qk,k′(ξ, η) =
〈 d∑
i,j=1

ai,j(·)
[
δk,i + eiei·ξ[∂i + ei(−ξ)]ψk(−ξ, η, ·)]

[
δk′,j + e−iej ·ξ[∂j + ej(ξ)]ψk′(ξ, η, ·)] 〉+ η

〈
ψk(−ξ, η, ·)ψk′(ξ, η, ·)

〉
.

Thus we have

ρ̄q(ξ, η)ρ =
〈 d∑
i,j=1

ai,j(·)
[
ρ̄i + eiei·ξ[∂i + ei(−ξ)]ϕ(ξ, η̄, ·)

]
(2.7)

[
ρj + e−iej ·ξ[∂j + ej(ξ)]ϕ(ξ, η, ·)

] 〉
+ η

〈
ϕ(ξ, η̄, ·)ϕ(ξ, η, ·)

〉
,

where

ϕ(ξ, η, ·) =
d∑

k=1

ρkψk(ξ, η, ·) .(2.8)

Evidently we have that

[Lξ + η]ϕ(ξ, η, ω) +
d∑

k=1

ρk

d∑
j=1

eiej ·ξ[∂∗
j + ej(−ξ)] [ak,j(ω)− 〈ak,j(·)〉] = 0 .(2.9)

It follows from the last equation that

[Lξ + η]ϕ(ξ, η, ·) = [Lξ + η̄]ϕ(ξ, η̄, ·),
whence

[Lξ +Re(η)][ϕ(ξ, η, ·)− ϕ(ξ, η̄, ·)] = −i Im(η)[ϕ(ξ, η, ·) + ϕ(ξ, η̄, ·)] .(2.10)

Hence

(2.11)
〈
[ϕ(ξ, η, ·)− ϕ(ξ, η̄, ·)][Lξ +Re(η)][ϕ(ξ, η, ·)− ϕ(ξ, η̄, ·)]

〉
= −i Im(η)

〈
[ϕ(ξ, η, ·)− ϕ(ξ, η̄, ·)][ϕ(ξ, η, ·) + ϕ(ξ, η̄, ·)]

〉
.

Observe that since the LHS of (2.11) is real, the quantity〈
[ϕ(ξ, η, ·)− ϕ(ξ, η̄, ·)][ϕ(ξ, η, ·) + ϕ(ξ, η̄, ·)]

〉
is pure imaginary.
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Next for 1 ≤ j ≤ d, let us put

Aj = ρj + e−iej ·ξ[∂j + ej(ξ)]
1
2
{ϕ(ξ, η, ·) + ϕ(ξ, η̄, ·)},

Bj = e−iej ·ξ[∂j + ej(ξ)]
1
2
{ϕ(ξ, η, ·)− ϕ(ξ, η̄, ·)}.

Then

ρ̄q(ξ, η)ρ =
〈 d∑
i,j=1

ai,j(·)[Āi − B̄i][Aj +Bj ]
〉
+ η

〈
ϕ(ξ, η̄, ·)ϕ(ξ, η, ·)

〉
.

We can decompose this sum into real and imaginary parts. Thus

〈 d∑
i,j=1

ai,j(·)[Āi − B̄i][Aj +Bj ]
〉
=

〈 d∑
i,j=1

ai,j(·)ĀiAj

〉
−

〈 d∑
i,j=1

ai,j(·)B̄iBj

〉

+ 2i Im
〈 d∑
i,j=1

ai,j(·)ĀiBj

〉
.

Evidently the first two terms on the RHS of the last equation are real while the
third term is pure imaginary. We also have that〈
ϕ(ξ, η̄, ·)ϕ(ξ, η, ·)

〉
=
1
4

〈{
[ϕ(ξ, η̄, ·) + ϕ(ξ, η, ·)] + [ϕ(ξ, η̄, ·)− ϕ(ξ, η, ·)]

}
{ϕ(ξ, η, ·) + ϕ(ξ, η̄, ·)] + [ϕ(ξ, η, ·)− ϕ(ξ, η̄, ·)]}

〉
=
1
4

〈
|ϕ(ξ, η, ·) + ϕ(ξ, η̄, ·)|2

〉
− 1
4

〈
|ϕ(ξ, η, ·)− ϕ(ξ, η̄, ·)|2

〉
− i

2Im(η)

〈
[ϕ(ξ, η, ·)− ϕ(ξ, η̄, ·)][Lξ +Re(η)][ϕ(ξ, η, ·)− ϕ(ξ, η̄, ·)]

〉
,

where we have used (2.11). Observe that the first two terms on the RHS of the last
equation are real while the third term is pure imaginary. Hence

η
〈
ϕ(ξ, η̄, ·)ϕ(ξ, η, ·)

〉
=

Re(η)
4

〈
|ϕ(ξ, η, ·) + ϕ(ξ, η̄, ·)|2

〉
− Re(η)

4

〈
|ϕ(ξ, η, ·)− ϕ(ξ, η̄, ·)|2

〉
+
1
2

〈[
ϕ(ξ, η, ·)− ϕ(ξ, η̄, ·)][Lξ +Re(η)][ϕ(ξ, η, ·)− ϕ(ξ, η̄, ·)

]〉
+ i
Im(η)
4

〈
|ϕ(ξ, η, ·) + ϕ(ξ, η̄, ·)|2

〉
− i
Im(η)
4

〈
|ϕ(ξ, η, ·)− ϕ(ξ, η̄, ·)|2

〉
− i Re(η)
2 Im(η)

〈[
[ϕ(ξ, η, ·)− ϕ(ξ, η̄, ·)][Lξ +Re(η)][ϕ(ξ, η, ·)− ϕ(ξ, η̄, ·)

]〉
.
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We conclude then from the last four equations that

Re[ ρ̄q(ξ, η)ρ] =
〈 d∑
i,j=1

ai,j(·)ĀiAj

〉
−

〈 d∑
i,j=1

ai,j(·)B̄iBj

〉(2.12)

+
Re(η)
4

〈
|ϕ(ξ, η, ·) + ϕ(ξ, η̄, ·)|2

〉
− Re(η)

4

〈
|ϕ(ξ, η, ·)− ϕ(ξ, η̄, ·)|2

〉
+
1
2

〈[
[ϕ(ξ, η, ·)− ϕ(ξ, η̄, ·)][Lξ +Re(η)][ϕ(ξ, η, ·)− ϕ(ξ, η̄, ·)

]〉
,

Im[ρ̄q(ξ, η)ρ] = 2 Im
〈 d∑
i,j=1

ai,j(·)ĀiBj

〉
+
Im(η)
4

〈
|ϕ(ξ, η, ·) + ϕ(ξ, η̄, ·)|2

〉(2.13)

− Im(η)
4

〈
|ϕ(ξ, η, ·)− ϕ(ξ, η̄, ·)|2

〉
− Re(η)
2 Im(η)

·〈 [
[ϕ(ξ, η, ·)− ϕ(ξ, η̄, ·)][Lξ +Re(η)][ϕ(ξ, η, ·)− ϕ(ξ, η̄, ·)

] 〉
.

We can simplify the expression on the RHS of (2.12) by observing that

〈 d∑
i,j=1

ai,j(·)B̄iBj

〉
=
1
4

〈
[ϕ(ξ, η, ·)− ϕ(ξ, η̄, ·)]Lξ[ϕ(ξ, η, ·)− ϕ(ξ, η̄, ·)]

〉
.

Hence we obtain the expression,

Re[ρ̄q(ξ, η)ρ] =
〈 d∑
i,j=1

ai,j(·)ĀiAj

〉
+
Re(η)
4

〈
|ϕ(ξ, η, ·) + ϕ(ξ, η̄, ·)|2

〉
(2.14)

+
1
4

〈
[ϕ(ξ, η, ·)− ϕ(ξ, η̄, ·)][Lξ +Re(η)][ϕ(ξ, η, ·)− ϕ(ξ, η̄, ·)]

〉
.

Now all the terms on the RHS of the last expression are nonnegative, and from
Jensen’s inequality,

〈 d∑
i,j=1

ai,j(·)ĀiAj

〉
≥ λ |ρ|2.

The inequality in (2.5) follows from this.
To prove the inequality (2.6) we need to rewrite the RHS of (2.13). We have

now

〈 d∑
i,j=1

ai,j(·)ĀiBj

〉
=

〈 d∑
i,j=1

ai,j(·)ρ̄iBj

〉
+
1
4

〈 [
[ϕ(ξ, η, ·) + ϕ(ξ, η̄, ·)]Lξ[ϕ(ξ, η, ·)− ϕ(ξ, η̄, ·)

] 〉
.
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From (2.10) we have that〈[
ϕ(ξ, η, ·) + ϕ(ξ, η̄, ·)

]
Lξ [ϕ(ξ, η, ·)− ϕ(ξ, η̄, ·)]

〉
= −i Im(η)

〈|ϕ(ξ, η, ·) + ϕ(ξ, η̄, ·)|2〉
− Re(η)

〈[
ϕ(ξ, η, ·) + ϕ(ξ, η̄, ·)

]
[ϕ(ξ, η, ·)− ϕ(ξ, η̄, ·)]

〉
= −i Im(η)

〈|ϕ(ξ, η, ·) + ϕ(ξ, η̄, ·)|2〉
+ i
Re(η)
Im(η)

〈[
ϕ(ξ, η, ·)− ϕ(ξ, η̄, ·)

]
[Lξ +Re(η)] [ϕ(ξ, η, ·)− ϕ(ξ, η̄, ·)]

〉
,

where we have used (2.11). We also have that〈 d∑
i,j=1

ai,j(·)ρ̄iBj

〉

=
1
2

〈{ d∑
i,j=1

ρieiej ·ξ [∂∗
j + ej(−ξ)

]
ai,j(·)

}
[ϕ(ξ, η, ·)− ϕ(ξ, η̄, ·)]

〉
= − 1

4

〈
{[Lξ + η]ϕ(ξ, ·) + [Lξ + η̄]ϕ(ξ, η̄, ·)} [ϕ(ξ, η, ·)− ϕ(ξ, η̄, ·)]

〉
= − 1

4

〈
{[Lξ + Re(η)] [ϕ(ξ, η, ·) + ϕ(ξ, η̄, ·)]} [ϕ(ξ, η, ·)− ϕ(ξ, η̄, ·)]

〉
+

i

4
Im(η)

〈|ϕ(ξ, η, ·)− ϕ(ξ, η̄, ·)|2〉
= − 1

4

〈[
ϕ(ξ, η, ·) + ϕ(ξ, η̄, ·)

]
[Lξ + Re(η)] [ϕ(ξ, η, ·)− ϕ(ξ, η̄, ·)]

〉
+

i

4
Im(η)

〈|ϕ(ξ, η, ·)− ϕ(ξ, η̄, ·)|2〉
=

i

4
Im(η)

[〈|ϕ(ξ, η, ·) + ϕ(ξ, η̄, ·)|2〉+ 〈|ϕ(ξ, η, ·)− ϕ(ξ, η̄, ·)|2〉] .
It follows now from (2.13) and the last three identities that

Im[ρ̄q(ξ, η)ρ] =
1
4
Im(η)

〈|ϕ(ξ, η, ·) + ϕ(ξ, η̄, ·)|2〉(2.15)

+
1
4
Im(η)

〈|ϕ(ξ, η, ·)− ϕ(ξ, η̄, ·)|2〉 .
The inequality (2.6) follows. �

Let us denote by Ĝa(ξ, t), t > 0 the inverse Laplace transform of Ĝa(ξ, η). Thus
from (2.4) we have

Ĝa(ξ, t) = lim
N→∞

1
2π

∫ N

−N

eηt

η + e(ξ)q(ξ, η)e(−ξ)
d[Im(η)].(2.16)

It follows from Lemma 2.1 that, provided Re(η) > 0, the integral in (2.16) over the
finite interval −N < Im(η) < N exists for all N . We need then to show that the
limit as N → ∞ in (2.16) exists.

Lemma 2.2. Suppose Re(η) > 0 and ξ ∈ R
d. Then the limit in (2.16) as N → ∞

exists and is independent of Re(η) > 0.
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Proof. We first note that for any ρ ∈ C
d, ρ̄q(ξ, η)ρ and ρ̄q(ξ, η̄)ρ are complex

conjugates. This follows easily from (2.7). We conclude from this that

1
2π

∫ N

−N

eηt

η + e(ξ)q(ξ, η)e(−ξ)
d[Im(η)] =

1
π

∫ N

0

Re
eηt

η + e(ξ)q(ξ, η)e(−ξ)
d[Im(η)]

(2.17)

=
1
π
exp[Re(η)t]

{∫ N

0

h(ξ, η) cos[Im(η)t]d[Im(η)] +
∫ N

0

k(ξ, η) sin[Im(η)t]d[Im(η)]
}
,

where

h(ξ, η) = Re [η + e(ξ)q(ξ, η)e(−ξ)]
/|η + e(ξ)q(ξ, η)e(−ξ)|2,(2.18)

k(ξ, η) = Im [η + e(ξ)q(ξ, η)e(−ξ)]
/|η + e(ξ)q(ξ, η)e(−ξ)|2.

We show there is a constant Cλ,Λ, depending only on λ,Λ such that∫ ∞

0

|h(ξ, η)|d[Im(η)] ≤ Cλ,Λ, Re(η) > 0.(2.19)

To see this, observe from (2.14), (2.15) that

|h(ξ, η)| ≤ Re (η) + Θ
[{·}2 + (Im η)2]

, where(2.20)

Θ =

〈∑d
i,j=1 ai,j(·)ĀiAj

〉
+ 1

4

〈[
ϕ(ξ, η, ·)− ϕ(ξ, η̄, ·)

]
Lξ [ϕ(ξ, η, ·)− ϕ(ξ, η̄, ·)]

〉
[
1 + 1

4 〈|ϕ(ξ, η, ·) + ϕ(ξ, η̄, ·)|2〉+ 1
4 〈|ϕ(ξ, η, ·)− ϕ(ξ, η̄, ·)|2〉

,

and the quantity {·} in the first line of (2.20) is the same as the one in the second.
It is easy to see that

〈 d∑
i,j=1

ai,j(·)ĀiAj

〉
+
1
4

〈[
ϕ(ξ, η, ·)− ϕ(ξ, η̄, ·)

]
Lξ [ϕ(ξ, η, ·)− ϕ(ξ, η̄, ·)]

〉
≥ λ|e(ξ)|2.

(2.21)

We can also obtain an upper bound using the fact that

〈 d∑
i,j=1

ai,j(·)ĀiAj

〉
+
1
4

〈[
ϕ(ξ, η, ·)− ϕ(ξ, η̄, ·)

]
Lξ [ϕ(ξ, η, ·)− ϕ(ξ, η̄, ·)]

〉

≤ 2
〈 d∑
i,j=1

ai,j(·)ei(ξ)ej(ξ)
〉
+
1
2

〈[
ϕ(ξ, η, ·) + ϕ(ξ, η̄, ·)

]
Lξ [ϕ(ξ, η, ·) + ϕ(ξ, η̄, ·)]

〉
+
1
4

〈[
ϕ(ξ, η, ·)− ϕ(ξ, η̄, ·)

]
Lξ [ϕ(ξ, η, ·)− ϕ(ξ, η̄, ·)]

〉
≤ 2Λ|e(ξ)|2 + 1

4

〈[
ϕ(ξ, η, ·) + ϕ(ξ, η̄, ·)

]
Lξ [ϕ(ξ, η, ·) + ϕ(ξ, η̄, ·)]

〉
+
1
2

〈
ϕ(ξ, η, ·)Lξϕ(ξ, η, ·)

〉
+
1
2

〈
ϕ(ξ, η̄, ·)Lξϕ(ξ, η̄, ·)

〉
.
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We see from (2.9) that 〈
ϕ(ξ, η, ·)Lξϕ(ξ, η, ·)

〉
≤ Λ|e(ξ)|2,〈

ϕ(ξ, η̄, ·)Lξϕ(ξ, η̄, ·)
〉
≤ Λ|e(ξ)|2,〈[

ϕ(ξ, η, ·) + ϕ(ξ, η̄, ·)
]
Lξ [ϕ(ξ, η, ·) + ϕ(ξ, η̄, ·)]

〉
≤ 4Λ|e(ξ)|2.

Hence we obtain an upper bound

〈 d∑
i,j=1

ai,j(·)ĀiAj

〉
+
1
4

〈[
ϕ(ξ, η, ·)− ϕ(ξ, η̄, ·)

]
Lξ [ϕ(ξ, η, ·)− ϕ(ξ, η̄, ·)]

〉
≤ 4Λ|e(ξ)|2.

(2.22)

Observe that the upper and lower bounds (2.21), (2.22) are comparable for all
Re(η) > 0, ξ ∈ R

d.
Next we need to find upper and lower bounds on the quantity,

1
4
〈|ϕ(ξ, η, ·) + ϕ(ξ, η̄, ·)|2〉+ 1

4
〈|ϕ(ξ, η, ·)− ϕ(ξ, η̄, ·)|2〉

=
1
2
〈|ϕ(ξ, η, ·)|2〉+ 1

2
〈|ϕ(ξ, η̄, ·)|2〉 .

Evidently zero is a trivial lower bound. To get an upper bound we use (2.9) again.
We have from (2.9) that

|η| 〈|ϕ(ξ, η, ·)|2〉 ≤
〈
ϕ(ξ, η, ·)Lξϕ(ξ, η, ·)

〉1/2

〈 d∑
i,j=1

ai,j(·)ei(ξ)ej(ξ)
〉1/2

≤ Λ|e(ξ)|2,

whence 〈|ϕ(ξ, η, ·)|2〉 ≤ Λ|e(ξ)|2/|η|.
We conclude then that

1
4
〈|ϕ(ξ, η, ·) + ϕ(ξ, η̄, ·)|2〉+ 1

4
〈|ϕ(ξ, η, ·)− ϕ(ξ, η̄, ·)|2〉 ≤ Λ|e(ξ)|2/|η|.(2.23)

We use this last inequality together with (2.21), (2.22) to prove (2.19). First
note from (2.5) that

|h(ξ, η)| ≤ 1/ [Re(η) + λ|e(ξ)|2] , Re(η) > 0, ξ ∈ R
d.

We also have using (2.20),(2.21), (2.22),(2.23) that

|h(ξ, η)| ≤ {
Re(η) + 4Λ|e(ξ)|2} /[Im(η)2 + {

Re(η) +
1
2
λ|e(ξ)|2}2]

,(2.24)

Re(η) > 0, |η| ≥ Λ|e(ξ)|2, ξ ∈ R
d.

We then have∫ ∞

0

|h(ξ, η)|d[Im(η)] ≤
∫ Λ|e(ξ)|2

0

d[Im(η)]
Re(η) + λ|e(ξ)|2

+
∫ ∞

0

Re(η) + 4Λ|e(ξ)|2
Im(η)2 + [Re(η) + 1

2λ|e(ξ)|2]2
d[Im(η)] ≤ Cλ,Λ,
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where Cλ,Λ depends only on λ,Λ, whence (2.19) follows.
Next we wish to show that the function k(ξ, η) of (2.18) satisfies

|∂k(ξ, η)/∂[Im(η)]| ≤ 1/|Im(η)|2, Re(η) > 0, ξ ∈ R
d.(2.25)

In view of the analyticity in η of q(ξ, η) we have

∂k(ξ, η)/∂[Im(η)] = −Re ∂

∂η

1
η + e(ξ)q(ξ, η)e(−ξ)

= Re
1 + e(ξ)[∂q(ξ, η)/∂η]e(−ξ)
[η + e(ξ)q(ξ, η)e(−ξ)]2

.

Let us denote now by ψ(ξ, η, ω) the function ϕ(ξ, η, ω) of (2.8) with ρ = e(−ξ). It
is easy to see then from (2.9) that

ϕ(ξ, η̄, ω) = ψ(−ξ, η, ω) .(2.26)

It follows now from (2.7) and (2.9) that

e(ξ)[∂q(ξ, η)/∂η]e(−ξ) =
〈
ψ(−ξ, η, ·)ψ(ξ, η, ·)〉
+ η

〈∂ψ
∂η
(−ξ, η, ·)ψ(ξ, η, ·)

〉
+ η

〈
ψ(−ξ, η, ·)∂ψ

∂η
(ξ, η, ·)

〉
+

〈
ψ(−ξ, η, ·)Lξ

∂ψ

∂η
(ξ, η, ·)

〉
+

〈∂ψ
∂η
(−ξ, η, ·)Lξψ(ξ, η, ·)

〉
−

〈∂ψ
∂η
(−ξ, η, ·)[Lξ + η]ψ(ξ, η, ·)

〉
−

〈
ψ(−ξ, η, ·)[Lξ + η]

∂ψ

∂η
(ξ, η, ·)

〉
=

〈
ψ(−ξ, η, ·)ψ(ξ, η, ·)〉

Hence,

|∂k(ξ, η)/∂[Im(η)]| ≤ ∣∣∣∣∣1 +
〈
ψ(−ξ, η, ·)ψ(ξ, η, ·)〉

[η + e(ξ)q(ξ, η)e(−ξ)]2

∣∣∣∣∣ ≤ 1
Im(η)2

,(2.27)

from (2.15).
We can use (2.19), (2.27) to show the limit in (2.16) exists. In fact from (2.19)

it follows that

lim
N→∞

∫ N

0

h(ξ, η) cos[Im(η)t]d[Im(η)]

exists. We also have that∫ N

0

k(ξ, η) sin[Im(η)t]d[Im(η)] = −1
t

∫ N

0

∂k(ξ, η)
∂[Im(η)]

{
1− cos[Im(η)t]

}
d[Im(η)]

+
1
t
k(ξ, Re(η) + iN){1− cos[Nt]}.

From (2.6) we have that

|k(ξ, Re(η) + iN){1− cos[Nt]}| ≤ 2/N.
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From (2.27) we have that

1
t

∫ ∞

0

∣∣∣∣ ∂k(ξ, η)∂[Im(η)]

∣∣∣∣ {1− cos[Im(η)t]}d[Im(η)] ≤ C,(2.28)

for some universal constant C. Hence the limit,

lim
N→∞

∫ N

0

k(ξ, η) sin[Im(η)t]d[Im(η)]

exists, whence the result holds. �

Lemma 2.3. Let Ĝa(ξ, t) be defined by (2.16). Then Ĝa(ξ, t) is a continuous
bounded function. Furthermore, for any δ, 0 ≤ δ < 1, there is a constant C(δ, λ,Λ),
depending only on δ, λ,Λ, such that

|Ĝa(ξ, t)| ≤ C(δ, λ,Λ)
/
[1 + |e(ξ)|2t]δ .(2.29)

Proof. Consider the integral on the LHS of (2.28). We can obtain an improvement
on the estimate of (2.28) by improving the estimate of (2.27). We have now from
(2.27), (2.14), (2.15), and (2.23) that

|∂k(ξ, η)/∂[Im(η)]| ≤ 1 + Λ|e(ξ)|2/|η|
λ2|e(ξ)|4 + |Im(η)|2 .(2.30)

Assume now that |e(ξ)|2t > 2 and write the integral on the LHS of (2.28) as a sum,
1
t

∫ 1/t

0

+
1
t

∫ |e(ξ)|2

1/t

+
1
t

∫ ∞

|e(ξ)|2
.

We have now from (2.28), (2.30) that for 0 ≤ δ < 1,

1
t

∫ 1/t

0

≤ 1
t

∫ 1/t

0

[
1 + Λ

λ2|e(ξ)|2Im(η)
]δ [1− cos[Im(η)t]

Im(η)2

]1−δ

d[Im(η)]

≤ 10t1−2δ

∫ 1/t

0

[
1 + Λ

λ2|e(ξ)|2Im(η)
]δ

d[Im(η)] ≤ C(δ, λ,Λ)/[|e(ξ)|2t]δ,

for some constant C(δ, λ,Λ) depending only on δ, λ,Λ. Next we have

1
t

∫ |e(ξ)|2

1/t

≤ 1
t

∫ |e(ξ)|2

1/t

1 + Λ
λ2|e(ξ)|2Im(η) d[Im(η)]

=
1 + Λ
λ2

log[|e(ξ)|2 t]
|e(ξ)|2 t

.

Finally, we have

1
t

∫ ∞

|e(ξ)|2
≤ 1

t

∫ ∞

|e(ξ)|2
d[Im(η)]
Im(η)2

≤ 1
|e(ξ)|2 t

.

We conclude therefore that the integral on the LHS of (2.28) is bounded by

C(δ, λ,Λ)
[1 + |e(ξ)|2 t]δ

,
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for any δ, 0 ≤ δ < 1.
Next we need to estimate as N → ∞ the integral∫ N

0

h(ξ, η) cos[Im(η)t] d[Im(η)] = − 1
t

∫ N

0

∂h(ξ, η)
∂[Im(η)]

sin[Im(η)t] d[Im(η)]

+
1
t
h(ξ, Re(η) + iN) sin[Nt].

It is clear from (2.6) that limN→∞ h(ξ, Re(η) + iN) = 0. We have now that

∂h(ξ, η)
∂[Im(η)]

= − Im
∂

∂η

1
η + e(ξ)q(ξ, η)e(−ξ)

(2.31)

= Im
1 + e(ξ)[∂q(ξ, η)/∂η]e(−ξ)
[η + e(ξ)q(ξ, η)e(−ξ)]2

.

Hence the estimates (2.27), (2.30) on the derivative k(ξ, η) apply equally to the
derivative of h. We therefore write the integral

1
t

∫ ∞

0

∣∣∣∣ ∂h(ξ, η)∂[Im(η)]

∣∣∣∣ | sin[Im(η)t]|d[Im(η)] = 1
t

∫ 1/t

0

+
1
t

∫ |e(ξ)|2

1/t

+
1
t

∫ ∞

|e(ξ)|2
.

(2.32)

as a sum just as before. We have now from (2.30),

1
t

∫ 1/t

0

≤ 1
t

∫ 1/t

0

[
1 + Λ

λ2|e(ξ)|2 Im(η)
]
| sin[Im(η)t]|d[Im(η)]

≤ Cλ,Λ/[|e(ξ)|2t],
where Cλ,Λ depends only on λ,Λ. The other integrals on the RHS of (2.32) are
estimated just as for the corresponding integrals in k. We conclude that∣∣∣∣∫ ∞

0

h(ξ, η) cos[Im(η)t]|d[Im(η)]
∣∣∣∣ ≤ C(δ, λ,Λ)/[1 + |e(ξ)|2t]δ,

for any δ, 0 ≤ δ < 1. It follows now from (2.17) that (2.29) holds for any δ, 0 ≤
δ < 1. �

Lemma 2.4. The function Ĝa(ξ, t), ξ ∈ R
d is t differentiable for t > 0. For any

δ, 0 ≤ δ < 1, there is a constant C(δ, λ,Λ) depending only on δ, λ,Λ such that∣∣∣∣∣∂Ĝa(ξ, t)
∂t

∣∣∣∣∣ ≤ C(δ, λ,Λ)
t[1 + |e(ξ)|2t]δ , t > 0.

Proof. From Lemma 2.2 we have that

π exp[−Re(η)t]Ĝa(ξ, t) =
∫ ∞

0

h(ξ, η) cos[Im(η)t]d[Im(η)](2.33)

− 1
t

∫ ∞

0

∂k(ξ, η)
∂[Im(η)]

{1− cos[Im(η)t]} d[Im(η)].



Green’s Functions for Equations with Random Coefficients 169

We consider the first term on the RHS of (2.33). Evidently, for finite N , we have

∂

∂t

∫ N

0

h(ξ, η) cos[Im(η)t]d[Im(η)] = −
∫ N

0

h(ξ, η) Im(η) sin[Im(η)t]d[Im(η)]

(2.34)

=
1
t

∫ N

0

∂

∂[Im(η)]
{h(ξ, η)Im(η)} {1− cos[Im(η)t]} d[Im(η)]

− 1
t
h(ξ, Re(η) + iN)N{1− cos[Nt]}.

It is clear from the inequality (2.24) that

lim
N→∞

h(ξ, Re(η) + iN)N = 0.

We have already seen from (2.24) that∫ ∞

0

|h(ξ, η)|d[Im(η)] ≤ Cλ,Λ,(2.35)

for some constant Cλ,Λ depending only on λ,Λ. We shall show now that we also
have ∫ ∞

0

∣∣∣∣ ∂h(ξ, η)∂[Im(η)]

∣∣∣∣ |Im(η)|d[Im(η)] ≤ Cλ,Λ .(2.36)

To see this we use (2.31) to obtain

∂h(ξ, η)
∂[Im(η)]

= Im
1 + 〈ψ(ξ, η, ·)ψ(−ξ, η, ·)〉
[η + e(ξ)q(ξ, η)e(−ξ)]2

.(2.37)

For any complex number a+ ib it is clear that

Im
1

(a+ ib)2
=

−2ab
(a2 + b2)2

,

whence ∣∣∣∣Im 1
(a+ ib)2

∣∣∣∣ ≤ min [ 1a2
,
2|a|
|b|3

]
.

We conclude then that∣∣∣∣ Im 1
[η + e(ξ)q(ξ, η)e(−ξ)]2

∣∣∣∣ ≤ min [ 1
λ2|e(ξ)|4 ,

8Λ|e(ξ)|2
|Im(η)|3

]
.

It follows that

∫ ∞

0

Im(η)
∣∣∣∣Im 1

[η + e(ξ)q(ξ, η)e(−ξ)]2

∣∣∣∣ d[Im(η)] ≤ ∫ |e(ξ)|2

0

+
∫ ∞

|e(ξ)|2
≤ Cλ,Λ.

(2.38)

We also have that∣∣∣∣ 〈ψ(ξ, η, ·)ψ(−ξ, η, ·)〉
[η + e(ξ)q(ξ, η)e(−ξ)]2

∣∣∣∣ ≤ min [ Λ
λ2|e(ξ)|2|Im(η)| ,

Λ|e(ξ)|2
|Im(η)|3

]
.

We conclude that∫ ∞

0

Im(η)
∣∣∣∣ 〈ψ(ξ, η, ·)ψ(−ξ, η, ·)〉
[η + e(ξ)q(ξ, η)e(−ξ)]2

∣∣∣∣ d[Im(η)] ≤ Cλ,Λ.(2.39)
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The inequality (2.36) follows from (2.38), (2.39). It follows from (2.34), (2.35),
(2.36) that the first integral on the RHS of (2.33) is differentiable with respect to t
for t > 0 and

(2.40)
∂

∂t

∫ ∞

0

h(ξ, η) cos[Im(η)t]d[Im(η)t] =

1
t

∫ ∞

0

∂

∂[Im(η)]
{h(ξ, η) Im(η)}

[
1− cos[Im(η)t]

]
d[Im(η)].

Furthermore, there is the inequality,∣∣∣∣ ∂∂t
∫ ∞

0

h(ξ, η) cos[Im(η)t]d[Im(η)]
∣∣∣∣ ≤ Cλ,Λ/t.

Next we wish to improve this inequality to∣∣∣∣ ∂∂t
∫ ∞

0

h(ξ, η) cos[Im(η)t]d[Im(η)]
∣∣∣∣ ≤ Cλ,Λ,δ

t[1 + |e(ξ)|2t]δ .(2.41)

To do this we integrate by parts on the RHS of (2.40) to obtain

(2.42)
∂

∂t

∫ ∞

0

h(ξ, η) cos[Im(η)t]d[Im(η)] =

1
t2

∫ ∞

0

{
2∂h(ξ, η)
∂[Im(η)]

+ Im(η)
∂2h(ξ, η)
∂[Im(η)]2

}
sin[Im(η)t]d[Im(η)].

We have already seen in Lemma 2.3 that

1
t

∫ ∞

0

∣∣∣∣ ∂h(ξ, η)∂[Im(η)]

∣∣∣∣ | sin[Im(η)t]|d[Im(η)] ≤ Cλ,Λ,δ

[|e(ξ)|2t]δ .

for any δ, 0 ≤ δ < 1, where we assume |e(ξ)|2 t > 1. The inequality (2.41) will
follow therefore if we can show that

1
t

∫ ∞

0

∣∣∣∣ ∂2h(ξ, η)
∂[Im(η)]2

∣∣∣∣ |Im(η)|∣∣∣ sin[Im(η)t]d[Im(η)] ≤ Cλ,Λ,δ

[|e(ξ)|2t]δ , |e(ξ)|2t > 1, 0 ≤ δ < 1.

(2.43)

To prove this we use the fact that∣∣∣∣ ∂2h(ξ, η)
∂[Im(η)]2

∣∣∣∣ ≤ ∣∣∣∣ ∂2

∂η2

1
η + e(ξ)q(ξ, η)e(−ξ)

∣∣∣∣ ,(2.44)

∂2

∂η2

1
η + e(ξ)q(ξ, η)e(−ξ)

= − ∂

∂η

1 + 〈ψ(−ξ, η, ·)ψ(ξ, η, ·)〉
[η + e(ξ)q(ξ, η)e(−ξ)]2

=
2{1 + 〈ψ(−ξ, η, ·)ψ(ξ, η, ·)〉}2

[η + e(ξ)q(ξ, η)e(−ξ)]3

− [〈[∂ψ(−ξ, η, ·)/∂η]ψ(ξ, η, ·)〉+ 〈ψ(−ξ, η, ·)[∂ψ(ξ, η, ·)/∂η]〉]
[η + e(ξ)q(ξ, η)e(−ξ)]2

.

Observe now that similarly to (2.27), (2.30) we have that

|1 + 〈ψ(−ξ, η, ·)ψ(ξ, η, ·)〉 |2
|η + e(ξ)q(ξ, η)e(−ξ)|3 ≤ min

[
1

|Im(η)|3 ,
2

λ3|e(ξ)|6 +
2Λ2

λ3|e(ξ)|2|η|2
]
.(2.45)
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We can conclude from this last inequality just like we argued in Lemma 2.3 that

1
t

∫ ∞

0

|1 + 〈ψ(−ξ, η, ·)ψ(ξ, η, ·)〉 |2
|η + e(ξ)q(ξ, η)e(−ξ)|3 |Im(η)|| sin[Im(η)t]|d[Im(η)] ≤ Cλ,Λ,δ

[|e(ξ)|2t]δ ,

for 0 ≤ δ < 1, |e(ξ)|2t > 1.
Next from (2.9) we see that ∂ψ(ξ, η, ·)/∂η satisfies the equation,

[Lξ + η]
∂ψ(ξ, η, ·)

∂η
+ ψ(ξ, η, ·) = 0.(2.46)

From this equation and the Schwarz inequality we easily conclude that〈|∂ψ(ξ, η, ·)/∂η|2〉 ≤ |η|−2
〈|ψ(ξ, η, ·)|2〉 .

It follows then that
| 〈ψ(−ξ, η, ·)[∂ψ(ξ, η, ·)/∂η]〉 |2

|η + e(ξ)q(ξ, η)e(−ξ)|2 ≤ min
[

1
|Im(η)|3 ,

Λ
λ2|e(ξ)|2|η|2

]
.(2.47)

Since this inequality is similar to (2.45) we conclude that (2.43) holds.
We have proved now that (2.41) holds. To complete the proof of the lemma we

need to obtain a similar estimate for the second integral on the RHS of (2.33). To
see this observe that we can readily conclude that the integral is differentiable in t
and

∂

∂t
− 1

t

∫ ∞

0

∂k(ξ, η)
∂[Im(η)]

{1− cos[Im(η)t]} d[Im(η)](2.48)

=
2
t2

∫ ∞

0

∂k(ξ, η)
∂[Im(η)]

{1− cos[Im(η)t]} d[Im(η)]

+
1
t2

∫ ∞

0

∂2k(ξ, η)
∂[Im(η)]2

Im(η) {1− cos[Im(η)t]} d[Im(η)].

We have already seen in Lemma 2.3 that

1
t2

∫ ∞

0

∣∣∣∣ ∂k(ξ, η)∂[Im(η)]

∣∣∣∣ {1− cos[Im(η)t]}d[Im(η)] ≤ Cλ,Λ,δ

t[1 + |e(ξ)|2 t]δ
,

for any δ, 0 ≤ δ < 1. Hence we need to concern ourselves with the second integral
on the RHS of (2.48). Now it is clear that ∂2k(ξ, η)/∂[Im(η)]2 satisfies the same
estimates we have just established for ∂2h(ξ, η)/∂[Im(η)]2. It follows in particular
that

1
t2

∫ ∞

0

∣∣∣∣ ∂2k(ξ, η)
∂[Im(η)]2

∣∣∣∣ |Im(η)|{1− cos[Im(η)t]}d[Im(η)]
≤ 1

t2

∫ ∞

0

1− cos[Im(η)t]
[Im(η)]2

d[Im(η)] ≤ C

t
,

for some universal constant C. Arguing as in Lemma 2.3 we also have that

1
t2

∫ ∞

0

∣∣∣∣ ∂2k(ξ, η)
∂[Im(η)]2

∣∣∣∣ |Im(η)|{1− cos[Im(η)t]}d[Im(η)]
≤

∫ 1/t

0

+
∫ |e(ξ)|2

1/t

+
∫ ∞

|e(ξ)|2
≤ Cλ,Λ,δ

t[|e(ξ)|2t]δ ,
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for 0 ≤ δ < 1, |e(ξ)|2 t > 1. The last three inequalities then give us the same
estimate on the derivative of the second integral on the RHS of (2.33) as we have
already obtained for the first integral. �

The estimate for ∂Ĝa(ξ, t)/∂t in Lemma 2.4 diverges as t → 0. We rectify this
in the following:

Lemma 2.5. There is a constant Cλ,Λ depending only on λ,Λ such that∣∣∣∣∣∂Ĝa(ξ, t)
∂t

∣∣∣∣∣ ≤ Cλ,Λ|e(ξ)|2, ξ ∈ R
d, t > 0.

Proof. To bound the derivative of the first integral on the RHS of (2.33) it is
sufficient to show that

1
t

∫ ∞

0

|h(ξ, η)| {1− cos[Im(η)t]} d[Im(η)] ≤ Cλ,Λ|e(ξ)|2,(2.49)

1
t

∫ ∞

0

∣∣∣∣ ∂h(ξ, η)∂[Im(η)]

∣∣∣∣ |Im(η)| {1− cos[Im(η)t]} d[Im(η)] ≤ Cλ,Λ|e(ξ)|2.

We have now from (2.24) that

|h(ξ, η)| ≤ 4Λ|e(ξ)|2/|Im(η)|2, Re(η) = 0,

and from the inequalities before (2.39) that

|∂h(ξ, η)/∂[Im(η)]| ≤ 9Λ|e(ξ)|2/|Im(η)|3, Re(η) = 0.

The inequalities (2.49) follow from these last two inequalities.
The derivative of the second integral is given by the RHS of (2.48). Using the

identity

1
t2

∫ N

0

[
2∂k(ξ, η)
∂[Im(η)]

+ Im(η)
∂2k(ξ, η)
∂[Im(η)]2

]
{1− cos[Im(η)t]}d[Im(η)]

=
∫ N

0

k(ξ, η) Im(η) cos[Im(η)t]}d[Im(η)]

+
{
k(ξ,Re(η) + iN) +N

∂k(ξ,Re(η) + iN)
∂[Im(η)]

} {1− cos[Nt]}
t2

− Nk(ξ,Re(η) + iN) sinNt

t
,

we see that the derivative of the second integral on the RHS of (2.33) is also given
by the formula

lim
m→∞

∫ πm/t

0

k(ξ, η) Im(η) cos[Im(η)t]d[Im(η)],(2.50)

where the limit in (2.50) is taken for integerm → ∞. Writing η+e(ξ)q(ξ, η)e(−ξ) =
a(η) + ib(η) we see from (2.18) that

Im(η)k(ξ, η) =
Im(η)b(η)

a(η)2 + b(η)2
=
Im(η)
b(η)

[
1− a(η)2

a(η)2 + b(η)2

]
.
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Observe now that just as before we have∫ ∞

0

|Im(η)|
|b(η)|

a(η)2

a(η)2 + b(η)2
d[Im(η)] ≤

∫ ∞

0

a(η)2

a(η)2 + b(η)2
d[Im(η)]

≤
∫ |e(ξ)|2

0

+
∫ ∞

|e(ξ)|2
≤ Cλ,Λ|e(ξ)|2,

for a constant Cλ,Λ depending only on λ,Λ. We also have from (2.15) that

Im(η)
b(η)

= 1/
[
1 +

1
2
〈|ψ(ξ, η, ·)|2〉+ 1

2
〈|ψ(−ξ, η, ·)|2〉]

= 1−
1
2

〈|ψ(ξ, η, ·)|2〉+ 1
2

〈|ψ(−ξ, η, ·)|2〉
1 + 1

2 〈|ψ(ξ, η, ·)|2〉+ 1
2 〈|ψ(−ξ, η, ·)|2〉 .

It follows therefore from (2.50) that the result will be complete if we can show that∫ ∞

0

〈|ψ(ξ, η, ·)|2〉 d[Im(η)] ≤ Cλ,Λ|e(ξ)|2,(2.51)

with a similar inequality for ψ(−ξ, η, ·). Note that (2.51) does not follow from the
bound

〈|ψ(ξ, η, ·)|2〉 ≤ Λ|e(ξ)|2/|η| which we have already established. In view of
(2.8) the inequality (2.51) is a consequence of the following lemma. �

Lemma 2.6. Let ϕ(ξ, η, ·) be the function defined by (2.8). Then there is the in-
equality, ∫ ∞

0

〈|ϕ(ξ, η, ·)|2〉 d[Im(η)] ≤ 2πΛ|ρ|2.
Proof. Let ϕ(t, ξ, ·), t > 0, be the solution to the initial value problem,

∂ϕ(t, ξ, ·)
∂t

+ Lξϕ(t, ξ, ·) = 0, t > 0,(2.52)

ϕ(0, ξ, ·) +
d∑

k=1

ρk

d∑
j=1

[
∂∗
j + ej(−ξ)

]
eiej ·ξ [ak,j(·)− 〈ak,j(·)〉] = 0.

It is clear that

ϕ(ξ, η, ·) =
∫ ∞

0

e−ηtϕ(t, ξ, ·)dt, Re(η) > 0.

Hence the Plancherel Theorem yields∫ ∞

0

〈|ϕ(ξ, η, ·)|2〉 d[Im(η)] ≤ 2π ∫ ∞

0

〈
ϕ(t, ξ, ·)|2〉 dt.

We can estimate the RHS of this last equation by defining a function Φ(t, ξ, ·), t > 0,
which satisfies the equation,

LξΦ(t, ξ, ·) = ϕ(t, ξ, ·), t > 0.

Hence (2.52) yields〈
Φ(t, ξ, ·)∂ϕ(t, ξ, ·)

∂t

〉
+

〈|ϕ(t, ξ, ·)|2〉 = 0, t > 0.(2.53)
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Observe next that〈
Φ(t, ξ, ·) ∂ϕ(t, ξ, ·)

∂t

〉
=
1
2
∂

∂t

〈
Φ(t, ξ, ·)LξΦ(t, ξ, ·)

〉
.

Integrating (2.53) w.r. to t and using the positivity of Lξ we conclude that for
any δ > 0, there is the inequality,∫ ∞

δ

〈
ϕ(t, ξ, ·)|2〉 dt ≤ 1

2

〈
Φ(δ, ξ, ·)LξΦ(δ, ξ, ·)

〉
.

We have now from (2.52) that〈
Φ(0, ξ, ·)LξΦ(0, ξ, ·)

〉
≤ Λ|ρ|2.

The result follows now on letting δ → 0. �

3. Proof of Theorem 1.5

For η real and positive, let q(ξ, η) be the d× d matrix defined in (2.3). We shall
show that the function Ga(x) of Theorem 1.5 is given by,

Ga(x) = lim
η→0

1
(2π)d

∫
[−π,π]d

dξe−ix·ξ/e(ξ)q(ξ, η)e(−ξ), x ∈ Z
d .(3.1)

In view of the fact that q(ξ, η) ≥ λId, we see from the following lemma that the
limit (3.1) exists if d ≥ 3.
Lemma 3.1. The limit limη→0 q(ξ, η) exists for all ξ ∈ R

d.

Proof. For η > 0, x ∈ Z
d, let Gη(x) be the Green’s function satisfying the equation

d∑
i=1

∇∗
i∇iGη(x) + ηGη(x) = δ(x), x ∈ Z

d,

where δ(x) is the Kronecker δ function. Now for ϕ ∈ L2(Ω) there is a unique
solution ψ ∈ L2(Ω) to the equation,

d∑
i=1

[∂∗
i + ei(−ξ)] [∂i + ei(ξ)]ψ(ω) + ηψ(ω) = ϕ(ω), ω ∈ Ω ,

which can be written as

ψ(ω) =
∑
x∈Zd

Gη(x)e−ix·ξϕ(τxω), ω ∈ Ω.(3.2)

Observe the RHS of (3.2) is square integrable since Gη(x) decreases exponentially
as |x| → ∞. Now for 1 ≤ k, k′ ≤ d we define operators Tk,k′,η,ξ by Tk,k′,η,ξ(ϕ) =
e−iek·ξ[∂k + ek(ξ)]ψ, where ψ is the solution to the equation,

(3.3)
d∑

i=1

[∂∗
i + ei(−ξ)] [∂i + ei(ξ)]ψ(ω) + ηψ(ω)

= eiek′ ·ξ [∂∗
k′ + ek′(−ξ)]ϕ(ω), ω ∈ Ω.
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From (3.2) we see that

Tk,k′,η,ξ ϕ(ω) =
∑
x∈Zd

∇∗
k∇k′Gη(x)e−ix·ξϕ(τxω), ω ∈ Ω.(3.4)

Since ∇∗
k∇k′Gη(x) is exponentially decreasing as |x| → ∞ it follows that Tk,k′,η,ξ

is a bounded operator on L2(Ω). Observe that the projection operator P on L2(Ω)
orthogonal to the constant function commutes with Tk,k′,η,ξ. It follows from (3.3)
that ‖Tk,k′,η,ξ‖ ≤ 1, independent of η as η → 0. We wish to show that there is an
operator Tk,k′,0,ξ on L2(Ω) with ‖Tk,k′,0,ξ‖ ≤ 1 such that

lim
η→0

‖Tk,k′,η,ξϕ− Tk,k′,0,ξϕ‖ = 0, ϕ ∈ L2(Ω).(3.5)

We follow the argument used to prove the von Neumann Ergodic Theorem [9].
Thus if ϕ ∈ L2(Ω) satisfies [∂∗

k′ + ek′(−ξ)]ϕ = 0, then Tk,k′,η,ξϕ = 0. Thus we set
Tk,k′,0,ξϕ = 0 for ϕ in the null space of [∂∗

k′+ek′(−ξ)]. Now the range of [∂k′+ek′(ξ)]
is dense in the subspace of L2(Ω) orthogonal to the null space of [∂∗

k′ + ek′(−ξ)]. If
ϕ = e−iek′ ·ξ[∂k′ + ek′(ξ)]ψ with ψ ∈ L2(Ω) then

Tk,k′,η,ξϕ(ω) =
∑
x∈Zd

∇∗
k′∇∗

k∇k′Gη(x)e−ix·ξψ(τxω), ω ∈ Ω.

It is clear from this representation that if we take

Tk,k′,0,ξϕ(ω) =
∑
x∈Zd

∇∗
k′∇∗

k∇k′G0(x)e−ix·ξψ(τxω), ω ∈ Ω ,

then Tk,k′,0,ξ(ϕ) ∈ L2(Ω) and (3.5) holds. Thus Tk,k′,0,ξ is defined on a dense
subspace of L2(Ω) and ‖Tk,k′,0,ξ‖ ≤ 1. If follows easily that one can extend the
definition of Tk,k′,0,ξ to all of L2(Ω) and (3.5) holds.
Suppose now b : Ω→ R

d(d+1)/2 is a bounded measurable function from Ω to the
space of symmetric d× d matrices. We define ‖b‖ to be

‖b‖ = sup
{
|

d∑
i,j=1

bi,j(ω)λiλj | :
d∑

i=1

λ2
i = 1, ω ∈ Ω

}
.

Next let H(Ω) = {ϕ = (ϕ1, . . . , ϕd) : ϕi ∈ L2(Ω), 1 ≤ i ≤ d} be the Hilbert space
with norm ‖ϕ‖2 = ‖ϕ1‖2 + · · · + ‖ϕd‖2, ϕ = (ϕ1, . . . , ϕd). We define an operator
Tb,η,ξ on H(Ω) by

[
Tb,η,ξϕ(·)

]
k
=

d∑
i,j=1

Tk,i,η,ξ
[
bi,j(·)ϕj(·)

]
, 1 ≤ k ≤ d.

Evidently, [
Tb,η,ξϕ(·)

]
k
= e−iek·ξ[∂k + ek(ξ)]ψ(·), 1 ≤ k ≤ d,

where ψ(·) satisfies the equation,
d∑

r=1

[
∂∗
r + er(−ξ)

][
∂r + er(ξ)

]
ψ(ω) + ηψ(ω) =

d∑
i,j=1

eiei·ξ[∂∗
i + ei(−ξ)]

[
bi,j(·)ϕj(·)

]
.
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If follows that Tb,η,ξ is a bounded operator on H(Ω) with norm ‖Tb,η,ξ‖ ≤ ‖b‖. In
view of (3.5) there exists a bounded operator Tb,0,ξ on H(Ω) such that ‖Tb,0,ξ‖ ≤
‖b‖ and

lim
η→0

‖Tb,η,ξϕ− Tb,0,ξϕ‖ = 0, ϕ ∈ H(Ω) .

Let us take now b(·) = [
ΛId − a(·)]/Λ, whence ‖b‖ < 1. Let ψk(ξ, η, ·) be the

function satisfying (2.2). Define Ψk(ξ, η, ·) to be
Ψk(ξ, η, ·) =

(
e−ie1·ξ[∂1 + e1(ξ)]ψk(ξ, η, ·), . . . , e−ied·ξ[∂d + ed(ξ)]ψk(ξ, η, ·)

)
.

Then Ψk(ξ, η, ·) ∈ H(Ω) and satisfies the equation,

Ψk(ξ, η, ω)− PTb,η/Λ,ξΨk(ξ, η, ω) +
1
Λ

d∑
j=1

Tj,η/Λ,ξ
[
ak,j(ω)−

〈
ak,j(·)

〉]
= 0,(3.6)

where for 1 ≤ j ≤ d, Tj,η,ξ is a bounded operator from L2(Ω) to H(Ω) defined by
Tj,η,ξ(ϕ) = (T1,j,η,ξϕ, . . . , Td,j,η,ξϕ). Writing

Ψk(ξ, η, ·) = (Ψk,1(ξ, η, ·), . . . ,Ψk,d(ξ, η, ·)),
we have from (2.3) that

qk,k′(ξ, η) =
〈
ak,k′(·) +

d∑
j=1

ak,j(·)Ψk′,j(ξ, η, ·)
〉
.(3.7)

It is clear now that limη→0 q(ξ, η) exists. �

Our next goal is to assert some differentiability properties of q(ξ, η) in ξ which
are uniform as η → 0.

Lemma 3.2. Suppose η > 0, 1 ≤ k ≤ d, ϕ ∈ L2(Ω) and b(·) a random symmetric
matrix satisfying ‖b‖ < 1. For ξ ∈ R

d let Ψ(ξ, η, ·) be the solution to the equation,
(I − PTb,η,ξ)Ψ(ξ, η, ·) = Tk,η,ξϕ(·).(3.8)

Then Ψ(ξ, η, ·), regarded as a function of ξ ∈ R
d to H(Ω) is differentiable. The

derivative of Ψ(ξ, η, ·) is given by

∂Ψ
∂ξj

(ξ, ·) = (I − PTb,η,ξ)−1

(
∂

∂ξj
Tk,η,ξ

)
ϕ(·)

(3.9)

+ (I − PTb,η,ξ)−1

(
P

∂

∂ξj
Tb,η,ξ

)
(I − PTb,η,ξ)−1Tk,η,ξϕ(·), 1 ≤ j ≤ d.

Proof. Consider first the k′ th component of Tk,η,ξϕ(·), which is
Tk′,k,η,ξϕ(·) =

∑
x∈Zd

∇∗
k′∇kGη(x)e−ix·ξϕ(τx·).

Since Gη(x) decreases exponentially as |x| → ∞ it is clear that Tk′,k,η,ξϕ(·), re-
garded as a mapping from R

d to L2(Ω) is differentiable and

∂

∂ξj
Tk′,k,η,ξϕ(·) = −

∑
x∈Zd

ixj∇∗
k′∇kGη(x)eix·ξϕ(τx·).(3.10)
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We regard (3.10) as the definition of the operator ∂/∂ξjTk′,k,η,ξ which is clearly a
bounded operator on L2(Ω). Similarly we can define ∂/∂ξjTb,η,ξ by[

∂

∂ξj
Tb,η,ξψ(·)

]
r

=
d∑

i,j′=1

∂

∂ξj
Tr,i,η,ξ

[
bi,j′(·)ψj′(·)

]
,(3.11)

ψ = (ψ1, . . . , ψd) ∈ H(Ω), 1 ≤ r ≤ d. Again it is clear that ∂/∂ξjTb,η,ξ is a
bounded operator on H(Ω). From (3.8) Ψ(ξ, η, ·) is given by the Neumann series,

Ψ(ξ, η, ·) =
∞∑
n=0

(PTb,η,ξ)nTk,η,ξϕ(·),

which converges since ‖b‖ < 1. Formally the derivative of Ψ(ξ, η, ·) is given by
∂

∂ξj
Ψ(ξ, η, ·) =

∞∑
n=0

(PTb,η,ξ)n
∂

∂ξj
Tk,η,ξϕ(·)(3.12)

+
∞∑

n,m=0

(PTb,η,ξ)n(P
∂

∂ξj
Tb,η,ξ)(PTb,η,ξ)mTk,η,ξϕ(·).

Since the RHS of (3.12) converges it is easy to see that Ψ(ξ, η, ·), regarded as a
mapping from R

d to H(Ω) is differentiable and the derivative is given by (3.12).
Finally observe that the RHS of (3.12) is the same as the RHS of (3.9). �

For 2 ≤ p < ∞ let Lp(Ω,
[ − π, π

]d) be the space of functions ψ(ξ, ω), ξ ∈[− π, π
]d
, ω ∈ Ω such that ‖ψ‖p < ∞, where

‖ψ‖pp =
∫

[−π,π]d
dξ

〈|ψ(ξ, ·)|2〉p/2 .

Suppose now f :
[ − π, π

]d → C is a smooth periodic function. The Fourier
transform f̂ of f is given by

f̂(x) =
1

(2π)d

∫
[−π,π]d

f(ξ)e−ix·ξdξ, x ∈ Z
d.

Since f̂ is rapidly decreasing we can define for ϕ ∈ L2(Ω) an operator Tϕ by

Tϕ(f)(ξ, ω) =
∑
x∈Zd

f̂(x)e−ix·ξϕ(τxω), ξ ∈ [− π, π
]d
, ω ∈ Ω .(3.13)

Evidently Tϕ(f) ∈ L∞(Ω,
[− π, π

]d).
Lemma 3.3. Suppose 2 ≤ p ≤ ∞ and ϕ ∈ L2(Ω). Then the operator Tϕ extends
to a bounded operator from Lp(

[ − π, π
]d) to Lp(Ω, [−π, π]d)and the norm of Tϕ

satisfies ‖Tϕ‖ ≤ ‖ϕ‖.

Proof. Now by Bochner’s Theorem [9] there is a positive measure dµϕ on [−π, π]d

such that 〈
ϕ(τx·)ϕ(τy·)

〉
=

∫
[−π,π]d

ei(x−y)·ζdµϕ(ζ),
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whence 〈|Tϕ(f)(ξ, ·)|2〉 = ∫
[−π,π]d

|f(ζ − ξ)|2dµϕ(ζ).(3.14)

Since
∫
[−π,π]d

dµϕ(ζ) = ‖ϕ‖2 the fact that ‖Tϕ‖ ≤ ‖ϕ‖ follows immediately from
(3.14) for p = 2, p = ∞. The fact that ‖Tϕ‖ ≤ ‖ϕ‖ when 2 < p < ∞ can be
obtained by an application of Holder’s inequality. �

Next for 2 ≤ p < ∞ let Hp(Ω, [−π, π]d) be the space of functions ψ(ξ, ω), ξ ∈
[−π, π]d with ψ(ξ, ·) ∈ H(Ω) such that ‖ψ‖p < ∞, where

‖ψ‖pp =
∫

[−π,π]d
dξ‖ψ(ξ, ·)‖p.

We define an operator for ϕ ∈ L2(Ω), Tϕ,b,η by

Tϕ,b,η(f)(ξ, ·) =
∑
x∈Zd

f̂(x)e−ix·ξτx

[
b(·)(I − PTb,η,ξ)−1Tk,η,ξϕ(·)

]
.(3.15)

It is clear that if f is smooth then Tϕ,b,η(f) is in H∞(Ω, [−π, π]d) provided ‖b‖ < 1.

Lemma 3.4. Suppose ‖b‖ < 1. Then,
(a) If ϕ ∈ L2(Ω), Tϕ,b,η extends to a bounded operator from L∞([−π, π]d) to

H∞(Ω, [−π, π]d). The norm of Tϕ,b,η satisfies

‖Tϕ,b,η‖ ≤ ‖b‖‖ϕ‖
(1− ‖b‖) .

(b) If ϕ ∈ L∞(Ω), Tϕ,b,η extends to a bounded operator from L2([−π, π]d) to
H2(Ω, [−π, π]d). The norm of Tϕ,b,η satisfies

‖Tϕ,b,η‖ ≤
√
d‖b‖‖ϕ‖∞
(1− ‖b‖)2 .

Proof. To prove (a) observe that (3.14) implies

‖Tϕ,b,η(f)(ξ)‖2 ≤ ‖f‖2
∞‖b(·)(I − PTb,η,ξ)−1Tk,η,ξϕ(·))‖2

≤ ‖f‖2
∞‖b‖2‖ϕ‖2

(1− ‖b‖)2 .

To prove (b) we consider the integral

∫
[−π,π]d

dξ‖
∑
x∈Zd

f̂(x)e−ix·ξτx [b(·)(PTb,η,ξ)mTk,η,ξϕ] ‖2 = (2π)d
∑
r∈Zd

‖Θ1‖2

(3.16)

= (2π)d
∑
r∈Zd

‖Θ2‖2,

where Θ1 is given by∑
x1+···+xm+2=r

f̂(x1)b(τx1 ·)
[m+1∏

j=2

∇∗∇Gη(xj)Pb(τx1+···+xj
·)
]
∇∗∇kGη(xm+2)ϕ(τr·)
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and Θ2 is given by∑
y1,...,ym+1

f̂(y1)b(τy1 ·)
[m+1∏

j=2

∇∗∇Gη(yj − yj−1)Pb(τyj ·)
]
∇∗∇kGη(r − ym+1)ϕ(τr·).

Observe now that

(3.17) f̂(y1)b(τy1 ·)
[m+1∏

j=2

∇∗∇Gη(yj − yj−1)Pb(τyj ·)
]
∇∗∇kGη(r − ym+1)ϕ(τr·)

= f̂(y1)b(τy1 ·)
[m+1∏

j=2

∇∗∇Gη(yj − yj−1)b(τyj ·)
]
∇∗∇kGη(r − ym+1)ϕ(τr·)

−
m∑
n=1

f̂(y1)b(τy1 ·)
[ n∏
j=2

∇∗∇Gη(yj − yj−1)b(τyj
·)
]

〈
∇∗∇Gη(yn+1 − yn)b(τyn ·)

[ m+1∏
j=n+2

∇∗∇Gη(yj − yj−1)Pb(τyj ·)
]

∇∗∇kGη(r − ym+1)ϕ(τr·)
〉
.

Next let M be the space of complex d × d matrices and L2(Zd,M) the set of
functions A : Z

d → M. We can make L2(Zd,M) into a Hilbert space by defining
the norm of A to be

‖A‖2
M = (2π)d

∑
x∈Zd

Tr(A∗(x)A(x)).

We can also define an operator Tη on L2(Zd,M)by

TηA(x) =
∑
y

A(y)∇∗∇Gη(x− y), x ∈ Z
d.

It is easy to see that Tη is bounded on L2(Zd,M) and ‖Tη‖ ≤ 1. For n = 1, . . . ,m+1,
ω ∈ Ω, yn ∈ Z

d, let us define An(yn, ω) ∈ M by

An(yn, ω) =
∑

y1,...yn−1

f̂(y1)b(τy1ω)
[ n∏
j=2

∇∗∇Gη(yj − yj−1)b(τyj
ω)

]
.

It follows from the fact that ‖Tη‖ ≤ 1 that for any fixed ω ∈ Ω the function
An(·, ω) ∈ L2(Zd,M) and

‖An(·, ω)‖M ≤ ‖b‖n‖f̂ Id‖M =
√
d‖b‖n‖f‖2 .(3.18)

Recall now that P is the projection operator, Pψ(·) = ψ(·) − 〈ψ〉 , ψ ∈ L2(Ω). If
we introduce the notation P ∗ as ψ(·)P ∗ = Pψ(·) then〈

∇∗∇Gη(yn+1 − yn)b(τyn
·)
[ m+1∏
j=n+2

∇∗∇Gη(yj − yj−1)Pb(τyj
·)
]

∇∗∇kGη(r − ym+1)ϕ(τr·)
〉
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is equal to〈
∇∗∇Gη(yn+1 − yn)b(τyn ·)

[ m+1∏
j=n+2

∇∗∇Gη(yj − yj−1)P ∗b(τyj
·)
]

∇∗∇kGη(r − ym+1)ϕ(τr·)
〉
.

Let us denote now by L2(Zd × Ω,M) the set of functions A : Z
d × Ω → M with

norm,

‖A‖2
M,ran = (2π)

d
∑
x∈Zd

〈Tr(A∗(x, ·)A(x, ·))〉 .

For n = 1, . . . ,m define an operator Tn on this space by

TnA(ym+1, ·) =
∑

yn,...,ym

A(yn, ·)∇∗∇Gη(yn+1 − yn)

b(τyn ·)
[ m+1∏
j=n+2

∇∗∇Gη(yj − yj−1)P ∗b(τyj ·)
]
.

We can see as before that Tn is a bounded operator on L2(Zd × Ω,M) and

‖Tn‖ ≤ ‖b‖m+1−n.(3.19)

Observe now from (3.17) that Θ2 (the expression inside the norm in the last line
of (3.16)) is given by

∑
y1,...,ym+1

f̂(y1)b(τy1 ·)
[m+1∏

j=2

∇∗∇Gη(yj−yj−1)Pb(τyj
·)
]
∇∗∇kGη(r−ym+1)ϕ(τr·)

= [TηAm+1(r, ·)ek]ϕ(τr·)−
m∑
n=1

〈[
TηTnA

ran
n (r, ·)ek

]
ϕ(τr·)

〉
,

where Aran
n denotes that An(x, ω), x ∈ Z

d, ω ∈ Ω is to be regarded as a function
of x only, with parameter ω, on which Tn acts. We have now

(2π)d
∑
r∈Zd

‖ [TηAm+1(r, ·)ek]ϕ(τr·)‖2 ≤ ‖ϕ‖2
∞

〈‖Am+1(·, ω)‖2
M

〉
≤ ‖ϕ‖2

∞d‖b‖2(m+1)‖f‖2
2,

where we have used (3.18). Similarly we have

(2π)d
∑
r∈Zd

‖ 〈[TηTnAran
n (r, ·)ek

]
ϕ(τr·)

〉 ‖2 ≤ ‖ϕ‖2
2

〈‖TηTnAran
n (ω)‖2

M,ran

〉
,

where ω denotes the random parameter for Aran
n . The expectation is then to be

taken with respect to this parameter. If we use now (3.18), (3.19) we have

(2π)d
∑
r∈Zd

‖ 〈[TηTnAran
n (r, ·)ek

]
ϕ(τr·)

〉 ‖2 ≤ ‖ϕ‖2
2d‖b‖2(m+1)‖f‖2

2 .
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We conclude therefore from (3.16) that∫
[−π,π]d

dξ‖
∑
x∈Zd

f̂(x)eix·ξτx
[
b(·)(PTb,η,ξ)m Tk,η,ξϕ ‖2

≤ d(m+ 1) ‖ϕ‖2
∞ ‖b‖2(m+1)‖f‖2

2, m ≥ 0.
It follows that[ ∫

[−π,π]d
dξ‖Tϕ,b,η(f)(ξ)‖2

]1/2

≤
√
d‖ϕ‖∞‖f‖2

∞∑
m=0

√
m+ 1 ‖b‖m+1

≤
√
d‖ϕ‖∞‖f‖2‖b‖/(1− ‖b‖)2 .

�

It follows from Lemma 3.3 and the Riesz-Thorin Interpolation Theorem [10] that
if ϕ ∈ L∞(Ω) and ‖b‖ < 1 then Tϕ,b,η is a bounded operator from Lp([−π, π]d) to
Hp (Ω, [−π, π]d), 2 ≤ p ≤ ∞ and the norm of Tϕ,b,η satisfies the inequality,

‖Tϕ,b,η‖ ≤ Cd‖b‖‖ϕ‖∞
(1− ‖b‖)2 ,

where Cd is a constant depending only on d. Consider next the weak spaces
Lp
w([−π, π]d) and Hp

w(Ω, [−π, π]d), 2 < p < ∞. Thus f ∈ Lp
w([−π, π]d) if for

all α > 0 there is the inequality,

meas{ξ ∈ [−π, π]d : |f(ξ)| > α} ≤ Cp/αp.(3.20)

The weak Lp norm of f, ‖f‖p,w is then the minimum constant C such that (3.20)
holds for all α > 0. Similarly ψ(ξ, ω) ∈ Hp

w(Ω, [−π, π]d) if for all α > 0 there is the
inequality,

meas{ξ ∈ [−π, π]d : ‖ψ(ξ, ·)‖ > α} ≤ Cp/αp.(3.21)

The weak Lp norm of ψ, ‖ψ‖p,w is again the minimum constant C such that (3.21)
holds. Lemmas 3.3, 3.4 and Hunt’s Interpolation Theorem [10] then imply the
following:

Lemma 3.5. Suppose 2 < p < ∞. Then
(a) There is a constant Cp depending only on p such that Tϕ is a bounded operator

from Lp
w([−π, π]d) to Lp

w(Ω, [−π, π]d) and ‖Tϕ‖ ≤ Cp‖ϕ‖.
(b) There is a constant Cp,d depending only on p and d such that Tϕ,b,η is a

bounded operator from Lp
w([−π, π]d) to Hp

w(Ω, [−π, π]d) and

‖Tϕ,b,η‖ ≤ Cp,d‖b‖‖ϕ‖∞
(1− ‖b‖)2 .

We can use Lemma 3.5 to obtain bounds on the first two derivatives with respect
to ξ of the function q(ξ, η) defined by (3.7).

Lemma 3.6. Let d = 3, η > 0, 1 ≤ k, k′ ≤ d. Then qk,k′(ξ, η) is a C∞ function
of ξ ∈ R

d and for any i, j, 1 ≤ i, j ≤ d the function ∂qk,k′/∂ξi ∈ L3
w([−π, π]d) and

∂2qk,k′/∂ξi∂ξj ∈ L
3/2
w ([−π, π]d). Further, there is a constant Cλ,Λ, depending only

on λ,Λ such that

‖∂qk,k′/∂ξi‖3,w ≤ Cλ,Λ, ‖∂2qk,k′/∂ξi∂ξj‖3/2,w ≤ Cλ,Λ.
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Proof. Observe that the function Ψk′ occurring in (3.7) satisfies (3.6) and hence
corresponds to the function Ψ of Lemma 3.2 with ϕ ∈ L∞(Ω). Observe next from
(3.10) that

∂

∂ξi
Tk′,k,η,ξϕ = Tϕ(f),

where Tϕ is defined by (3.13) and the function f is

f(ξ) =
∂

∂ξi
[e−iek·ξ − 1)(eiek′ ·ξ − 1)Ĝη(ξ)].(3.22)

Clearly f ∈ L3
w([−π, π]d) and ‖f‖3,w ≤ C, where C is universal. Consider now the

formula (3.9) for the derivative of Ψ. For the first term on the RHS of (3.9) we
have

‖(I − PTb,η,ξ)−1(
∂

∂ξi
Tk,η,ξ) ϕ(·)‖ ≤ 1

1− ‖b‖‖
∂

∂ξi
Tk,η,ξ ϕ(·)‖.

It follows from Lemma 3.5 (a) that

∂

∂ξi
Tk,η,ξϕ(·) ∈ L3

w(Ω, [−π, π]3) ,

‖ ∂

∂ξi
Tk,η,ξϕ(·)‖3,w ≤ CΛ ,

for some universal constant C, since ‖ϕ‖ is bounded by a constant times Λ. Hence
the first term on the RHS of (3.9) is in L3

w(Ω, [−π, π]3) with norm bounded by a
constant depending only on λ,Λ. Similarly the second term on the RHS of (3.9) is
bounded by

1
1− ‖b‖‖

(
∂

∂ξi
Tb,η,ξ

)
(I − PTb,η,ξ)−1Tk,η,ξϕ‖ .

It follows from (3.11),(3.15) that(
∂

∂ξi
Tb,η,ξ

)
(I − PTb,η,ξ)−1Tk,η,ξϕ = Tϕ,b,η(f),

where Tϕ,b,η is like the operator (3.15) but acts on matrix valued functions f(ξ) =
[fi,j(ξ)], ξ ∈ [−π, π]d. The functions fi,j(ξ) are similar to (3.22) and hence are in
L3
w([−π, π]3). It follows by the argument of Lemma 3.4 and Lemma 3.5 (b) that
the second term on the RHS of (3.9) is in L3

w(Ω, [−π, π]3) with norm bounded by a
constant depending only on λ,Λ. We conclude that ∂qk,k′/∂ξi ∈ L3

w([−π, π]d) with
norm bounded by a constant depending only on λ,Λ.
Next we turn to the second derivative, ∂2qk,k′/∂ξi∂ξj . To estimate this we need

a formula for the second derivative of the function Ψ of Lemma 3.2. One can see
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from (3.9) that

∂2Ψ
∂ξi∂ξj

(ξ, ·) = (
I − PTb,η,ξ

)−1(
P

∂

∂ξj
Tb,η,ξ

)
(
I − PTb,η,ξ

)−1( ∂

∂ξi
Tk,η,ξ

)
ϕ(·) + (

I − PTb,η,ξ

)−1( ∂2

∂ξi∂ξj
Tk,η,ξ

)
ϕ(·)

+
(
I − PTb,η,ξ

)−1(
P

∂

∂ξi
Tb,η,ξ

)(
I − PTb,η,ξ

)−1( ∂

∂ξj
Tk,η,ξ

)
ϕ(·)

+
(
I−PTb,η,ξ

)−1(
P

∂

∂ξj
Tb,η,ξ

)(
I−PTb,η,ξ

)−1(
P

∂

∂ξi
Tb,η,ξ

)(
I−PTb,η,ξ

)−1
Tk,η,ξϕ(·)

+
(
I − PTb,η,ξ

)−1(
P

∂2

∂ξi∂ξj
Tb,η,ξ

)(
I − PTb,η,ξ

)−1
Tk,η,ξϕ(·).

Let ϕ′ ∈ H∞(Ω) and consider the expectation value
〈
ϕ′(·)∂2Ψ(ξ, η, ·)/∂ξi∂ξj

〉
.

From above this is a sum of five terms. The first term is given by〈
ϕ′(·)(I − PTb,η,ξ)−1(P

∂

∂ξj
Tb,η,ξ)(I − PTb,η,ξ)−1(

∂

∂ξi
Tk,η,ξ)ϕ(·)

〉
=

〈[
(P

∂

∂ξj
Tb,η,ξ)(I − PTb,η,ξ)−1ϕ′(·)

]
(I − PTb,η,ξ)−1(

∂

∂ξi
Tk,η,ξ)ϕ(·)

〉
,

whence we have∣∣∣〈ϕ′(·)(I − PTb,η,ξ)−1(P
∂

∂ξj
Tb,η,ξ)(I − PTb,η,ξ)−1(

∂

∂ξi
Tk,η,ξ)ϕ(·)

〉∣∣∣
≤ ‖(P ∂

∂ξj
Tb,η,ξ)(I − PTb,η,ξ)−1ϕ′(·)‖ ‖( ∂

∂ξi
Tk,η,ξ)ϕ(·)‖/(1− ‖b‖).

We have already seen that both

‖
(
P

∂

∂ξj
Tb,η,ξ

)
(I − PTb,η,ξ)−1ϕ′(·)‖, ‖( ∂

∂ξi
Tk,η,ξ) ϕ(·)‖

are in L3
w([−π, π]3). We conclude that the first term in

〈
ϕ′(·)∂2Ψ(ξ, η, ·)/∂ξi∂ξj

〉
is in L

3/2
w ([−π, π]3) with norm depending only on λ,Λ. Consider now the second

term. To estimate this observe that if Tϕ is given by (3.13) then

Tϕ(fg)(ξ, ω) =
∑
x∈Zd

f̂(x)eix·ξTϕ(g)(τxω) .(3.23)

We have from (3.22) that

∂2

∂ξi∂ξj
Tk′,k,η,ξϕ = Tϕ(fg),

where fg ∈ L
3/2
w ([−π, π]3) , whence we can choose f, g so that f, g ∈ L3

w([−π, π]3).
With this choice of f, g and using the formula (3.23) we can argue as for the first
term of

〈
ϕ′(·)∂2Ψ(ξ, η, ·)/∂ξi ∂ξj

〉
to conclude that the second term is also in

L
3/2
w ([−π, π]3) with norm depending only on λ,Λ. One can estimate the other
three terms of

〈
ϕ′(·)∂2Ψ(ξ, η, ·)/∂ξi ∂ξj

〉
similarly. �
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Proposition 3.1. Let d = 3. Then the function Ga(x) defined by (3.1) satisfies
the inequalities

0 ≤ Ga(x) ≤ Cλ,Λ[1 + |x|]2−d, x ∈ Z
d,(3.24)

|∇Ga(x)| ≤ Cλ,Λ log [2 + |x|]/(1 + |x|)2, x ∈ Z
d.(3.25)

The constant Cλ,Λ depends only on λ,Λ.

Proof. For η > 0 let Ga,η(x) be defined by

Ga,η(x) =
1

(2π)d

∫
[−π,π]d

dξe−ix·ξ/e(ξ)q(ξ, η)e(−ξ), x ∈ Z
d.

Then by Lemma 3.1 it follows that limη→0 Ga,η(x) = Ga(x). It will be sufficient
therefore for us to obtain bounds on Ga,η(x),∇Ga,η(x) which are uniform as η → 0.
Since q(ξ, η) ≥ λId, ξ ∈ [−π, π]d, we clearly have Ga,η(x) ≤ Cd, where Cd is a
constant depending only on d ≥ 3. To obtain the decay in (3.24) we write

Ga,η(x) =
∫
|ξ|<γ/|x|

+
∫
|ξ|>γ/|x|

,(3.26)

where γ is a parameter, 1 ≤ γ ≤ 2. Evidently there is a constant C such that∫
|ξ|<γ/|x|

dξ ≤ C/|x|.

To bound the second integral in (3.26) we integrate by parts. Thus∫
|ξ|>γ/|x|

=
1
ix1

1
(2π)d

∫
|ξ|>γ/|x|

dξ

e(ξ)q(ξ, η)e(−ξ)

[
− ∂

∂ξ1
e−ix·ξ

]
(3.27)

=
−1
ix1

1
(2π)d

∫
|ξ|>γ/|x|

dξ
e−ix·ξ

[e(ξ)q(ξ, η)e(−ξ)]2
∂

∂ξ1
[e(ξ)q(ξ, η)e(−ξ)]

+
1
ix1

1
(2π)d

∫
|ξ|=γ/|x|

dξ
e−ix·ξξ1

[e(ξ)q(ξ, η)e(−ξ)]|ξ| ,

where we have assumed wlog that |x1| = max[|x1|, . . . , |xd|]. Evidently the surface
integral on the RHS of the last expression is bounded by C/|x|. We estimate the
volume integral by integrating by parts again. Thus,

∫
|ξ|>γ/|x|

dξ
e−ix·ξ

[e(ξ)q(ξ, η)e(−ξ)]2
∂

∂ξ1

[
e(ξ)q(ξ, η)e(−ξ)

](3.28)

=
1
ix1

∫
|ξ|>γ/|x|

dξ
1

[e(ξ)q(ξ, η)e(−ξ)]2
∂

∂ξ1

[
e(ξ)q(ξ, η)e(−ξ)

] [− ∂

∂ξ1
e−ix·ξ

]
=

1
ix1

∫
|ξ|>γ/|x|

dξe−ix·ξ ∂

∂ξ1

{
1

[e(ξ)q(ξ, η)e(−ξ)]2
∂

∂ξ1

[
e(ξ)q(ξ, η)e(−ξ)

]}
+
1
ix1

∫
|ξ|=γ/|x|

dξe−ix·ξ ξ1
[e(ξ)q(ξ, η)e(−ξ)]2|ξ|

∂

∂ξ1

[
e(ξ)q(ξ, η)e(−ξ)

]
.
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We divide the surface integral in the last expression into three parts corresponding
to the three terms in the expression,

∂

∂ξ1

[
e(ξ)q(ξ, η)e(−ξ)

]
=

∂e(ξ)
∂ξ1

q(ξ, η)e(−ξ) + e(ξ)
∂q

∂ξ1
(ξ, η)e(−ξ)

+ e(ξ)q(ξ, η)
∂e(−ξ)
∂ξ1

.

The surface integral corresponding to the first and third terms in this expansion is
bounded by

C

|x|
∫
|ξ|=γ/|x|

Λdξ
λ2|ξ|3 ≤ C ′Λ/λ2,

where C,C ′ are universal constants. The surface integral corresponding to the
middle term is bounded by

C

|x|
∫
|ξ|=γ/|x|

1
λ2|ξ|2 ‖∂q(ξ, η)/∂ξ1‖dξ,(3.29)

for some universal constant C. To bound this we use the well known fact that if
f ∈ Lp

w([−π, π]3), 1 < p < ∞, then for any measurable set E one has∫
E

|f |dξ ≤ Cp‖f‖p,wm(E)1−1/p,(3.30)

where the constant Cp depends only on p. If we average the expression (3.29) over
γ, 1 < γ < 2, then we have from Lemma 3.6 that

∫ 2

1

dγ
C

|x|
∫
|ξ|=γ/|x|

1
λ2|ξ|2 ‖∂q(ξ, η)/∂ξ1‖dξ

≤ C ′|x|2
λ2

∫
|x|−1<|ξ|<2|x|−1

dξ‖∂q(ξ, η)/∂ξ1‖ ≤ Cλ,Λ ,

where we have used (3.30) with p = 3.
Next we consider the volume integral on the RHS of (3.28). For any γ, 1 ≤ γ ≤ 2,

this is bounded by

(3.31)
C(λ,Λ)

|x|
∫
|ξ|>1/|x|

dξ
{
|ξ|−4 + |ξ|−3‖∂q(ξ, η)/∂ξ1‖

+ |ξ|−2[‖∂2q(ξ, η)/∂ξ2
1‖+ ‖∂q(ξ, η)/∂ξ1‖2]

}
,

for some constant C(λ,Λ) depending only on λ,Λ. Evidently there is a constant
C ′(λ,Λ) such that

C(λ,Λ)
|x|

∫
|ξ|>1/|x|

dξ

|ξ|4 ≤ C ′(λ,Λ).
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Also we have

C(λ,Λ)
|x|

∫
|ξ|>1/|x|

dξ

|ξ|3 ‖∂q(ξ, η)/∂ξ1‖

=
C(λ,Λ)

|x|
∞∑
n=0

∫
2n+1/|x|>|ξ|>2n/|x|

dξ

≤ C(λ,Λ)|x|2
∞∑
n=0

2−3n

∫
2n+1/|x|>|ξ|>2n/|x|

‖∂q(ξ, η)/∂ξ1‖ dξ

≤ C ′(λ,Λ)|x|2
∞∑
n=0

2−3n
[
2n/|x|]2 ≤ C ′′(λ,Λ) ,

where we have used Lemma 3.6 and (3.30). We can similarly bound the third
term in (3.31) using Lemma 3.6 and (3.30). We conclude that (3.31) is bounded
by a constant depending only on λ,Λ. If we put this inequality together with the
previous inequalities we obtain (3.24).
The proof of (3.25) is similar. For any unit vector n ∈ R

d we have

n.∇Ga,η(x) =
1

(2π)d

∫
[−π,π]d

dξe−ix·ξ[−n · e(−ξ)]/e(ξ)q(ξ, η)e(−ξ) .(3.32)

We do a decomposition similar to (3.26) and it is clear that∫
|ξ|<γ/|x|

≤ C/|x|2.

For the {|ξ| > γ/|x|} integral we do a decomposition analogous to (3.27). It is clear
the surface integral which appears is bounded by C/|x|2. For the other integral we
do a separate integration by parts as in (3.28). The average of the corresponding
surface integral over γ, 1 ≤ γ ≤ 2, is bounded by C(λ,Λ)/|x|. The volume integral
is bounded analogously to (3.31) by

C(λ,Λ)
|x|

∫
|ξ|>1/|x|

dξ
{|ξ|−3 + |ξ|−2‖∂q(ξ, η)/∂ξ1‖

+ |ξ|−1[‖∂2q(ξ, η)/∂ξ2
1‖+ ‖∂q(ξ, η)/∂ξ1‖2]

}
.

Arguing as before we see this is bounded by C ′(λ,Λ)log[1 + |x|]/|x|. Putting this
inequality together with the previous inequalities yields (3.25) �

Proposition 3.1 gives an improvement of the estimate (1.14) when d = 3. We
wish now to obtain a corresponding improvement for all d ≥ 3. To do this we need
generalizations of Lemmas 3.4–3.6 appropriate for all d ≥ 3. Let A ∈ M, the space
of complex d× d matrices. The norm of A is defined to be

‖A‖2 = Tr(A∗A).

Similarly if A : Ω→ M is a random function we define ‖A(·)‖ by
‖A(·)‖2 = 〈Tr(A∗(·)A(·))〉 .
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Consider now functions A : [−π, π]d → M. For 2 ≤ p ≤ ∞ we can define the space
Lp([−π, π]d,M) with norm ‖A‖p given by

‖A‖pp =
∫

[−π,π]d
‖A(ξ)‖pdξ.

Similarly we can consider functions A : [−π, π]d×Ω→ M and associate with them
spaces Lp([−π, π]d × Ω,M) with norm ‖A‖p given by

‖A‖pp =
∫

[−π,π]d
‖A(ξ, ·)‖pdξ.

We define an operator which generalizes the operator given in (3.15). For n =
1, 2, . . . the operator Tn,ϕ,b,η acts on n functions Ar : [−π, π]d → M, 1 ≤ r ≤ n.
The resulting quantity Tn,ϕ,b,η(A1, . . . An) is a function from [−π, π]d × Ω → M.
Specifically we define

(3.33) Tn,ϕ,b,η(A1, . . . , An)(ξ, ·) =∑
x1,...,xn∈Zd

n−1∏
r=1

[
Âr(xr)e−ixr·ξτxr

{
Pb(·)(I − PTb,η,ξ)−1

}]
Ân(xn)e−ixn·ξτxnϕ(·).

Evidently the operators (3.13),(3.15) correspond to the cases n = 1 and n = 2 in
(3.33).

Lemma 3.7. Suppose ∞ ≥ p1, . . . , pn, p ≥ 2 and 1
p1
+ · · ·+ 1

pn
= 1

p . Then if Ar ∈
Lpr ([−π, π]d,M), 1 ≤ r ≤ n, the function Tn,ϕ,b,η(A1, . . . , An) ∈ Lp([−π, π]d ×
Ω,M) and

‖Tn,ϕ,b,η(A1, . . . An)‖p ≤ ‖b‖n−1‖ϕ‖∞
∏n

r=1 ‖Ar‖pr

(1− ‖b‖)2n .(3.34)

Proof. Consider first the case n = 2. If A1, A2 ∈ L∞([−π, π]d,M) then it is clear
that T2,ϕ,b,η(A1, A2) ∈ L∞([−π, π]d × Ω,M) and

‖T2,ϕ,b,η(A1, A2)‖∞ ≤ ‖b‖‖ϕ‖2‖A1‖∞‖A2‖∞
(1− ‖b‖) .

If A2 ∈ L∞, A1 ∈ L2 then we can see by the argument of Lemma 3.4 that
T2,ϕ,b,η(A1, A2) ∈ L2 and

‖T2,ϕ,b,η(A1, A2)‖2 ≤ ‖b‖‖ϕ‖∞‖A2‖∞‖A1‖2

(1− ‖b‖)2 .(3.35)

It follows therefore by interpolation theory that if A2 ∈ L∞, A1 ∈ Lp, p ≥ 2, then
T2,ϕ,b,η(A1, A2) ∈ Lp and

‖T2,ϕ,b,η(A1, A2)‖p ≤ ‖b‖‖ϕ‖∞‖A2‖∞‖A1‖p
(1− ‖b‖)2 .(3.36)
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Suppose next that A1 ∈ Lp1 , A2 ∈ Lp2 and 1/p1 + 1/p2 = 1/2. We have now that

(3.37)
[ ∫

[−π,π]d
dξ ‖T2,ϕ,b,η(A1, A2)(ξ, ·)‖2

]1/2

≤
∞∑

m=0

[ ∫
[−π,π]d

dξ‖
∑

x1,x2∈Zd

Â1(x1)e−ix1·ξτx1

Pb(·)(PTb,η,ξ)mÂ2(x2)e−ix2·ξτx2ϕ(·)‖2

]1/2

.

Observe now that as in (3.16) one has∫
[−π,π]d

dξ‖
∑

x1,x2,∈Zd

Â1(x1)e−ix1·ξτx1b(·)(Tb,η,ξ)mÂ2(x2)e−ix2·ξτx2ϕ(·)‖2

= (2π)d
∑
r∈Zd

‖
∑

y1,...,ym+1

Â1(y1)b(τy1 ·)
[m+1∏

j=2

∇∗∇Gη(yj − yj−1)b(τyj
·)
]

Â2(r − ym+1)ϕ(τr·)‖2

≤ (2π)d‖ϕ‖2
∞

∑
r∈Zd

||
∑

y1,...,ym+1

Â1(y1)b(τy1 ·)
[m+1∏

j=2

∇∗∇Gη(yj − yj−1)b(τyj ·)
]

Â2(r − ym+1)||2

= ‖ϕ‖2
∞

∫
[−π,π]d

dξ‖
[ ∑
x1∈Zd

Â1(x1)e−ix1·ξτx1b(·)(Tb,η,ξ)mId

]
A2(ξ)‖2

≤ ‖ϕ‖2
∞

∫
[−π,π]d

dξ‖
∑
x1∈Zd

Â1(x1)e−ix1·ξτx1b(·)(Tb,η,ξ)mId||2||A2(ξ)‖2

≤ ‖ϕ‖2
∞

[ ∫
[−π,π]d

dξ‖
∑
x1∈Zd

Â1(x1)e−ix1·ξτx1b(·)(Tb,η,ξ)mId‖p1

]2/p1

‖A2‖2
p2

.

We have already seen from interpolation theory that[ ∫
[−π,π]d

dξ‖
∑
x1∈Zd

Â1(x1)e−ix1·ξτx1b(·)(Tb,η,ξ)mId‖p1

]1/p1

≤ ‖b‖m+1‖A1‖p1 .

We conclude therefore that∫
[−π,π]d

dξ‖
∑
x1∈Zd

Â1(x1)e−ix1·ξτx1b(·)(Tb,η,ξ)mÂ2(x2)e−ix2·ξτx2ϕ(·)‖2

≤ ‖b‖2m+2‖ϕ‖2
∞‖A1‖2

p1
‖A2 ‖2

p2
.

Arguing as in Lemma 3.4 we also see that∫
[−π,π]d

dξ‖
∑

x1,x2∈Zd

Â1(x1)e−ix1·ξτx1Pb(·)(PTb,η,ξ)mÂ2(x2)e−ix2·ξτx2ϕ(·)‖2

≤ (m+ 1)2‖b‖2m+2‖ϕ‖2
∞‖A1‖2

p1
‖A2‖2

p2
.
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It follows now from (3.37) that

‖T2,ϕ,b,η(A1, A2)‖2 ≤ ‖b‖‖ϕ‖∞‖A1‖p1‖A2‖p2

(1− ‖b‖)2 ,(3.38)

provided 1/p1 + 1/p2 = 1/2. We can now use the inequalities (3.36),(3.38) to do a
further interpolation. Thus we have if p ≥ 2 and 1/p1 + 1/p2 = 1/p then

‖T2,ϕ,b,η(A1, A2)‖p ≤ ‖b‖‖ϕ‖∞‖A1‖p1‖A2‖p2

(1− ‖b‖)2 .

This proves the result for n = 2.
To deal with n = 3 we subdivide into 7 cases:
(a) 1/p1 = 0, 1/p2 = 0, 1/p3 = 0,
(b) 1/p1 = 1/2, 1/p2 = 0, 1/p3 = 0,
(c) 1/p1 < 1/2, 1/p2 = 0, 1/p3 = 0,
(d) 1/p1 + 1/p2 = 1/2, 1/p3 = 0,
(e) 1/p1 + 1/p2 < 1/2, 1/p3 = 0,
(f) 1/p1 + 1/p2 + 1/p3 = 1/2,
(g) 1/p1 + 1/p2 + 1/p3 < 1/2.
For (a) it is easy to see that

‖T3,ϕ,b,η(A1, A2, A3)‖∞ ≤ ‖b‖2‖ϕ‖2‖A1‖∞‖A2‖∞‖A3‖∞
(1− ‖b‖)2 .

For (b) we use the argument of Lemma 3.4 to conclude

‖T3,ϕ,b,η(A1, A2, A3)‖2 ≤ ‖b‖2‖ϕ‖∞‖A1‖2‖A2‖∞‖A3‖∞
(1− ‖b‖)4 .

The Riesz-Thorin Theorem applied to (a), (b) yield for (c) the inequality,

‖T3,ϕ,b,η(A1, A2, A3)‖p ≤ ‖b‖2‖ϕ‖∞‖A1‖p1‖A2‖∞‖A3‖∞
(1− ‖b‖)4 ,

where p = p1. For (d) we use the argument to obtain (3.38) to conclude that

‖T3,ϕ,b,η(A1, A2, A3)‖2 ≤ ‖b‖2‖ϕ‖∞‖A1‖p1‖A2‖p2‖A3‖∞
(1− ‖b‖)4 .

Now the Riesz-Thorin Theorem applied to (c) and (d) yield for (e) the inequality

‖T3,ϕ,b,η(A1, A2, A3)‖p ≤ ‖b‖2‖ϕ‖∞‖A1‖p1‖A2‖p2‖A3‖∞
(1− ‖b‖)4 ,

where 1/p = 1/p1 + 1/p2. To obtain an inequality for (f) we use the argument to
obtain (3.38). This reduces us to the case dealt with in (e). Hence we can use the
inequality for (e) to obtain the bound

‖T3,ϕ,b,η(A1, A2, A3)‖2 ≤ ‖b‖2‖ϕ‖∞‖A1‖p1‖A2‖p2‖A3‖p3

(1− ‖b‖)4 .

Finally the Riesz-Thorin Theorem applied to (e) and (f) yields the inequality (3.34)
with n = 3 for (g). Since it is clear we can generalize the method for n = 3 to all
n, the result follows. �
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Lemma 3.8. Suppose ∞ > p1, . . . , pn, p > 2 and 1
p1
+ · · ·+ 1

pn
= 1

p . Then if Ar ∈
Lpr
w ([−π, π]d,M), 1 ≤ r ≤ n, the function Tn,ϕ,b,η(A1, . . . , An) ∈ Lp

w([−π, π]d ×
Ω,M) and

‖Tn,ϕ,b,η(A1, . . . , An)‖p,w ≤ C‖b‖n−1‖ϕ‖∞
∏n

r=1 ‖Ar‖pr,w

(1− ‖b‖)2n ,(3.39)

where the constant C depends only on p1, . . . pn.

Proof. We use Lemma 3.7 and Hunt’s Interpolation Theorem [10]. Suppose n = 2.
Now from Lemma 3.7 we know that for a given p1, 2 ≤ p1 ≤ ∞, then

‖T2,ϕ,b,η(A1, A2)‖p1 ≤ ‖b‖‖ϕ‖∞‖A1‖p1‖A2‖∞
(1− ‖b‖)2 ,

‖T2,ϕ,b,η(A1, A2)‖2 ≤ ‖b‖‖ϕ‖∞‖A1‖p1‖A2‖q1
(1− ‖b‖)2 ,

where 1/p1 + 1/q1 = 1/2. Hence the Hunt Theorem implies that

‖T2,ϕ,b,η(A1, A2)‖p,w ≤ C(p1, p2)‖b‖‖ϕ‖∞‖A1‖p1‖A2‖p2,w

(1− ‖b‖)2 ,(3.40)

provided 1/p1 + 1/p2 = 1/p > 1/2, p2 < ∞, and C(p1, p2) is a constant depending
only on p1, p2. Suppose now that A2 is fixed with ‖A2‖p2,w finite for some p2, 2 <
p2 < ∞. We consider the mapping

A1 → T2,ϕ,b,η(A1, A2).

We see from (3.40) that this maps L∞ to Lp2
w . For ε > 0 let p1(ε) satisfy 1/p1(ε) +

1/p2 = 1/2 + ε = 1/p(ε). From (3.40) we also see that it maps Lp1(ε) to L
p(ε)
w . It

follows again from interpolation theory that for any p1, p1(ε) < p1 < ∞ it maps
Lp1
w to Lp

w where 1/p1 + 1/p2 = 1/p. The inequality (3.39) for n = 2 follows from
this. It is clear this method can be generalised to all n. �

Lemma 3.9. Let d ≥ 3, η > 0, 1 ≤ k, k′ ≤ d. Then qk,k′(ξ, η) is a C∞ function
of ξ ∈ [−π, π]d. Further, let α = (α1, . . . , αd), where αi ≥ 0, 1 ≤ i ≤ d, and |α| =
α1 + · · ·+ αd < d. Then the function

∏d
i=1(

∂
∂ξi
)αiqk,k′(ξ, η) is in L

d/|α|
w ([−π, π]d),

and ‖∏d
i=1(

∂
∂ξi
)αiqk,k′‖d/|α|,w ≤ Cλ,Λ,d, where the constant Cλ,Λ,d depends only on

λ,Λ, d.

Proof. We argue as in Lemma 3.6. It is easy to see that the function Ψ of
Lemma 3.2 has the property that

d∏
i=1

(
∂

∂ξi
)αiΨ(ξ, η, ·)

is a sum of terms Tn,ϕ,b,η(A1, . . . , An)(ξ, ·)ek, where 1 ≤ n ≤ |α|, Ar ∈ Lpr
w , 1 ≤

r ≤ n, and 1/p1 + · · · + 1/pn = |α|/d. The result follows now from Lemma 3.8 if
|α| < d/2. To deal with the case d/2 ≤ |α| < d, we argue exactly as for the d = 3
case with |α| = 2. �
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Proposition 3.2. Let d ≥ 3. Then the function Ga(x) defined by (3.1) satisfies
the inequalities

0 ≤ Ga(x) ≤ Cλ,Λ,d[1 + |x|]2−d, x ∈ Z
d,

|∇Ga(x)| ≤ Cλ,Λ,dlog[2 + |x|](1 + |x|)1−d, x ∈ Z
d,

where the constant Cλ,Λ,d depends only on λ,Λ, d.

Proof. We argue as in Proposition 3.1, using Lemma 3.9. �
Proposition 3.2 gives an alternative derivation of the inequality (1.14). We can

extend the argument in the proposition to obtain Theorem 1.5. To do this we need
the following improvement of Lemma 3.9.

Lemma 3.10. Let qk,k′(ξ, η) be the function of Lemma 3.9 and |α| = d−1. Suppose
ρ ∈ R

d, |ρ| ≤ 1. Then for any ε, 0 < ε < 1 the function
d∏

i=1

(
∂

∂ξi
)αi

[
qk,k′(ξ + ρ, η)− qk,k′(ξ, η)

]
/|ρ|1−ε

is in L
d/(d−ε)
w ([−π, π]d), and∥∥∥∥ d∏
i=1

(
∂

∂ξi
)αi

[
qk,k′(ξ + ρ, η)− qk,k′(ξ, η)

]
/|ρ|1−ε

∥∥∥∥
d/(d−ε),w

≤ Cλ,Λ,d,ε ,

where the constant Cλ,Λ,d,ε depends only on λ,Λ, d, ε.

Before proving Lemma 3.10 we first show how Theorem 1.5 follows from it.

Proof of Theorem 1.5. We shall confine ourselves to the case d = 3 since the
argument for d > 3 is similar. Consider the representation (3.32) for n.∇Ga,η(x).
We have now,∫

|ξ|>γ/|x|
=

1
ix1

1
(2π)d

∫
|ξ|>γ/|x|

dξe−ix·ξ ∂

∂ξ1

[ −n · e(−ξ)
e(ξ)q(ξ, η)e(−ξ)

]
− 1

ix1

1
(2π)d

∫
|ξ|=γ/|x|

dξe−ix·ξ n · e(−ξ)
e(ξ)q(ξ, η)e(−ξ)

ξ1
|ξ| .

Evidently one has a bound for the surface integral,∣∣∣∣∣
∫
|ξ|=γ/|x|

∣∣∣∣∣ ≤ C/|x|2.

If we integrate by parts again in the volume integral we have
1
ix1

1
(2π)d

∫
|ξ|>γ/|x|

dξe−ix·ξ ∂

∂ξ1

[ −n · e(−ξ)
e(ξ)q(ξ, η)e(−ξ)

]
=
1
x2

1

1
(2π)d

∫
|ξ|>γ/|x|

dξe−ix·ξ
(

∂

∂ξ1

)2[ n · e(−ξ)
e(ξ)q(ξ, η)e(−ξ)

]
+
1
x2

1

1
(2π)d

∫
|ξ|=γ/|x|

dξe−ix·ξ ∂

∂ξ1

[
n · e(−ξ)

e(ξ)q(ξ, η)e(−ξ)

]
ξ1
|ξ| .

Since q(ξ, η) is bounded and ∂q(ξ, η)/∂ξi is in L3
w it follows that the average of the

surface integral over γ, 1 < γ < 2, is bounded by C/|x|2 for some constant C. To
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bound the volume integral let ρ ∈ R
3 be such that e−ix·ρ = −1 and ρ has minimal

magnitude. Then |ρ| ≤ 10/|x| and
1
x2

1

1
(2π)d

∫
|ξ|>γ/|x|

dξe−ix·ξ
(

∂

∂ξ1

)2[ n · e(−ξ)
e(ξ)q(ξ, η)e(−ξ)

]
=

1
2x2

1

1
(2π)d

∫
|ξ|>100/|x|

dξe−ix·ξ

(
∂

∂ξ1

)2[ n · e(−ξ)
e(ξ)q(ξ, η)e(−ξ)

− n · e(−ξ − ρ)
e(ξ + ρ)q(ξ + ρ, η)e(−ξ − ρ)

]
+
1
x2

1

∫
1/|x|<|ξ|<200/|x|

R(ξ)e−ix·ξdξ ,

where R(ξ) is the remainder term. Using the fact that ∂q/∂ξ1 ∈ L3
w, ∂

2q/∂ξ2
1 ∈ L

3/2
w

we can easily see that
1
x2

1

∫
1/|x|<ξ<200/|x|

|R(ξ)|dξ ≤ C/|x|2

for some constant C. We can bound the first term above using Lemma 3.9 and
Lemma 3.10. Evidently we will get a term

C|ρ|1−ε

|x|2
∫
|ξ|>100/|x|

∣∣∣∣∣
(

∂

∂ξ1

)2[
q(ξ + ρ, η)− q(ξ, η)

]
/|ρ|1−ε

∣∣∣∣∣ dξ|ξ| .
From Lemma 3.10 this is bounded by

C|ρ|1−ε

|x|2
∞∑
n=0

∫
2n+1/|x|>|ξ|>2n/|x|

≤ C ′|ρ|1−ε

|x|2 |x|1−ε
∞∑
n=0

2−n(1−ε) ≤ 10C ′

|x|2 ,

for some constant C ′. Other terms are bounded using Lemma 3.9. We have proved
the first inequality of Theorem 1.5. The second inequality of the theorem for d = 3
is proved similarly. �

Proof of Lemma 3.10. The argument follows the same lines as in Lemma 3.9.
The main point to observe is that if f(ξ) is given by

f(ξ) =
d∏

i=1

(
∂

∂ξi

)αi
[
ek(−ξ)ek′(ξ)Ĝη(ξ)

]
,

with |α| < d then for any ε, 0 < ε < 1, the function [f(ξ + ρ) − f(ξ)]/|ρ|1−ε

is in L
d/(1+|α|−ε)
w and there is a constant Cd,ε depending only on d, ε such that

‖[f(ξ + ρ)− f(ξ)]/|ρ|1−ε‖d/(1+|α|−ε),w ≤ Cd,ε, provided |ρ| ≤ 1 . �

4. Proof of Theorem 1.4—Diagonal Case

Here we shall prove the inequalities of Theorem 1.4, but without the exponential
falloff term. We shall call this the diagonal case. First we show that Theorem 1.6
already gives us the diagonal case of the inequality (1.10) in dimension d = 1.

Corollary 4.1. The function Ga(x, t) satisfies the inequality

0 ≤ Ga(x, t) ≤ C(λ,Λ)/[1 +
√
t], if d = 1,(4.1)
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where the constant C(λ,Λ) depends only on λ,Λ. If d > 1, it satisfies an inequality,

0 ≤ Ga(x, t) ≤ Cε(d, λ,Λ)/[1 + t1−ε],(4.2)

where ε can be any number, 0 < ε < 1, and Cε(d, λ,Λ) is a constant depending only
on ε, d, λ,Λ.

Proof. We have

Ga(x, t) ≤ 1
(2π)d

∫
[−π,π]d

|Ĝa(ξ, t)|dξ

≤ 1
(2π)d

∫
|ξ|<1/

√
t

dξ +
1

(2π)d

∫
|ξ|>1/

√
t

dξ .

Since Ĝa(ξ, t) is bounded on [−π, π]d it follows that

1
(2π)d

∫
|ξ|<1/

√
t

dξ ≤ C(d, λ,Λ)/[1 + td/2].(4.3)

The integral over {|ξ| > 1/
√
t} is nonzero only if t > 1/π2d. In that case one has

from Theorem 1.6,

1
(2π)d

∫
|ξ|>1/

√
t

dξ ≤ C(δ, λ,Λ)
∫
|ξ|>1/

√
t

dξ

(ξ2t)δ
,

for any δ satisfying 0 ≤ δ < 1. For d = 1 we have on taking δ > 1/2 an inequality∫
|ξ|>1/

√
t

dξ

(ξ2t)δ
≤ C√

t
.

The inequality (4.1) follows from this and (4.3). For d > 1 and any p > d/2 we
have ∫

|ξ|>1/
√
t

dξ

(ξ2t)δ
≤ (2π)d(1−1/p)

[∫
|ξ|>1/

√
t

dξ

(ξ2t)δp

]1/p

≤ Cp/t
d/2p ,

where the constant Cp depends only on p and we have chosen δ to satisfy 1 >
δ > d/2p. The inequality (4.2) follows now from this last inequality and (4.3) on
choosing p to satisfy d/2p = 1− ε. �

We can similarly use Theorem 1.6 to obtain estimates on the t derivative of
Ga(x, t).

Corollary 4.2. The function Ga(x, t) is differentiable w.r. to t for t > 0 and the
derivative satisfies the inequality∣∣∣∣∂Ga(x, t)

∂t

∣∣∣∣ ≤ C(λ,Λ)/[1 + t3/2] , if d = 1 ,

where the constant C(λ,Λ) depends only on λ,Λ. If d > 1, it satisfies an inequality∣∣∣∣∂Ga(x, t)
∂t

∣∣∣∣ ≤ Cε(d, λ,Λ)/[1 + t2−ε] ,

where ε can be any number, 0 < ε < 1, and Cε(d, λ,Λ) is a constant depending only
on ε, d, λ,Λ.
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Observe now that Corollary 4.1 almost obtains the diagonal case of the inequality
(1.10) for d = 2. In order to obtain this inequality for d = 2 we shall have to use
the methods of Section 3.

Lemma 4.1. For d = 2, there is a constant C(λ,Λ) depending only on λ,Λ such
that

0 ≤ Ga(x, t) ≤ C(λ,Λ)/[1 + t] , t > 0 .

Proof. We shall use the notation of Section 2, in particular the functions h, k
defined by (2.18). It is easy to see that

∫ ∞

0

h(ξ, η) cos[Im(η)t]d[Im(η)] =
1
t2

∫ ∞

0

∂2h(ξ, η)
∂[Im(η)]2

{1− cos[Im(η)t]}d[Im(η)].
(4.4)

We have now from (2.44), (2.45), (2.47) that∫ ∞

|e(ξ)|2

∣∣∣∣ ∂2h(ξ, η)
∂[Im(η)]2

∣∣∣∣ d[Im(η)] < 2
|e(ξ)|4 .

Hence if t > 1, then∫
[−π,π]d

∣∣∣∣∫ ∞

0

h(ξ, η) cos[Im(η)t]d[Im(η)]
∣∣∣∣ dξ

=
∫
|e(ξ)|<1/

√
t

+
∫
|e(ξ)|>1/

√
t

≤ C

t
+
2
t2

∫
|e(ξ)|>1/

√
t

|e(ξ)|−4 dξ

+
∫
|e(ξ)|>1/

√
t

dξ

∣∣∣∣∣ 1t2
∫ |e(ξ)|2

0

∂2h(ξ, η)
∂[Im(η)]2

{1− cos[Im(η)t]}d[Im(η)]
∣∣∣∣∣ ,

where we have used the fact that the LHS of (4.4) is bounded by a universal
constant. Evidently the first two terms on the RHS of the last inequality are
bounded by C/t, so we concentrate on the third term.
In view of (2.44) and the inequalities following it we have∫
|e(ξ)|>1/

√
t

dξ

∣∣∣∣∣ 1t2
∫ |e(ξ)|2

0

∂2h(ξ, η)
∂[Im(η)]2

{1− cos[Im(η)t]}d[Im(η)]
∣∣∣∣∣ ≤

Cλ,Λ

t
+ Cλ,Λ

∫
|e(ξ)|>1/

√
t

dξ
1
t2

∫ |e(ξ)|2

0

〈|ψ(ξ, η, ·)|2〉
|e(ξ)|4Im(η) {1− cos[Im(η)t]}d[Im(η)] ,

for some constant Cλ,Λ depending only on λ,Λ. Now for Re(η) > 0 and 2 < p < ∞
let hη,p(ξ), ξ ∈ [−π, π]2, be the function

hη,p(ξ) = |Im(η)|1/2 − 1/p

[
2∑

k=1

〈|ψk(ξ, η, ·)|2〉
]1/2

,

where ψk(ξ, η, ·) is given by (2.2). We shall show that hη,p ∈ Lp
w([−π, π]2) and there

is a constant Cp,λ,Λ depending only on p, λ,Λ such that

‖hη,p‖p,w ≤ Cp,λ,Λ, Re(η) > 0, 2 < p < ∞.(4.5)
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Observe now from (2.8),(2.26) that

1
t2

∫ |e(ξ)|2

0

〈|ψ(ξ, η, ·)|2〉
|e(ξ)|4Im(η) {1− cos[Im(η)t]}d[Im(η)]

≤ 1
t1+1/p

∫ |e(ξ)|2

0

hη,p(ξ)2

|e(ξ)|2Im(η)1−1/p

{1− cos[Im(η)t]}
[Im(η)t]1−1/p

d[Im(η)]

≤ C

t1+1/p

∫ |e(ξ)|2

0

hη,p(ξ)2

|e(ξ)|2Im(η)1−1/p
d[Im(η)],

for some universal constant C. Next we have that

(4.6)
∫
|e(ξ)|>1/

√
t

dξ
1

t1+1/p

∫ |e(ξ)|2

0

hη,p(ξ)2

|e(ξ|2Im(η)1−1/p
d[Im(η)] ≤

C

t1/p

∞∑
n=0

2−2n

∫ 22n+2/t

0

d[Im(η)]
Im(η)1−1/p

∫
|e(ξ)|<2n+1/

√
t

hη,p(ξ)2dξ .

From (3.30) it follows that∫
|e(ξ)|<2n+1/

√
t

hη,p(ξ)2dξ ≤ Cp‖hη,p‖2
p,w2

2n(1−2/p)/t1−2/p.

If we use the inequality (4.5) we see from the last inequality that the RHS of (4.6)
is bounded by Cp,λ,Λ/t for some constant Cp,λ,Λ depending only on p, λ,Λ. We
conclude that if (4.5) holds then∫

[−π,π]2
dξ

∣∣∣∣∫ ∞

0

h(ξ, η) cos[Im(η)t]d[Im(η)]
∣∣∣∣ ≤ Cλ,Λ/t, t > 0,

for some constant Cλ,Λ depending only on λ,Λ.
To prove (4.5) note that ψk(ξ, η, ·) is a sum of terms PTϕ,b,η(f) where Tϕ,b,η is

the operator (3.15), ϕ is an entry of the matrix a(·) and f is the Fourier transform
of ∇jGη(x), x ∈ Z

d, 1 ≤ j ≤ d. Hence

|f(ξ)| ≤ |e(ξ)|
|e(ξ)|2 + |Im(η)| ≤

1[
2
√|Im(η)|

]1−2/p

1
|e(ξ)|2/p , ξ ∈ [−π, π]2,

whence f ∈ Lp
w([−π, π]2) with norm bounded by a constant times |Im(η)|1/p−1/2.

The inequality (4.5) follows now from Lemma 3.5.
Next, observe that for finite N ,∫ N

0

k(ξ, η) sin[Im(η)t]d[Im(η)] =
−k(ξ,Re(η) + iN) cosNt

t

+
1
t

∫ N

0

∂k(ξ, η)
∂[Im(η)]

cos[Im(η)t]d[Im(η)],

where we have used the fact that k(ξ, η) = 0 if Im(η) = 0. Integrating again by
parts and letting N → ∞ we conclude that

lim
N→∞

∫ N

0

k(ξ, η) sin[Im(η)t]d[Im(η)] =
−1
t2

∫ ∞

0

∂2k(ξ, η)
∂[Im(η)]2

sin[Im(η)t]d[Im(η)].
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Since the estimates on ∂2k(ξ, η)/∂[Im(η)]2 are similar to those on ∂2h(ξ, η)/∂[Im(η)]2

we can argue as previously to conclude that∫
[−π,π]2

dξ lim
N→∞

∣∣∣∣∣
∫ N

0

k(ξ, η) sin[Im(η)t]d[Im(η)]

∣∣∣∣∣ ≤ Cλ,Λ/t, t > 0,

for some constant Cλ,Λ depending only on λ,Λ. �

We can similarly sharpen the result of Corollary 4.2 when d = 2.

Lemma 4.2. For d = 2, there is a constant C(λ,Λ) depending only on λ,Λ such
that ∣∣∣∣∂Ga(x, t)

∂t

∣∣∣∣ ≤ C(λ,Λ)/[1 + t2] , t > 0 .

Proof. Integrating by parts in (2.42) we have that

∂

∂t

∫ ∞

0

h(ξ, η) cos[Im(η)t]d[Im(η)] =

lim
N→∞

−1
t3

∫ N

0

{
3

∂2h(ξ, η)
∂[Im(η)]2

+ Im(η)
∂3h(ξ, η)
∂[Im(η)]3

}
{1− cos[Im(η)t]}d[Im(η)] .

We can compute ∂3h(ξ, η)/∂[Im(η)]3 from (2.44). It is clear we can derive similar
estimates on Im(η)∂3h(ξ, η)/∂[Im(η)]3 to the ones on ∂2h(ξ, η)/∂[Im(η)]2 which we
used in the proof of Lemma 4.1. We conclude therefore that there is a constant
Cλ,Λ depending only on λ,Λ such that∫

[−π,π]2
dξ

∣∣∣∣ ∂∂t
∫ ∞

0

h(ξ, η) cos[Im(η)t]d[Im(η)]
∣∣∣∣ ≤ Cλ,Λ/t

2 , t > 1 .

From (2.48) we have that

∂

∂t

−1
t

∫ ∞

0

∂k(ξ, η)
∂[Im(η)]

{1− cos[Im(η)t]}d[Im(η)]

=
1
t2

∫ ∞

0

[
∂

∂[Im(η)]

{
Im(η)

∂k(ξ, η)
∂[Im(η)]

}
+

∂k(ξ, η)
∂[Im(η)]

]
{1− cos[Im(η)t]}d[Im(η)]

= lim
N→∞

−1
t2

∫ N

0

[
∂

∂[Im(η)]

{
Im(η)

∂k(ξ, η)
∂[Im(η)]

}
+

∂k(ξ, η)
∂[Im(η)]

]
cos[Im(η)t]d[Im(η)],

where we have used the fact that k(ξ, η) = 0 if η > 0 is real. Integrating now by
parts we conclude that

∂

∂t

−1
t

∫ ∞

0

∂k(ξ, η)
∂[Im(η)]

{1− cos[Im(η)t]}d[Im(η)] =

lim
N→∞

1
t3

∫ N

0

{
3

∂2k(ξ, η)
∂[Im(η)]2

+ Im(η)
∂3k(ξ, η)
∂[Im(η)]3

}
sin[Im(η)t]d[Im(η)] .

We can then argue just as for the integral in h that∫
[−π,π]2

dξ

∣∣∣∣ ∂∂t −1t
∫ ∞

0

∂k(ξ, η)
∂[Im(η)]

{1− cos[Im(η)t]}d[Im(η)]
∣∣∣∣ ≤ Cλ,Λ/t

2, t > 1 ,

for a constant Cλ,Λ depending only on λ,Λ. �
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So far we have not obtained diagonal estimates, even in dimension 1, on spatial
derivatives of Ga(x, t), which correspond to the estimates of Theorem 1.4. Next we
shall prove these estimates for the case d = 2. The method readily extends to the
case d = 1.

Lemma 4.3. For d = 2 there is a constant C(λ,Λ) depending only on λ,Λ such
that

|∇iGa(x, t)| ≤ C(λ,Λ)/[1 + t3/2] .

Let δ satisfy 0 ≤ δ < 1. Then there is a constant C(δ, λ,Λ) depending only on
δ, λ,Λ such that

|∇i∇jGa(x, t)| ≤ C(δ, λ,Λ)/[1 + t(3+δ)/2] .

Proof. If we use the fact that for 0 ≤ δ < 1, |ej(−ξ)| ≤ 21−δ|ej(−ξ)|δ, then we see
from the proof of Lemma 4.1 that it is sufficient to show that for t > 1,

∫
|e(ξ)|>1/

√
t

dξ|e(−ξ)|1+δ

∣∣∣∣∣ 1t2
∫ |e(ξ)|2

0

∂2h(ξ, η)
∂[Im(η)]2

{1− cos[Im(η)t]}d[Im(η)]
∣∣∣∣∣ ≤ C

t(3+δ)/2
.

(4.7)

This follows by the argument of Lemma 4.1 if we can choose hη,p ∈ Lp
w with

p < 2/(1+δ). We cannot do this since hη,p ∈ Lp
w only for p > 2. To get around this

we can argue similarly to Lemma 3.6 in the proof that ‖∂2qk,k′/∂ξi∂ξj‖ ∈ L
3/2
w .

For Re(η) > 0 and 2 < p < ∞, let gη,p(ξ), ξ ∈ [−π, π]2 be the function

gη,p(ξ) = |Im(η)|1−1/p

[ 2∑
k,k′=1

| 〈ψk(−ξ, η, ·)[∂ψk′(ξ, η, ·)/∂η]〉 |
]1/2

.

Then from Section 3 we see that gη,p ∈ Lp
w([−π, π]2) and there is a constant Cp,λ,Λ

depending only on p, λ,Λ such that

‖gη,p‖p,w ≤ Cp,λ,Λ, Re(η) > 0, 2 < p < ∞ .

Observe now that the contribution of the last term on the RHS of (2.44) to the
integral on the LHS of (4.7) is bounded by a constant times∫

|e(ξ)|>1/
√
t

dξ
1
t2

∫ |e(ξ)|2

0

gη,p(ξ)2

|e(ξ)|1−δIm(η)2−2/p
d[Im(η)] .

Arguing as in Lemma 4.1 we see that this is bounded by the RHS of (4.7) provided
δ < 1. Note that as δ → 1 the estimate diverges. Since we can make similar
estimates for the other terms on the RHS of (2.44), the result follows. �

We wish to extend Lemmas 4.1, 4.2, 4.3 to d ≥ 3. To do this we need the
following lemma.

Lemma 4.4. The functions h(ξ, η), k(ξ, η), Re(η) > 0, have the property that

∂mh(ξ, η)/∂[Im(η)]m = 0, m odd, η > 0 real,
∂mk(ξ, η)/∂[Im(η)]m = 0, m even, η > 0 real.
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Proof. Note that we can see ∂h(ξ, η)/∂[Im(η)] = 0 for real η > 0 from (2.37) if we
use (2.15) and the fact that ψ(−ξ, η, ·) = ψ(ξ, η̄, ·). More generally the result follows
from the fact that the function g(η) = h(ξ, η) + ik(ξ, η) is analytic for Re(η) > 0
and real when η is real. In fact from the Cauchy-Riemann equations we have that

∂mg(η)
∂ηm

= (−i)m
[
∂mh(ξ, η)
∂[Im(η)]m

+ i
∂mk(ξ, η)
∂[Im(η)]m

]
, m = 0, 1, 2, . . . . .

Evidently the LHS of this identity is real for all η > 0 real. �

Lemma 4.5. For d ≥ 3 there is a constant C(λ,Λ, d) depending only on λ,Λ, d
such that

0 ≤ Ga(x, t) ≤ C(λ,Λ, d)/[1 + td/2], t > 0.

Proof. From Lemma 4.4 we see that∫ ∞

0

h(ξ, η) cos[Im(η)t]d[Im(η)] ,(4.8)

is, for d odd, one of the integrals,

± 1
t(d+1)/2

∫ ∞

0

∂(d+1)/2h(ξ, η)
∂[Im(η)](d+1)/2

sin[Im(η)t]d[Im(η)](4.9)

± 1
t(d+1)/2

∫ ∞

0

∂(d+1)/2h(ξ, η)
∂[Im(η)](d+1)/2

{1− cos[Im(η)t]}d[Im(η)].

For d even it is one of the integrals,

± 1
td/2+1

∫ ∞

0

∂d/2+1h(ξ, η)
∂[Im(η)]d/2+1

sin[Im(η)t]d[Im(η)](4.10)

± 1
td/2+1

∫ ∞

0

∂d/2+1h(ξ, η)
∂[Im(η)]d/2+1

{1− cos[Im(η)t]}d[Im(η)].

We can see from (2.44) that for m = 1, 2, . . . , the derivative ∂mh(ξ, η)/∂[Im(η)]m

is bounded in absolute value by a sum of terms

m−1∏
r=0

〈∣∣∣∂rψ(±ξ,η,·)
∂ηr

∣∣∣2〉αr/2

|η + e(ξ)q(ξ, η)e(−ξ)|m+1−∑m−1
r=1 rαr

,(4.11)

where the αr, r = 0, . . . ,m− 1, are nonnegative integers satisfying the inequality
m−1∑
r=0

(2r + 1)αr ≤ 2m.(4.12)

By differentiating (2.46) sufficiently often and using Cauchy-Schwarz we obtain the
inequality, 〈∣∣∣∂rψ(±ξ, η, ·)

∂ηr

∣∣∣2〉 ≤ (r!)2

|η|2r
〈|ψ(±ξ, η, ·)|2〉 , r = 0, 1, 2, . . . .

Observe next that (4.12) implies that

m+ 1−
m−1∑
r=1

rαr >
1
2

m−1∑
r=0

αr.
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It follows therefore from (2.15) that there is a constant Cm depending only on m
such that (4.11) is bounded by Cm/|Im(η)|m+1. Hence,∫ ∞

|e(ξ)|2

∣∣∣∣ ∂mh(ξ, η)
∂[Im(η)]m

∣∣∣∣ d[Im(η)] ≤ Cm

|e(ξ)|2m ,

for some constant Cm depending only on m.
Let us assume now that d is odd and that the first integral in (4.9) is the correct

representation of (4.8). Then, following the argument of Lemma 4.1, we have that∫
[−π,π]d

∣∣∣∣∫ ∞

0

h(ξ, η) cos[Im(η)t]d[Im(η)]
∣∣∣∣ dξ

=
∫
|e(ξ)|<1/

√
t

+
∫
|e(ξ)|>1/

√
t

≤ Cd,λ,Λ

td/2
+

Cd

t(d+1)/2

∫
|e(ξ)|>1/

√
t

|e(ξ)|−d−1dξ

+
∫
|e(ξ)|>1/

√
t

dξ

∣∣∣∣∣ 1
t(d+1)/2

∫ |e(ξ)|2

0

∂(d+1)/2h(ξ, η)
∂[Im(η)](d+1)/2

sin[Im(η)t]d[Im(η)]

∣∣∣∣∣ .
The first two terms on the RHS of the last inequality are bounded by Cd,λ,Λ/t

d/2

for some constant Cd,λ,Λ depending only on d, λ,Λ. We are left therefore to deal
with the final term.
Consider the simplest case of (4.11) when αr = 0, r > 0 and α0 ≤ 2m. Then

(4.11) is bounded by 〈|ψ(±ξ, η, ·)|2〉α0/2
/λ2(m+1)|e(ξ)|2(m+1).

We shall show that

∫
|e(ξ)|>1/

√
t

dξ

∣∣∣∣∣ 1
t(d+1)/2

∫ |e(ξ)|2

0

〈|ψ(ξ, η, ·)|2〉α0/2

|e(ξ)|d+3
sin[Im(η)t]d[Im(η)]

∣∣∣∣∣ ≤ Cd,λ,Λ/t
d/2,

(4.13)

provided α0 ≤ d + 1. To do this we define for d ≤ p < ∞ the function hη,p(ξ),
ξ ∈ [−π, π]d, by

hη,p(ξ) = |[Im(η)]|1/2 − d/2p

[ d∑
k=1

〈|ψk(ξ, η, ·)|2〉 ]1/2

,(4.14)

where ψk(ξ, η, ·) is given by (2.2). We can see similarly to the argument of Lemma 4.1
that hη,p ∈ Lp

w([−π, π]d) and that there is a constant Cp,λ,Λ,d depending on p, λ,Λ, d
such that

‖hη,p‖p,w ≤ Cp,λ,Λ,d, Re(η) > 0, d ≤ p < ∞ .

We have now that∫
|e(ξ)|>1/

√
t

dξ

∣∣∣∣∣ 1
t(d+1)/2

∫ |e(ξ)|2

0

〈|ψ(ξ, η, ·)|2〉α0/2

|e(ξ)|d+3
sin[Im(η)t]d[Im(η)]

∣∣∣∣∣
≤

∫
|e(ξ)|>1/

√
t

dξ
1

t(d+1)/2

∫ |e(ξ)|2

0

hη,p(ξ)α0

|e(ξ)|d+3−α0

d[Im(η)]
[Im(η)]α0(1/2 − d/2p)

.



200 Joseph G. Conlon and Ali Naddaf

Since α0 ≤ d+1 we can find p > d+1 such that α0(1/2− d/2p) < 1. The proof of
the inequality (4.13) follows now exactly the same lines as in (4.6).
Next we consider the general case of (4.11). To do this we define for r =

0, 1, 2, . . . , Re(η) > 0 and p satisfying d/(2r + 1) ≤ p < ∞, functions hη,p,r(ξ)
by

hη,p,r(ξ) = |Im(η)|r+1/2 − d/2p

[ d∑
k=1

〈∣∣∣∂rψk(ξ, η, ·)
∂ηr

∣∣∣2〉]1/2

.

Observe that hη,p,0(ξ) is the function (4.14). We shall show that for p > max[2, d
2r+1 ],

the function hη,p,r ∈ Lp
w([−π, π]d) and there is a constant Cp,r,λ,Λ,d depending only

on p, r, λ,Λ, d such that

‖hη,p,r‖p,w ≤ Cp,r,λ,Λ,d, Re(η) > 0, max[2, d/(2r + 1)] < p < ∞.(4.15)

To prove this note that ∂rψk(ξ, η, ·)/∂ηr is a sum of terms PTn,ϕ,b,η (A1, . . . , An)(ξ, ·),
where Tn,ϕ,b,η is the operator (3.33) and ϕ is an entry of the matrix a(·). Further-
more, there are positive integers r1, . . . , rn such that r1 + · · ·+ rn = r + 1 and

‖A1(ξ)‖ ≤ |e(ξ)|
/
[|e(ξ)|2 + |Im(η)|]r1 ,

‖Aj(ξ)‖ ≤ |e(ξ)|2
/
[|e(ξ)|2 + |Im(η)|]rj+1, 2 ≤ j ≤ n.

Suppose now p1, . . . , pn are positive numbers satisfying

p1 ≥ d

2r1 − 1 , pj ≥ d

2rj
, 2 ≤ j ≤ n.(4.16)

If also pj > 1, j = 1, . . . , n, then we see that Aj ∈ L
pj
w ([−π, π]d), 1 ≤ j ≤ n, and

‖A1‖p1,w ≤ Cd,r/|Im(η)|r1−1/2−d/2p1 ,

‖Aj‖pj ,w ≤ Cd,r/|Im(η)|rj−d/2pj , 2 ≤ j ≤ n,

where Cd,r is a constant depending only on d, r. Note now that since

2r1 − 1
d

+
n∑

j=2

2rj
d
=
2r + 1

d
,

if p satisfies p > max[2, d/(2r + 1)], it is possible to choose p1, . . . , pn satisfying
pj > 2, 1 ≤ j ≤ n, the inequalities (4.16) and the identity

1
p1
+ · · ·+ 1

pn
=
1
p
.

The inequality (4.15) follows now from Lemma 3.7.
For the general case of (4.11) we need to show that

(4.17)
∫
|e(ξ)|>1/

√
t

dξ
1

t(d+1)/2

∫ |e(ξ)|2

0

∏(d−1)/2
r=0 hη,qr,r(ξ)

αr

|e(ξ)|d+3−∑ (d−1)/2
r=0 (2r+1)αr

d[Im(η)]

[Im(η)]
∑ (d−1)/2

r=0 (r+1/2−d/2qr)αr

≤ Cd,λ,Λ

td/2
,

where the qr, r = 0, . . . , (d− 1)/2 are restricted to satisfy
qr > max[2, d/(2r + 1)], r = 0, . . . , (d− 1)/2.(4.18)
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Define now q by

1
q
=

(d−1)/2∑
r=0

αr
qr

.(4.19)

It follows then from (4.12) that

(d−1)/2∑
r=0

(
r +

1
2
− d

2qr

)
αr =

1
2

[
d′ + 1− d

q

]
,

where d′ is an integer satisfying −1 ≤ d′ ≤ d. Observe that the RHS of the last
inequality is strictly less than 1 if d′ ≤ 1 or d′ > 1, q < d/(d′ − 1). Suppose now
qr, r = 0, . . . , (d − 1)/2 and q satisfy (4.18), (4.19), with q > 1. Then it follows
from (4.15) that

(d−1)/2∏
r=0

hη,qr,r(ξ)
αr ∈ Lq

w([−π, π]d) ,

with norm bounded by a constant depending only on λ,Λ, d q, qr, r = 0, . . . (d−1)/2.
If we can also arrange that for d′ > 1, q satisfies q < d/(d′−1) then we can see that
(4.17) holds by arguing just as we did in Lemma 4.1. Evidently it is possible to
choose the qr, r = 0, . . . , (d−1)/2, such that qr > d/(2r+1) and 1 < q < d/(d′−1).
It is not possible, however, to satisfy the condition qr > 2, r = 0, . . . , (d − 1)/2 in
general.
To deal with this problem we need to use a sharper estimate on the derivative

∂mh(ξ, η)/∂[Im(η)]m than sums of terms of the form (4.11). For r, j satisfying
0 ≤ j ≤ r, 0 ≤ r ≤ m−1, let αr,j be nonnegative integers satisfying the inequality

m−1∑
r=0

r∑
j=0

(1 + r + j)αr,j ≤ m.(4.20)

If we define αr for 0 ≤ r ≤ m− 1, by

αr =
r∑

j=0

αr,j +
m−1∑
j=r

αj,r ,(4.21)

then we see from (4.20) that αr defined by (4.21) satisfies (4.12). It is also easy to
see that ∂mh(ξ, η)/∂[Im(η)]m is bounded in absolute value by a sum of terms,∏m−1

r=0

∏r
j=0

∣∣∣〈∂rψ(±ξ,η,·)
∂ηr

∂jψ(±ξ,η,·)
∂ηj

〉∣∣∣αr,j

|η + e(ξ) q(ξ, η)e(−ξ)|m+1−∑m−1
r=1 rαr

,(4.22)

where the αr,j satisfy (4.20) and the αr are defined by (4.21). Evidently the Schwarz
inequality implies that (4.22) is bounded by (4.11). We define for r, j = 0, 1, 2, . . . ,
Re(η) > 0 and p satisfying d/(r + j + 1) ≤ p < ∞, functions hη,p,r,j(ξ) by

hη,p,r,j(ξ) = |Im(η)|(r+j+1−d/p)/2

[ d∑
k,k′=1

∣∣∣〈∂rψk(ξ, η, ·)
∂ηr

∂jψk′(ξ, η, ·)
∂ηj

〉∣∣∣]1/2

.
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We shall show that for p > max[2, d/(r+j+1)], the function hη,p,r,j ∈ Lp
w([−π, π]d)

and there is a constant Cp,r,j,λ,Λ,d depending only on p, r, j, λ,Λ, d such that

‖hη,p,r,j‖p,w ≤ Cp,r,j,λ,Λ,d, Re(η) > 0, max[2, d/(r + j + 1)] < p < ∞.(4.23)

In fact it is easy to see that (4.23) follows by arguing exactly as we did in Lemma 3.9
for the case d/2 ≤ |α| < d.
On replacing (4.11) by (4.22) the inequality (4.17) gets replaced by

(4.24)
∫
|e(ξ)|>1/

√
t

dξ
1

t(d+1)/2

∫ |e(ξ)|2

0

∏(d−1)/2
r=0

∏r
j=0 hη,qr,j ,r,j(ξ)

2αr,j

|e(ξ)|d+3−∑ (d−1)/2
r=0 (2r+1)αr

d[Im(η)]

[Im(η)]
∑ (d−1)/2

r=0
∑ r

j=0(r+j+1−d/qr,j)αr,j

≤ Cd,λ,Λ

td/2
,

where the αr,j , αr satisfy (4.20), (4.21). Let q be defined

1
q
=

(d−1)/2∑
r=0

r∑
j=0

2αr,j
qr,j

.(4.25)

Then from (4.25) it follows that if qr,j > max[2, d/(r+ j+1)], 0 ≤ j ≤ r, 0 ≤ r ≤
(d− 1)/2, and q > 1 then the function

(d−1)/2∏
r=0

r∏
j=0

hη,qr,j ,r,j(ξ)
2αr,j ∈ Lq

w([−π, π]d) ,

with norm bounded by a constant depending only on λ,Λ, d and the qr,j . We have
now from (4.20), (4.25) that

(d−1)/2∑
r=0

r∑
j=0

(r + j + 1− d/qr,j)αr,j =
(d′ + 1)
2

− d

2q
,

where d′ is an integer satisfying −1 ≤ d′ ≤ d. As before, the RHS of the last
inequality is strictly less than 1 if d′ ≤ 1 or d′ > 1, q < d/(d′ − 1). Hence
if q < d/(d′ − 1) the power of Im(η) on the LHS of (4.24) is strictly less than
1 and hence integrable. Finally, observe that in (4.22) one has αr,j = 0 unless
r + j ≤ m− 1 = (d− 1)/2. Note that if r + j < (d− 1)/2 then d/(r + j + 1) > 2.
On the other hand if αr,j 
= 0 for some (r, j) with r + j = m− 1 then αr,j = 1 and
αr′,j′ = 0 for (r′, j′) 
= (r, j). In that case d′ = d and (4.25) becomes 1/q = 2/qr,j ,
whence the condition q < d/(d − 1) becomes qr,j < 2d/(d − 1), so we may still
choose qr,j > 2. Thus (4.24) holds on appropriate choice of the qr,j .
The proof of the lemma for d odd is complete if we make the observation that

from Lemma 4.4 one has
1
t

∫ ∞

0

∂k(ξ, η)
∂[Im(η)]

{1− cos[Im(η)t]}d[Im(η)] =

± 1
t(d+1)/2

∫ ∞

0

∂(d+1)/2k(ξ, η)
∂[Im(η)](d+1)/2

sin[Im(η)t]d[Im(η)]

± 1
t(d+1)/2

∫ ∞

0

∂(d+1)/2k(ξ, η)
∂[Im(η)](d+1)/2

{1− cos[Im(η)t]}d[Im(η)],
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depending on the value of d. Since the estimates on ∂mk(ξ, η)/∂[Im(η)]m are the
same as those on ∂mh(ξ, η)/∂[Im(η)]m the argument proceeds as before. The case
for d even is similar. �

Lemma 4.6. For d ≥ 3 there is a constant C(λ,Λ, d) depending only on λ,Λ, d
such that ∣∣∣∣∂Ga(x, t)

∂t

∣∣∣∣ ≤ C(λ,Λ, d)/[1 + t1+d/2], t > 0.

Proof. Suppose d is odd and the first integral in (4.9) is the appropriate represen-
tation for this value of d. Then we have that

∂

∂t

∫ ∞

0

h(ξ, η) cos[Im(η)t]d[Im(η)]

is a sum of the terms,

± (d+ 1)
2t(d+3)/2

∫ ∞

0

∂(d+1)/2h(ξ, η)
∂[Im(η)](d+1)/2

sin[Im(η)t]d[Im(η)],

± 1
t(d+1)/2

∫ ∞

0

∂(d+1)/2h(ξ, η)
∂[Im(η)](d+1)/2

Im(η) cos[Im(η)t]d[Im(η)].

Evidently the first term is bounded by C(λ,Λ, d)/[1 + t1+d/2] by Lemma 4.5. On
integration by parts we can write the second term as a sum of two integrals,

± 1
t(d+3)/2

∫ ∞

0

∂(d+1)/2h(ξ, η)
∂[Im(η)](d+1)/2

sin[Im(η)t]d[Im(η)],

± 1
t(d+3)/2

∫ ∞

0

∂(d+3)/2h(ξ, η)
∂[Im(η)](d+3)/2

Im(η) sin[Im(η)t]d[Im(η)].

Again Lemma 4.5 implies that the first integral is bounded by C(λ,Λ, d)/[1+t1+d/2],
so we are left to deal with the second integral. Using the method of Lemma 4.1 we
see that we are left to deal with∫

|e(ξ)|>1/
√
t

dξ

∣∣∣∣∣ 1
t(d+3)/2

∫ |e(ξ)|2

0

∂(d+3)/2h(ξ, η)
∂[Im(η)](d+3)/2

Im(η) sin[Im(η)t]d[Im(η)]

∣∣∣∣∣ .
Arguing exactly as in Lemma 4.5 we see this integral is bounded by C(λ,Λ, d)/[1+
t1+d/2]. We can similarly bound the corresponding integral in k(ξ, η) and hence the
result follows. �

Lemma 4.7. For d ≥ 3 there is a constant C(λ,Λ, d) depending only on λ,Λ, d
such that

|∇iGa(x, t)| ≤ C(λ,Λ, d)/[1 + t(d+1)/2] .

Let δ satisfy 0 ≤ δ < 1. Then there is a constant C(δ, λ,Λ, d) depending only on
δ, λ,Λ, d such that

|∇i∇jGa(x, t)| ≤ C(δ, λ,Λ, d)/[1 + t(d+1+δ)/2] .

Proof. Same as for Lemma 4.6. �
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5. Proof of Theorem 1.4—Off Diagonal case

Here we shall complete the proof of Theorem 1.4. Thus we need to establish the
exponential falloff in (1.10) and in the inequalities of Theorem 1.4. Evidently (1.10)
implies that the periodic function Ĝa(ξ, t), ξ ∈ R

d, can be analytically continued
to C

d. Our goal will be to establish analyticity properties of Ĝa(ξ, t) and derive
from them the inequality (1.10) and Theorem 1.4.

Lemma 5.1. Suppose ε satisfies 0 < ε < 1. Then the periodic function Ĝa(ξ, t), ξ ∈
R
d, can be analytically continued to the strip {ξ ∈ C

d : |Im(ξ)| < ε}. There are
constants C1(λ,Λ, d), C2(λ,Λ, d) depending only on λ,Λ, d such that

|Ĝa(ξ, t)| ≤ C1(λ,Λ, d) exp[C2(λ,Λ, d)ε2t], |Im(ξ)| < ε, t > 0 .

Proof. We have already seen in Section 2 that the matrix q(ξ, η) of (2.3) is defined
for all ξ ∈ R

d, Re(η) > 0, is continuous in (ξ, η) and analytic in η for fixed ξ. We
shall show now that for any δ > 0 there exists a constant C(λ,Λ, d, δ) > 0 depending
only on λ,Λ, d, δ such that if Re(η) > C(λ,Λ, d, δ)ε2 then q(ξ, η), ξ ∈ R

d, can be
analytically continued to the strip {ξ ∈ C

d : |Im(ξ)| < ε} and
‖q(ξ, η)− q(Re(ξ), η)‖ < δ, |Im(ξ)| < ε, Re(η) > C(λ,Λ, d, δ)ε2 .(5.1)

In view of (3.6), (3.7) this will follow if we can show that for any δ > 0 there exists
a constant C(d, δ) > 0 depending only on d, δ, such that if Re(η) > C(d, δ)ε2,
then the operator Tk,k′,η,ξ of (3.4), which is bounded on L2(Ω) for ξ ∈ R

d, extends
analytically to a bounded operator on L2(Ω) for |Im(ξ)| < ε and

‖Tk,k′,η,ξ − Tk,k′,η,Re(ξ)‖ < δ, |Im(ξ)| < ε, Re(η) > C(d, δ)ε2.(5.2)

To prove (5.2) observe that the Green’s function Gη(x) satisfies an inequality

|∇∗
k∇k′Gη(x)| ≤

Cd exp
[− g(Re(η))|x|]
[1 + |x|]d , x ∈ Z

d,

where g(z), z > 0, is the function

g(z) =

{ cd
√
z, 0 < z < 1,

cd log(1 + z), z ≥ 1.
Here Cd, cd are positive constants depending only on d. It follows in particular
that there is a constant C1(d), depending only on d, such that if 0 < ε < 1 and
Re(η) > C1(d)ε2, then the function ∇∗

k∇k′Gη(x)eix·ξ decreases exponentially in x
as |x| → ∞, provided |Im(ξ)| < ε. It follows from (3.4) that if Re(η) > C1(d)ε2 then
the bounded operators Tk,k′,η,ξ on L2(Ω), ξ ∈ R

d, extend analytically to bounded
operators on L2(Ω) provided ξ ∈ C

d satisfies |Im(ξ)| < ε.
To prove (5.2) we use Bochner’s Theorem [9]. Thus for any ϕ ∈ L2(Ω) there is

a positive finite measure dµϕ on [−π, π]d such that〈
ϕ(τx·)ϕ(τy·)

〉
=

∫
[−π,π]d

ei(x−y)·ζdµϕ(ζ).
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Hence,

‖Tk,k′,η,ξϕ−Tk,k′,η,Re(ξ)ϕ‖2 =
∫

[−π,π]d
dµϕ(ζ)∣∣∣ ∑

x∈Zd

∇∗
k∇k′Gη(x)

[
exp{ix · (ζ + ξ)} − exp{ix · (ζ +Re(ξ))}

]∣∣∣2
=

∫
[−π,π]d

dµϕ(ζ)
∣∣∣ek(ζ + ξ)ek′(−ζ − ξ)Ĝη(ζ + ξ)

− ek(ζ +Re(ξ))ek′(−ζ − Re(ξ))Ĝη(ζ +Re(ξ))
∣∣∣2 .

We have now that

ek(ζ + ξ)ek′(−ζ − ξ)Ĝη(ζ + ξ) =
ek(ζ + ξ)ek′(−ζ − ξ)∑d

j=1 ej(ζ + ξ)ej(−ζ − ξ) + η
.

Observe that

|ek(ζ + ξ)− ek(ζ +Re(ξ))| ≤ eε − 1 < 2ε, ζ ∈ [−π, π]d, |Imξ| < ε < 1.

Hence if C1(d) > 24d and Re(η) > C1(d)ε2 then∣∣∣∣ d∑
j=1

ej(ζ + ξ)ej(−ζ − ξ) + η

∣∣∣∣ ≥ 1
2

∣∣∣∣ d∑
j=1

ej(ζ +Re(ξ))ej(−ζ − Re(ξ)) + η

∣∣∣∣(5.3)

≥ 1
2
C1(d)ε2, ζ ∈ [−π, π]d, |Imξ| < ε.

Similarly we see that∣∣∣ek(ζ + ξ)ek′(−ζ − ξ)− ek(ζ +Re(ξ))ek′(−ζ − Re(ξ))
∣∣∣

≤ 1000ε2 + 100ε
[ d∑
j=1

ej(ζ +Re(ξ))ej(−ζ − Re(ξ))
]1/2

, ζ ∈ [−π, π]d, |Imξ| < ε.

We conclude therefore that the integrand in the dµϕ integral is bounded as∣∣∣ek(ζ + ξ)ek′(−ζ − ξ)Ĝη(ζ + ξ)− ek(ζ +Re(ξ))ek′(−ζ − Re(ξ))Ĝη(ζ +Re(ξ))
∣∣∣

≤
1000ε2 + 100ε

[∑d
j=1 ej(ζ +Re(ξ))ej(−ζ − Re(ξ))

]1/2

|∑d
j=1 ej(ζ + ξ)ej(−ζ − ξ) + η|

+
|ek(ζ +Re(ξ))||ek′(−ζ − Re(ξ))|

[
4dε2 + 2ε

√
d
{∑d

j=1 |ej(ζ +Re(ξ))|2
}1/2

]
|∑d

j=1 ej(ζ + ξ)ej(−ζ − ξ) + η||∑d
j=1 ej(ζ +Re(ξ))ej(−ζ − Re(ξ)) + η|

.

We can see from (5.3) that the expression on the RHS of the last inequality is
bounded by

2000
C1(d)

+
200√
C1(d)

+
4d

C1(d)
+

2
√
d√

C1(d)
.

Evidently this last expression can be made smaller than δ by choosing C1(d) suffi-
ciently large, whence (5.2) follows.
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We have shown that (5.1) holds. Next consider the function h(ξ, η) defined by
(2.18) for ξ ∈ R

d, Re(η) > 0. Furthermore, (2.19) holds. We show now that there
is a constant Cλ,Λ,d depending only on λ,Λ, d such that if Re(η) > Cλ,Λ,dε

2 then
h(ξ, η) may be analytically continued to the strip {ξ ∈ C

d : |Im(ξ)| < ε} and∫ ∞

0

|h(ξ, η)|d[Im(η)] ≤ Cλ,Λ,d , |Im(ξ)| < ε .(5.4)

To do this we need to rewrite the identities (2.14), (2.15) in such a way that they
extend analytically in ξ from ξ ∈ R

d to the strip |Im(ξ)| < ε. First consider (2.14).
We define a function Aj(ξ, η, ω) for ξ ∈ R

d, Re(η) > 0, ω ∈ Ω, by

Aj(ξ, η, ·) = ej(−ξ) + e−iej ·ξ[∂j + ej(ξ)]
1
2
{ψ(ξ, η, ·) + ψ(ξ, η̄, ·)} ,

where ψ(ξ, η, ·) is defined just before (2.26). It is easy to see that the complex
conjugate Aj(ξ, η, ·) = Aj(−ξ, η, ·). We conclude from this and (2.14), (2.26) that

Re[e(ξ)q(ξ, η)e(−ξ)] =
〈 d∑

i,j=1

ai,j(·)Ai(−ξ, η, ·)Aj(ξ, η, ·)
〉

(5.5)

+
Re(η)
4

〈[ψ(ξ, η, ·) + ψ(ξ, η̄, ·)] [ψ(−ξ, η, ·) + ψ(−ξ, η̄, ·)]〉

+
1
4

〈
[ψ(−ξ, η̄.·)− ψ(−ξ, η, ·)] [Lξ + Re(η)] [ψ(ξ, η, ·)− ψ(ξ, η̄, ·)]

〉
.

Similarly we have from (2.15) that

Im[e(ξ)q(ξ, η)e(−ξ)] =
1
2
Im(η) 〈ψ(ξ, η, ·)ψ(−ξ, η̄, ·)〉(5.6)

+
1
2
Im(η) 〈ψ(−ξ, η, ·)ψ(ξ, η̄, ·)〉 .

We write now h(ξ, η) as

h(ξ, η) =
Re(η) + Re[e(ξ)q(ξ, η)e(−ξ)]

[Re(η) + Re[e(ξ)q(ξ, η)e(−ξ)]]2 + [Im(η) + Im[e(ξ)q(ξ, η)e(−ξ)]]2
,

(5.7)

and use the expressions (5.5), (5.6) to analytically continue h(ξ, η), ξ ∈ R
d, to

complex ξ ∈ C
d. Note now that it follows from our proof of (5.1) that for any δ > 0

there exists a constant C(λ,Λ, d, δ) > 0 depending only on λ,Λ, d, δ such that if
Re(η) > C(λ,Λ, d, δ)ε2 then the function ψk(ξ, η, ·) of (2.2) from R

d to L2(Ω) can
be analytically continued to the strip {ξ ∈ R

d : |Im(ξ)| < ε} and

〈∣∣∣e−iej ·ξ[∂j + ej(ξ)]ψk(ξ, η, ·)− e−iej ·Re(ξ)[∂j + ej(Re(ξ))]ψk(Re(ξ), η, ·)
∣∣∣2〉 ≤ δ,

(5.8)

|η| 〈|ψk(ξ, η, ·)− ψk(Re(ξ), η, ·)|2
〉 ≤ δ,

1 ≤ j, k ≤ d, |Im(ξ)| < ε, Re(η) > C(λ,Λ, d, δ)ε2.
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It is easy to see from this and (5.5), (5.6), (5.7) that there is a constant C(λ,Λ, d)
depending only on λ,Λ, d such that

|h(ξ, η)| ≤ 2min
[

1
Re(η) + λ|e(Re(ξ))|2 ,

Re(η) + 4Λ|e(Re(ξ))|2
[Im(η)]2

]
,(5.9)

|Im(ξ)| < ε, Re(η) > C(λ,Λ, d, δ)ε2.

It is clear now from this last inequality that h(ξ, η) as defined by (5.7), (5.6), (5.5)
can be analytically continued to |Im(ξ)| < ε and that (5.4) holds.
Next consider the function k(ξ, η) defined by (2.18). We shall show that there is

a constant Cλ,Λ,d depending only on λ,Λ, d such that the function ∂k(ξ, η)/∂[Im(ξ)]
can be analytically continued to the strip |Im(ξ)| < ε, provided Re(η) > Cλ,Λ,dε

2.
Furthermore there is the inequality

|∂k(ξ, η)/∂[Im(η)]| ≤ 2
|Im(η)|2 , |Im(ξ)| < ε, Re(η) > Cλ,Λ,dε

2.(5.10)

To see this we use the identity,
∂k(ξ, η)
∂[Im(η)]

= Re
[
1+ < ψ(−ξ, η, ·)ψ(ξ, η, ·) >
[η + e(ξ)q(ξ, η)e(−ξ)]2

]
, ξ ∈ R

d .

The inequality (5.10) follows now from the proof of (2.27) and the inequalities (5.8).
The proof of the lemma is completed by using the representation (2.17) with

Re(η) = Cλ,Λ,dε
2 and the inequalities (5.4), (5.10). �

Corollary 5.1. There are constants C1(d, λ,Λ) and C2(d, λ,Λ) > 0 depending only
on d, λ,Λ such that

0 ≤ Ga(x, t) ≤ C1(d, λ,Λ) exp
[−C2(d, λ,Λ)min{|x|, |x|2/t}] , x ∈ Z

d, t > 0.

Proof. Follows from Lemma 5.1 on writing

Ga(x, t) =
1

(2π)d

∫
[−π,π]d

Ĝa(ξ, t)e−iξ·xd[Re(ξ)] ,

and deforming the contour of integration to ξ ∈ C
d with |Im(ξ)| = min[1, |x|/2C2t],

where C2 = C2(λ,Λ, d) is the constant in the statement of Lemma 5.1. �

Next we extend Lemma 2.3 to ξ ∈ C
d.

Lemma 5.2. Let ε satisfy 0 ≤ ε < 1 and Ĝa(ξ, t), ξ ∈ C
d, |Im(ξ)| < ε the

function of Lemma 5.1. Then for any δ, 0 < δ < 1, there is a constant C1(λ,Λ, d, δ)
depending only λ,Λ, d, δ and a constant C2(λ,Λ, d) depending only on λ,Λ, d such
that

|Ĝa(ξ, t)| ≤ C1(λ,Λ, d, δ)
[1 + |e(Re(ξ))|2t]δ , exp[C2(λ,Λ, d)ε2t], |Im(ξ)| < ε, t > 0.

Proof. Observe that one may choose Cλ,Λ,d sufficiently large, depending only on
λ,Λ, d such that both (5.10) holds and the inequality

|∂k(ξ, η)/∂[Im(η)]| ≤ 2(1 + Λ)
λ2|e(Re(ξ))|2|η| , |Im(ξ)| < ε, Re(η) > Cλ,Λ,dε

2 .(5.11)

The inequality (5.11) is analogous to (2.30) and is proved using (5.8), We con-
clude then from (5.10), (5.8) just as we did in Lemma 2.3 that the LHS of (2.28)
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is bounded by C1(λ,Λ, d, δ)/[1 + |e(Re(ξ))|2t]δ if |Im(ξ)| < ε provided Re(η) >
Cλ,Λ,dε

2. Since we can do similar estimates on ∂h(ξ, η)/∂[Im(η)] the result follows
just as in Lemma 2.3. �
Corollary 5.2. The function Ga(x, t) satisfies the inequality

0 ≤ Ga(x, t) ≤ C1(λ,Λ)
(1 +

√
t)
exp

[−C2(λ,Λ)min{|x|, |x|2/t}] , if d = 1,

where the constants C1(λ,Λ) and C2(λ,Λ) depend only on λ,Λ. For d > 1 it
satisfies an inequality,

0 ≤ Ga(x, t) ≤ C1(λ,Λ, d, δ)
(1 + tδ)

exp
[−C2(λ,Λ, d)min{|x|, |x|2/t}] ,

for any δ, 0 ≤ δ < 1. The constant C1(λ,Λ, d, δ) depends only on λ,Λ, d, δ and
C2(λ,Λ, d) only on λ,Λ, d.

Proof. Same as for Corollary 4.1 on using the method of proof of Corollary 5.1
and Lemma 5.2. �
Next we generalize Lemma 2.4.

Lemma 5.3. Let ε satisfy 0 < ε < 1 and Ĝa(ξ, t), ξ ∈ C
d, |Im(ξ)| < ε, be the

function of Lemma 5.1. Then Ĝa(ξ, t) is differentiable for t > 0. For any δ,
0 ≤ δ < 1, there is a constant C1(λ,Λ, d, δ) depending only λ,Λ, d, δ and a constant
C2(λ,Λ, d) depending only on λ,Λ such that∣∣∣∣∣∂Ĝa(ξ, t)

∂t

∣∣∣∣∣ ≤ C1(λ,Λ, d, δ)
t[1 + |e(Re(ξ))|2t]δ exp[C2(λ,Λ, d)ε2t] , |Im(ξ)| < ε , t > 0 .

Proof. In analogy to the proof of the inequality (2.41) we see that there are con-
stants C1(λ,Λ, d) > 0 and C2(λ,Λ, d) > 0 such that

|∂h(ξ, η)/∂[Im(η)]| ≤ C1(λ,Λ, d)
|Im(η)| min

[
1

Re(η) + |e(Re(ξ))|2 ,
Re(η) + |e(Re(ξ))|2

|Im(η)|2
]
,

(5.12)

|Im(ξ)| < ε, Re(η) > C2(λ,Λ, d)ε2 .

It follows then just as in Lemma 2.4 that∣∣∣∣ ∂∂t
∫ ∞

0

h(ξ, η) cos[Im(η)t]d[Im(η)]
∣∣∣∣ ≤ Cλ,Λ,d/t, |Im(ξ)| < ε .(5.13)

We can also see that there are constants C1(λ,Λ, d) > 0 and C2(λ,Λ, d) > 0 such
that ∣∣∣∣ ∂2h(ξ, η)

∂[Im(η)]2

∣∣∣∣ ≤ C1(λ,Λ, d)
|Im(η)|2 min

[
1

Re(η) + |e(Re(ξ))|2 ,
1

|Im(η)|
]
,(5.14)

|Im(η)| < ε , Re(η) > C2(λ,Λ, d)ε2 .

We conclude from this last inequality and (5.13) that for any δ > 0 there is a
constant C(λ,Λ, d, δ) such that∣∣∣∣ ∂∂t

∫ ∞

0

h(ξ, η) cos[Im(η)t]d[Im(η)]
∣∣∣∣ ≤ C(λ,Λ, d, δ)

t[1 + |e(Re(ξ))|2t]δ , |Im(ξ)| < ε,
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provided Re(η) > C2(λ,Λ, d)ε2. Arguing similarly we see also that∣∣∣∣ ∂∂t 1t
∫ ∞

0

∂k(ξ, η)
∂[Im(η)]

{1− cos[Im(η)t]}d[Im(η)]
∣∣∣∣ ≤ C(λ,Λ, d, δ)

t[1 + |e(Re(ξ))|2t]δ ,

|Im(ξ)| < ε, Re(η) > C(λ,Λ, d)ε2.

The result of the lemma follows from these last two inequalities and∣∣∣∣ ∂∂t exp[Re(η)t]
∣∣∣∣ ≤ 1

t
exp[2Re(η)t].

�

Corollary 5.3. The function Ga(x, t) is differentiable with respect to t for t > 0
and satisfies the inequality∣∣∣∣∂Ga(x, t)

∂t

∣∣∣∣ ≤ C1(λ,Λ)
t(1 +

√
t)
exp

[−C2(λ,Λ)min{|x|, |x|2/t}] , if d = 1,

where the constants C1(λ,Λ) and C2(λ,Λ) depend only on λ,Λ. For d > 1 it
satisfies an inequality,∣∣∣∣∂Ga(x, t)

∂t

∣∣∣∣ ≤ C1(λ,Λ, d, δ)
t[1 + tδ]

exp
[−C2(λ,Λ, d)min{|x|, |x|2/t}] ,

for any δ, 0 ≤ δ < 1. The constant C1(λ,Λ, d, δ) depends only λ,Λ, d, δ and
C2(λ,Λ, d) only on λ,Λ, d.

Proof. Same as for Corollary 5.2 on using Lemma 5.3. �

Lemma 5.4. There are constants C1(λ,Λ, d) and C2(λ,Λ, d) depending only on
λ,Λ, d such that∣∣∣∣∣∂Ĝa(ξ, t)

∂t

∣∣∣∣∣ ≤ C1(λ,Λ, d)[|e(Re(ξ))|2 + ε2] exp[C2(λ,Λ, d)ε2t] , |Im(ξ)| < ε, t > 0.

Proof. In analogy to the inequalities (2.49) we have from (5.9), (5.12) the inequal-
ities

1
t

∫ ∞

0

|h(ξ, η)|{1− cos[Im(η)t]}d[Im(η)] ≤ C1(λ,Λ, d) [|e(Re(ξ))|2 +Re(η)],
(5.15)

1
t

∫ ∞

0

∣∣∣∣ ∂h(ξ, η)∂[Im(η)]

∣∣∣∣|Im(η)|{1− cos[Im(η)t]}d[Im(η)] ≤ C1(λ,Λ, d)[|e(Re(ξ))|2+Re(η)],

provided ξ ∈ C
d and η ∈ C satisfy

|Im(ξ)| < ε, Re(η) > C2(λ,Λ, d)ε2,(5.16)

where C1(λ,Λ, d) and C2(λ,Λ, d) depend only on λ,Λ, d.
Next we need to deal with the integral (2.50) in k(ξ, η). Observe first from (5.8)

that there are constants C1(λ,Λ, d) and C2(λ,Λ, d) depending only on λ,Λ, d such
that if (5.16) holds then

|Im(η)||k(ξ, η)| ≤ C1(λ,Λ, d), |Im(η)| ≤ Re(η) + |e(Re(ξ))|2.
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We can write k(ξ, η) as in Lemma 2.5 to be

k(ξ, η) =
b(ξ, η)

a(ξ, η)2 + b(ξ, η)2
,

where a(ξ, η) is the sum of Re(η) and the RHS of (5.5) whence b(ξ, η) is the sum
of Im(η) and the RHS of (5.6). We have now from (5.8) that

|b(ξ, η)− b(Re(ξ), η)| ≤ 1
10

|Im(η)|, |Im(η)| > Re(η) + |e(Re(ξ))|2 ,

provided (5.16) holds and the constant C2(λ,Λ, d) is sufficiently large. We also have
that

|a(ξ, η)− a(Re(ξ), η)| ≤ 1
10

a(Re(ξ), η),

provided (5.16) holds and C2(λ,Λ, d) is sufficiently large. It follows from these last
two inequalities that∫ ∞

Re(η)+|e(Re(ξ))|2
|Im(η)|
|b(ξ, η)|

|a(ξ, η)|2
|a(ξ, η)2 + b(ξ, η)2|d[Im(η)] ≤C(λ,Λ, d)[Re(η)+|e(Re(ξ))|2]

for some constant C(λ,Λ, d), provided (5.16) holds with sufficiently large constant
C2(λ,Λ, d). Now the following lemma implies that∫ ∞

0

〈|ψ(ξ, η, ·)|2〉d[Im(η)] ≤ C(λ,Λ, d)[|e(Re(ξ))|2 + ε2] ,

for some constant C(λ,Λ, d) depending only on λ,Λ, d, provided (5.16) holds with
sufficiently large C2(λ,Λ, d). We conclude then from these last inequalities that

lim
m→∞

∣∣∣∣∣
∫ πm/t

0

k(ξ, η)Im(η) cos[Im(η)t]d[Im(η)]

∣∣∣∣∣ ≤ C(λ,Λ, d)[Re(η) + |e(Re(ξ))|2] ,

(5.17)

for some constant C(λ,Λ, d) provided (5.16) holds. The Lemma follows now from
(5.15), (5.17). �

Lemma 5.5. Let ψk(ξ, η, ·) be the function defined by (2.2), and 0 < ε < 1. There
is a constant C1(λ,Λ, d) depending on λ,Λ, d such that if Re(η) > C1(λ,Λ, d)ε2 then
ψk(ξ, η, ·), regarded as a mapping from R

d to L2(Ω), can be analytically continued
to {ξ ∈ C

d : |Im(ξ)| < ε}. Furthermore, there is a constant C(λ,Λ, d) depending
only on λ,Λ, d such that∫ ∞

0

〈
|ψk(ξ, η, ·)|2

〉
d[Im(η)] ≤ C2(λ,Λ, d), Re(η) > C1(λ,Λ, d)ε2, |Im(η)| < ε.

Proof. We proceed as in Lemma 2.6. Let ψk(t, ξ, ·), t > 0, be the solution to the
initial value problem,

∂ψk(t, ξ, ·)
∂t

+ [Lξ + Re(η)]ψk(t, ξ, ·) = 0, t > 0,(5.18)

ψk(0, ξ, ·) +
d∑

j=1

[∂∗
j + ej(−ξ)]eiej ·ξ[ak,j(·)− 〈ak,j(·)〉] = 0.
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It is clear that (5.18) is soluble for ξ ∈ R
d, Re(η) > 0, and

ψk(ξ, η, ·) =
∫ ∞

0

e−i Im(η)tψk(t, ξ, ·)dt.(5.19)

Taking Re(η) > C1(λ,Λ, d)ε2 for sufficiently large C1(λ,Λ, d) it is clear that one
can solve (5.18) for ξ ∈ C

d with |Im(ξ)| < ε and the resulting function is analytic
in ξ. Evidently the corresponding function ψk(ξ, η, ·) defined by (5.19) is analytic
in ξ for |Im(ξ)| < ε. Furthermore, from the Plancherel Theorem we have that∫ ∞

0

〈
|ψk(ξ, η, ·)|2

〉
d[Im(η)] ≤ 2π

∫ ∞

0

〈
|ψk(t, ξ, ·)|2

〉
dt.

Now for ξ ∈ C
d let L∗

ξ be the adjoint of Lξ acting on L2(Ω). Thus L∗
ξ = Lξ̄ where

ξ̄ is the complex conjugate of ξ. Let ϕk(t, ξ, ·) be the solution of the equation
[L∗

ξ + Re(η)]ϕk(t, ξ, ·) = ψk(t, ξ, ·), t > 0, |Im(ξ)| < ε.

It follows from (5.18) that〈
ϕk(t, ξ, ·)∂ψk(t, ξ, ·)

∂t

〉
+

〈|ψk(t, ξ, ·)|2〉 = 0, t > 0.(5.20)

We also have that

〈
ϕk(t, ξ, ·)∂ψk(t, ξ, ·)

∂t

〉
= Re

〈
[Lξ +Re(η)]ϕk

∂ϕk
∂t

〉
= Re

〈
∂ϕ̄k
∂t
[Lξ + Re(η)]ϕk

〉(5.21)

= Re
〈
([Lξ +Re(η)]

∂ϕk
∂t

ϕk

〉
+Re

〈
∂ϕ̄k
∂t
[Lξ − L∗

ξ ]ϕk

〉
.

We conclude that〈
ϕ̄k

∂ψk
∂t

〉
=
1
2
∂

∂t
Re

〈
[Lξ + Re(η)]ϕkϕk

〉
+
1
2
Re

〈
∂ϕ̄k
∂t
[Lξ − L∗

ξ ]ϕk

〉
.

Observe now that〈
∂ϕ̄k
∂t
[Lξ − L∗

ξ ]ϕk

〉
=

− 〈
ψ̄k[L∗

ξ + Re(η)][Lξ + Re(η)]−1[Lξ − L∗
ξ ][L∗

ξ + Re(η)]−1ψk
〉
.

Hence if C1(λ,Λ, d) is sufficiently large one has∣∣∣∣〈∂ϕ̄k
∂t
[Lξ − L∗

ξ ]ϕk

〉∣∣∣∣ ≤ 〈|ψk(t, ξ, ·)|2〉 , t > 0, |Im(ξ)| < ε.

Putting this inequality together with (5.20), (5.21) we have that

1
2
∂

∂t
Re

〈
[Lξ + Re(η)]ϕkϕk

〉
+
1
2
〈|ψk(t, ξ, ·)|2〉 ≤ 0, |Im(ξ)| < ε, t > 0.

Integrating this inequality with respect to t we conclude∫ ∞

0

〈|ψk(t, ξ, ·)|2〉 dt ≤ Re
〈
ϕk(0, ξ, ·)ψk(0, ξ, ·)

〉
.

Arguing as in Lemma 2.6 we see that the RHS of this last inequality is bounded by
a constant C(λ,Λ, d) depending only on λ,Λ, d. �
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Corollary 5.4. There are constants C1(λ,Λ, d) and C2(λ,Λ, d) > 0 depending only
on d, λ,Λ such that∣∣∣∣∂Ga(x, t)

∂t

∣∣∣∣ ≤ C1(d, λ,Λ) exp
[−C2(d, λ,Λ)min{|x|, |x|2/t}] , x ∈ Z

d, t > 0.

Proof. Same as for Corollary 5.1 on using Lemma 5.4. �

Corollary 5.2 proves (1.10) for d = 1. Following the argument of Lemma 4.1 we
shall use our methods to prove (1.10) for d = 2.

Lemma 5.6. For d = 2 there are positive constants C1(λ,Λ), C2(λ,Λ) depending
only on λ,Λ such that

0 ≤ Ga(x, t) ≤ C1(λ,Λ)
1 + t

exp
[−C2(λ,Λ)min{|x|, |x|2/t}] , x ∈ Z

2, t > 0.

Proof. It will be sufficient to show that there are constants C1(λ,Λ), C2(λ,Λ)
such that∫

[−π,π]2
|Ĝa(ξ, t)|d[Re(ξ)] ≤ C1(λ,Λ)

1 + t
exp[C2(λ,Λ)ε2t], |Im(ξ)| < ε, t > 0.(5.22)

In view of Lemma 5.1 it will be sufficient to prove (5.22) for t ≥ 1. It is also evident
from Lemma 5.1 that∫

|e(Re(ξ))|<1/
√
t

|Ĝa(ξ, t)|d[Re(ξ)] ≤ C1(λ,Λ)
t

exp[C2(λ,Λ)ε2t], |Im(ξ)| < ε, t > 1,

whence we are left to show that

∫
|e(Re(ξ))|>1/

√
t

|Ĝa(ξ, t)|d[Re(ξ)] ≤ C1(λ,Λ)
t

exp[C2(λ,Λ)ε2t], |Im(ξ)| < ε, t > 1.

(5.23)

Now the integral on the LHS of (5.23) is a sum of an integral in h(ξ, η) and k(ξ, η).
We first consider the integral in h(ξ, η). Following the argument of Lemma 4.1 and
using (5.14) we see that it is sufficient to show that∫

|e(Re(ξ))|>1/
√
t

d[Re(ξ)]

∣∣∣∣∣ 1t2
∫ |e(Re(ξ))|2

0

∂2h(ξ, η)
∂[Im(η)]2

{1− cos[Im(η)t]}d[Im(η)]
∣∣∣∣∣

≤ C1(λ,Λ)
t

, |Im(ξ)| < ε, Re(η) > C2(λ,Λ)ε2,

for sufficiently large constant C2(λ,Λ) depending only on λ,Λ. Again, arguing as
in Lemma 4.1, we see it is sufficient to show that

(5.24)∫
|e(Re(ξ))|>1/

√
t

d[Re(ξ)]
1
t2

∫ |e(Re(ξ))|2

0

< |ψ(ξ, η, ·)|2 >

|e(Re(ξ))|4Im(η){1− cos[Im(η)t]}d[Im(η)]

≤ C1(λ,Λ)
t

, |Im(ξ)| < ε, Re(η) > C2(λ,Λ)ε2.
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Define for 2 < p < ∞ a function hη,p(ξ) by

hη,p(ξ) = |Im(η)|1/2 − 1/p

[ 2∑
k=1

〈|ψk(ξ, η, ·)|2〉 ]2

, ξ ∈ C
d, |Im(ξ)| < ε.

Suppose now Im(ξ) ∈ R
2 is fixed and regard h2,p(ξ) as a function of Re(ξ) ∈

[−π, π]2. Then one can see just as in Lemma 4.1 that if |Im(ξ)| < ε and Re(η) >
C2(λ,Λ)ε2 for sufficiently large constant C2(λ,Λ) depending only on λ,Λ, then
hη,p ∈ Lp

w([−π, π]2) and there is a constant Cp,λ,Λ such that

‖hη,p‖p,w ≤ Cp,λ,Λ, |Im(ξ)| < ε, Re(η) > C2(λ,Λ)ε2.

The inequality (5.24) follows from this last inequality just as in Lemma 4.1. Hence
we have found an appropriate bound for the contribution to the LHS of (5.23)
from the integral in h(ξ, η). The contribution from the integral in k(ξ, η) can be
estimated similarly. �
We can similarly generalize Lemma 4.2 to obtain the following.

Lemma 5.7. For d = 2 there are positive constants C1(λ,Λ), C2(λ,Λ) depending
only on λ,Λ such that∣∣∣∣∂Ga(x, t)

∂t

∣∣∣∣ ≤ C1(λ,Λ)
(1 + t2)

exp
[−C2(λ,Λ)min{|x|, |x|2/t}] , x ∈ Z

2, t > 0.

Next we wish to consider derivatives of Ga(x, t) with respect to x ∈ Z
d. If d = 1

then it is clear from Corollary 5.2 that

|∇iGa(x, t)| ≤ C1(λ,Λ)
(1 +

√
t)
exp

[−C2(λ,Λ)min{|x|, |x|2/t}] , x ∈ Z
2, t > 0.

We can use Lemma 5.2 to obtain an improvement on this inequality.

Lemma 5.8. Suppose d = 1 and 0 ≤ δ < 1. Then there exist constants C1(λ,Λ, δ)
depending only on λ,Λ, δ and C2(λ,Λ) depending only on λ,Λ such that

|∇iGa(x, t)| ≤ C1(λ,Λ, δ)
(1 + tδ)

exp
[−C2(λ,Λ)min{|x|, |x|2/t}] , x ∈ Z

2, t > 0.

Proof. The result follows from Lemma 5.2 and the observation that∫ π

−π

|e(Re(ξ))|
[1 + |e(Re(ξ))|2t]δ′ d[Re(ξ)] ≤ C(δ′, δ)

1 + tδ
,

for any δ′, δ satisfying 1/2 < δ < δ′ < 1, where C(δ′, δ) is a constant depending
only on δ′, δ. �
We can improve Lemma 5.8 by using the techniques developed in Section 3.

Lemma 5.9. Suppose d = 1 and 0 ≤ δ < 1. Then there are constants C1(λ,Λ),
C2(λ,Λ) depending only on λ,Λ and a constant C3(λ,Λ, δ) depending on λ,Λ, δ
such that

|∇iGa(x, t)| ≤ C1(λ,Λ)
(1 + t)

exp
[−C2(λ,Λ)min{|x|, |x|2/t}] ,(5.25)

|∇i∇jGa(x, t)| ≤ C3(λ,Λ, δ)
[1 + t1+δ/2]

exp
[−C2(λ,Λ)min{|x|, |x|2/t}] , x ∈ Z

2, t > 0.

(5.26)
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Proof. It will be sufficient to show that for any δ, 0 ≤ δ < 1, there are constants
C3(λ,Λ, δ) and C2(λ,Λ) such that∫ π

−π

|e(Re(ξ))|1+δ|Ĝa(ξ, t)|d[Re(ξ)] ≤ C3(λ,Λ, δ)
1 + t1+δ/2

exp[C2(λ,Λ)ε2t],(5.27)

for |Im(ξ)| < ε, t > 1. Now from Lemma 5.1 we have∫
|e(Re(ξ))|<1/

√
t

|e(Re(ξ))|1+δ|Ĝa(ξ, t)|d[Re(ξ)] ≤ C3(λ,Λ)
1 + t1+δ/2

exp[C2(λ,Λ)ε2t],

for |Im(ξ)| < ε, so we are left to prove

∫
|e(Re(ξ))|>1/

√
t

|e(Re(ξ))|1+δ|Ĝa(ξ, t)|d[Re(ξ)] ≤ C3(λ,Λ, δ)
t1+δ/2

exp[C2(λ,Λ)ε2t],

(5.28)

for |Im(ξ)| < ε, t > 1. Proceeding now as in Lemma 5.6 we write the integral on the
LHS of (5.28) as an integral in h(ξ, η) and an integral in k(ξ, η). We first consider
the integral in h(ξ, η). If we use (5.14) we see that it is sufficient to show that

(5.29)
∫
|e(Re(ξ))|>1/

√
t

d[Re(ξ)]|e(Re(ξ))|1+δ

∣∣∣∣∣ 1t2
∫ |e(Re(ξ))|2

0

∂2h(ξ, η)
∂[Im(η)]2

{1− cos[Im(η)t]}d[Im(η)]
∣∣∣∣∣

≤ C3(λ,Λ, δ)
t1+δ/2

, |Im(ξ)| < ε, Re(η) > C2(λ,Λ)ε2, 0 ≤ δ < 1,

for sufficiently large C2(λ,Λ) depending only on λ,Λ. Arguing as in Lemma 5.6 we
see that to prove (5.29) it is sufficient to show that

(5.30)
∫
|e(Re(ξ))|>1/

√
t

d[Re(ξ)]|e(Re(ξ))|1+δ

1
t2

∫ |e(Re(ξ))|2

0

< |ψ(ξ, η, ·)|2 >

|e(Re(ξ))|4Im(η){1− cos[Im(η)t]}d[Im(η)]

≤ C3(λ,Λ, δ)
t1+δ/2

, |Im(ξ)| < ε, Re(η) > C2(λ,Λ)ε2, 0 ≤ δ < 1.

Define for 2 < p < ∞ a function hη,p(ξ) by

hη,p(ξ) = |Im(η)|1/2−1/2p
〈|ψ1(ξ, η, ·)|2

〉1/2
, ξ ∈ C

d, |Im(ξ)| < ε.

We fix now Im(ξ) ∈ R and regard hη,p(ξ) as a function of Re(ξ) ∈ [−π, π]. Then
one can see just as in Lemma 5.6 that if |Im(ξ)| < ε and Re(η) > C2(λ,Λ)ε2 for
sufficiently large constant C2(λ,Λ) depending only on λ,Λ, then hη,p ∈ Lp

w([−π, π])
and there is a constant Cp,λ,Λ such that

‖hη,p‖p,w ≤ Cp,λ,Λ, |Im(ξ)| < ε, Re(η) > C2(λ,Λ)ε2.
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Arguing as in Lemma 4.1 we see that (5.30) holds if∫
|e(Re(ξ))|>1/

√
t

d[Re(ξ)]
1

|e(Re(ξ))|1−δ t1/2+2/p

∫ |e(Re(ξ))|2

0

hη,p(ξ)2

[Im(η)]1/2+1/p
d[Im(η)]

≤ C3(λ,Λ, δ)
t1+δ/2

, t > 1.

The LHS of this last expression is bounded by

C

t1/2+2/p

∞∑
n=0

(√
t

2n

)1−δ ∫ 22n+2/t

0

d[Im(η)]
[Im(η)]1/2+1/p

∫
|e(ξ))|<2n+1/

√
t

hη,p(ξ)2d[Re(ξ)]

≤ Cp,λ,Λ

t1/2+2/p

∞∑
n=0

(√
t

2n

)1−δ (
22n+2

t

)1/2 − 1/p(2n+1

√
t

)1 − 2/p

≤ C(λ,Λ, δ)
t1+δ/2

,

provided we choose p to satisfy 2 < p < 4/(1 + δ). Hence the contribution to the
LHS of (5.28) from h(ξ, η) is bounded appropriately. Since we can similarly estimate
the contribution from k(ξ, η) we have proved (5.28) and hence (5.27). Now (5.25)
follows by taking δ = 0 in (5.27), and (5.26) by taking δ close to 1. �

We have proven Theorem 1.4 for d = 1. It is clear by now that we can use the
methods developed in Section 4 to extend the results of Lemmas 5.6, 5.7, 5.9 to all
dimensions d ≥ 1.

6. Proof of Theorem 1.2

For η > 0, x ∈ R
d, let Gη(x) be the Green’s function which satisfies the equation,

−
d∑

i=1

∂2Gη(x)
∂x2

i

+ ηGη(x) = δ(x), x ∈ R
d,

where δ(x) is the Dirac δ function. Analogously to (3.4) we define an operator
Tk,k′,η,ξ on L2(Ω) by

Tk,k′,η,ξϕ(ω) = −
∫

Rd

dx
∂2Gη(x)
∂xk∂xk′

e−ix·ξϕ(τxω), ω ∈ Ω.(6.1)

Evidently Tk,k′,η,ξ is a bounded operator on L2(Ω). Just as in Section 3 we can
define operators Tb,η,ξ and Tj,η,ξ, j = 1, . . . , d associated with the operators (6.1).
We then have the following.

Lemma 6.1. Let Tb,η,ξ and Tj,η,ξ, j = 1, . . . , d, be the operators associated with
(6.1). Then if ‖b‖ < 1 the equation (3.6) has a unique solution Ψk(ξ, η, ·) ∈
H(Ω), ξ ∈ R

d, η > 0, which satisfies an inequality,

‖Ψk(ξ, η, ·)‖ ≤ C(λ,Λ, d)/[1− ‖b‖], k = 1, . . . , d,

where the constant C(λ,Λ, d) depends only on λ,Λ, d. The function (ξ, η) →
Ψk(ξ, η, ·) from R

d × R
+ to H(Ω) is continuous.

Next we put b(·) = [ΛId − a(·)]/Λ and define a d × d matrix q(ξ, η) by (3.7),
where Ψk(ξ, η, ·), k = 1, 2, . . . , d are the functions of Lemma 6.1.
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Lemma 6.2. For ξ ∈ R
d, η > 0, the matrix q(ξ, η) is Hermitian and is a contin-

uous function of (ξ, η). Furthermore, there is the inequality

λId ≤ q(ξ, η) ≤ ΛId.(6.2)

Proof. We use the operators Tk,k′,η,ξ of (6.1) to define an operator Tη,ξ on H(Ω).
Thus if ϕ = (ϕ1, . . . , ϕd) ∈ H(Ω) then

(Tη,ξϕ)k =
d∑

k′=1

Tk,k′,η,ξϕk′ .

It is easy to see that Tη,ξ is a bounded self-adjoint operator on H(Ω) which is
nonnegative definite and has norm ‖Tη,ξ‖ ≤ 1. We can see this by using Bochner’s
Theorem as in Lemma 3.3. Now for ρ ∈ C

d, we put Ψρ to be

Ψρ =
d∑

k=1

ρkΨk ,

where Ψk is the solution of (3.6). Then from (3.7) we have that

ρ̄q(ξ, η)ρ = 〈ρ̄a(·)ρ+ ρ̄a(·)Ψρ(ξ, η, ·)〉 .
It is also clear from (3.6) that Ψρ satisfies

Ψρ(ξ, η, ω)− PTb,η/Λ, ξΨρ(ξ, η, ω) +
1
Λ
Tη/Λ, ξ[a(ω)ρ− < a(·)ρ >] = 0.(6.3)

To obtain the upper bound in (6.2) we observe that〈
ρ̄a(·)Ψρ(ξ, η, ·)

〉
≤ 0.(6.4)

To prove (6.4) we generate Ψρ from (6.3) by a Neumann series. The first order
approximation to the solution is then

Ψρ(ξ, η, ·) � − 1
Λ
Tη/Λ, ξ[a(ω)ρ− 〈a(·)ρ〉] .

Putting this approximation into (6.4) yields〈
ρa(·)

[
− 1
Λ
Tη/Λ, ξ[a(ω)ρ− 〈a(·)ρ〉

]〉
= − 1

Λ
〈
ρ[a(·)− 〈a〉]Tη/Λ, ξ[a(·)− 〈a〉]ρ 〉 ≤ 0,

since Tη/Λ,ξ is nonnegative definite. One can similarly argue that each term in the
Neumann series makes a negative contribution to (6.4).
To prove the lower bound in (6.2) we use the fact that

T 2
η,ξ = Tη,ξ[1− ηAη,ξ],

where Aη,ξ is the bounded operator on L2(Ω) defined by

Aη,ξ φ(ω) =
∫

Rd

dxGη(x)e−ix·ξφ(τxω).

Note that Aη,ξ is self-adjoint, nonnegative definite, and commutes with Tη,ξ. It
follows now from (6.3) that

Tη/Λ, ξΨρ =
[
1− η

Λ
Aη/Λ, ξ

]
Ψρ .
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Hence if we multiply (6.3) by Ψ̄ρ and take the expectation value we have that

‖Ψρ(ξ, η, ·)‖2 −
〈
Ψρ(ξ, η, ·)b(·)Ψρ(ξ, η, ·)

〉
+

η

Λ

〈
Ψρ(ξ, η, ·)Aη/Λ, ξb(·)Ψρ(ξ, η, ·)

〉
+
1
Λ

〈
Ψρ(ξ, η, ·)

[
1− η

Λ
Aη/Λ, ξ

]
[a(·)ρ− 〈a〉 ρ]

〉
= 0.

If we define the operator K by

K = 1− η

Λ
Aη/Λ, ξ,

then the previous equation can be written as

‖Ψρ(ξ, η, ·)‖2 =
〈
KΨρ(ξ, η, ·)b(·)Ψρ(ξ, η, ·)

〉
− 1
Λ

〈
KΨρ(ξ, η, ·)[a(·)− λId]ρ

〉
.

Applying the Schwarz inequality to this last equation, we obtain

‖Ψρ(ξ, η, ·)‖2 ≤ 1
2

〈
KΨρ(ξ, η, ·)b(·)KΨρ(ξ, η, ·)

〉
+
1
2

〈
Ψρ(ξ, η, ·)b(·)Ψρ(ξ, η, ·)

〉
+
1
2Λ

〈
KΨρ(ξ, η, ·)[a(·)− λId]KΨρ(ξ, η, ·)

〉
+
1
2Λ

〈ρ̄[a(·)− λId]ρ〉 .
Observing now that K is also nonnegative definite and bounded above by the
identity, we see from this last inequality that〈

Ψρ(ξ, η, ·)a(·)Ψρ(ξ, η, ·)
〉
≤ 〈ρ̄[a(·)− λId]ρ〉 .

The lower bound in (6.2) follows now from the Schwarz inequality on writing

〈ρ̄a(·)Ψρ(ξ, η, ·)〉 = 〈ρ̄[a(·)− λId]Ψρ(ξ, η, ·)〉 .
�

We have defined the functions Ψk(ξ, η, ·), k = 1, . . . , d corresponding to the
solutions of (3.6). Next we wish to define functions ψk(ξ, η, ·) corresponding to
the solutions of (2.2). To do this we consider an equation adjoint to (3.6). Since
Tb,η,ξ = Tη,ξb(·), the adjoint T ∗

b,η,ξ of Tb,η,ξ is T ∗
b,η,ξ = b(·)Tη,ξ. For k = 1, . . . , d

let Ψ∗
k(ξ, η, ω) ∈ H(Ω) be the solution to the equation,

Ψ∗
k(ξ, η, ω)− PT ∗

b,η/Λ, ξΨ
∗
k(ξ, η, ω) +

1
Λ
[ak(ω)− 〈ak(·)〉] = 0,(6.5)

where ak(ω) is the k th column vector of the matrix a(ω). Just as in Lemma 6.1
we see that Ψ∗

k regarded as a mapping from R
d × R

+ to H(Ω) is continuous. We
also define an operator Sη,ξ : H(Ω)→ L2(Ω) by

Sη,ξϕ(ω) =
d∑

k′=1

∫
Rd

dx
∂Gη(x)
∂xk′

e−ix·ξϕk′(τxω),(6.6)

where ϕ = (ϕ1, . . . , ϕd) ∈ H(Ω). Evidently Sη,ξ is a bounded operator. We define
the functions ψk(ξ, η, ω), k = 1, . . . , d, then by

ψk(ξ, η, ω) = Sη/Λ, ξΨ∗
k(ξ, η, ω), ω ∈ Ω,(6.7)

where Ψ∗
k(ξ, η, ω) is the solution to (6.5). It is easy to see that there is a constant

C(λ,Λ, d) depending only on λ,Λ, d, such that

‖ψk(ξ, η, ·)‖ ≤ C(λ,Λ, d)/
√
η .(6.8)
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Let us define Ĝa(ξ, η) similarly to (2.4) by

Ĝa(ξ, η) =
1

η + ξq(ξ, η)ξ
, ξ ∈ R

d, η > 0,(6.9)

where the matrix q(ξ, η) is as in Lemma 6.2. Suppose now f : R
d → R is a C∞

function with compact support and Fourier transform f̂(ξ). We define v̂(ξ, η, ω) to
be

v̂(ξ, η, ω) =
[
1− i

d∑
k=1

ξkψk(ξ, η, ω)
]
Ĝa(ξ, η)f̂(ξ).

Let η > 0 be fixed. Then v̂(ξ, η, ω), regarded as a function of ξ ∈ R
d to L2(Ω), is

continuous and rapidly decreasing. Hence the Fourier inverse

v(x, η, ω) =
1

(2π)d

∫
Rd

dξe−ix·ξ v̂(ξ, η, ω), x ∈ R
d,

regarded as a mapping of x ∈ R
d to L2(Ω) is C∞. In particular it follows that

v(x, η, ω), regarded as a function of (x, ω) ∈ R
d × Ω to C, is measurable and in

L2(Rd × Ω). Define now the function u(x, η, ω) = v(x, η, τxω). It is clear that
u(x, η, ω), regarded as a function of (x, ω) ∈ R

d × Ω to C is measurable and in
L2(Rd × Ω), with the same norm as v.
Lemma 6.3. With probability one the function u(x, η, ·), x ∈ R

d, is in L2(Rd) and
its distributional gradient ∇u(x, η, ·) is also in L2(Rd). Furthermore u(x, η, ·) is a
weak solution of the equation

−
d∑

i,j=1

∂

∂xi

[
ai,j(τx·) ∂u

∂xj
(x, η, ·)

]
+ ηu(x, η, ·) = f(x), x ∈ R

d.(6.10)

Proof. Since u(x, η, ω) ∈ L2(Rd×Ω), it follows that with probability one u(x, η, ·),
x ∈ R

d is in L2(Rd). To see that the distributional gradient of u(x, η, ·) is also in
L2(Rd) with probability one, we shall establish a formula for ∇u(x, η, ·). To do this
we define for any C∞ function of compact support g : R

d → C, an operator Ag,ξ

on L2(Ω) by

Ag,ξϕ(ω) =
∫

Rd

dxg(x)e−ix·ξϕ(τxω), ϕ ∈ L2(Ω).

Evidently Ag,ξ is a bounded operator on L2(Ω). Suppose now Ψk(ξ, η, ·) ∈ H(Ω) is
the function of Lemma 6.1 with components Ψk = (Ψk,1, . . . ,Ψk,d) and ψk(ξ, η, ·)
is given by (6.7). Then

A∇jg,ξψk(ξ, η, ·) = −Ag,ξΨk,j(ξ, η, ·),(6.11)

where ∇jg is the j th partial of g. To see that (6.11) holds, observe that if Sη,ξ is
the operator of (6.6) then for ϕ ∈ H(Ω),

A∇jg,ξSη,ξϕ = −Ag,ξ

d∑
k′=1

Tj,k′,η,ξϕk′ ,(6.12)
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where ϕ = (ϕ1, . . . , ϕd) and Tj,k′,η,ξ are the operators (6.1). The identity (6.11)
follows now from (6.12) by observing that Ψk(ξ, η, ·) = Tη/Λ, ξΨ∗

k(ξ, η, ·) . We have
now that

−
∫

Rd

dx∇jg(x)u(x, η, ·) = −
∫

Rd

dx∇jg(x)v(x, η, τx·)(6.13)

= − 1
(2π)d

∫
Rd

dξA∇jg,ξ v̂(ξ, η, ·)

=
1

(2π)d

∫
Rd

dξAg,ξ v̂j(ξ, η, ·),

where

v̂j(ξ, η, ω) = −i

[
ξj +

d∑
k=1

ξkΨk,j(ξ, η, ω)
]
Ĝa(ξ, η)f̂(ξ).(6.14)

Now we put,

vj(x, η, ω) =
1

(2π)d

∫
Rd

dξe−ix·ξ v̂j(ξ, η, ω).

It is clear that vj(x, η, ω), regarded as a function of (x, ω), is in L2(Rd×Ω), whence
vj(x, η, τxω) is also in L2(Rd × Ω). It follows now from (6.13) that the function
∇ju(x, η, ω) = vj(x, η, τxω) is in L2(Rd) with probability 1 in ω and is the distri-
butional derivative of u(x, η, ω).
Next we wish to show that with probability 1, u(x, η, ·) is a weak solution of the

equation (6.10). To do that we need to observe that for any ϕ ∈ H(Ω) and C∞

function g : Rd → C of compact support, one has

d∑
j,k′=1

A∇jg,ξTj,k′η,ξϕk′ = −ηAg,ξSη,ξϕ+
d∑

k′=1

A∇k′g,ξϕk′ .(6.15)

We have now, for any C∞ function g : Rd → R with compact support,

∫
Rd

dx

d∑
i,j=1

∇ig(x)ai,j(τx·)∇ju(x, η, ·) =
∫

Rd

dx

d∑
i,j=1

∇ig(x)ai,j(τx·)vj(x, η, τx·)

(6.16)

=
1

(2π)d

∫
Rd

dξ

d∑
i,j=1

A∇ig,ξ [ai,j(·)v̂j(ξ, η, ·)] .

Observe next that for any k, 1 ≤ k ≤ d,

d∑
i,j=1

A∇ig,ξ [ai,j(·)Ψk,j(ξ, η, ·)] = Λ
d∑

i=1

A∇ig,ξΨk,i(ξ, η, ·)

− Λ
d∑

i=1

A∇ig,ξ [bi,j(·)Ψk,j(ξ, η, ·)] .
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If we use the fact that Ψk = Tη/Λ,ξ Ψ∗
k and (6.15), then we see that

d∑
i,j=1

A∇ig,ξΨk,i(ξ, η, ·) = − η

Λ
Ag,ξSη/Λ,ξΨ∗

k(ξ, η, ·) +
d∑

i=1

A∇ig,ξΨ
∗
k,i(ξ, η, ·).

We also have from (6.5) that

b(ω)Ψk(ξ, η, ω) = b(ω)Tη/Λ,ξΨ∗
k(ξ, η, ω)

= PT ∗
b,η/Λ, ξΨ

∗
k(ξ, η, ω) + 〈b(·)Ψk(ξ, η, ·)〉

= Ψ∗
k(ξ, η, ω) +

1
Λ
[ak(ω)− 〈ak(·)〉] + 〈b(·)Ψk(ξ, η, ·)〉

= Ψ∗
k(ξ, η, ω) +

1
Λ
ak(ω)− 1

Λ
〈ak(·) + a(·)Ψk(ξ, η, ·)〉 .

It follows now from the last three equations that

d∑
i,j=1

A∇ig,ξ [ai,j(·)Ψk,j(ξ, η, ·)] = −ηAg,ξψk(ξ, η, ·)−
d∑

j=1

A∇jg,ξak,j(·)

+ iĝ(ξ)
d∑

j=1

ξjqj,k(ξ, η).

Hence from (6.14), (6.16) we have that∫
Rd

dx

d∑
i,j=1

∇ig(x)ai,j(τx·)∇ju(x, η, ·)

= − η

(2π)d

∫
Rd

dξAg,ξ v̂(ξ, η, ·) + 1
(2π)d

∫
Rd

dξ[η + ξq(ξ, η)ξ]Ĝa(ξ, η)f̂(ξ)ĝ(ξ)

= −η

∫
Rd

dxg(x)u(x, η, ·) +
∫

Rd

dxg(x)f(x),

where we have used (6.9). The result follows from this last equation. �

Next, let Ga(x, y, η, ·), x, y ∈ R
d be the Green’s function for the equation (6.10).

It follows easily now from Lemma 6.3 that if Ga(x, η) is the Fourier inverse of the
function Ĝa(ξ, η) of (6.9), then

Ga(x− y, η) =
〈
Ga(x, y, η, ·)

〉
.

We can now use the methods of Section 3 to estimate Ga(x, η). We shall restrict
ourselves to the case d = 3 since the method generalizes to all d ≥ 3. Evidently
one can generalize Lemma 3.6 to obtain:

Lemma 6.4. Let d = 3, η > 0, 1 ≤ k, k′ ≤ d. Then qk,k′(ξ, η) is a C∞ function
of ξ ∈ R

d and for any i, j, 1 ≤ i, j ≤ d, the function ∂qk,k′/∂ξi ∈ L3
w(R

d) and
∂2qk,k′/∂ξi∂ξj ∈ L

3/2
w (Rd). Further, there is a constant Cλ,Λ, depending only on

λ,Λ such that

‖∂qk,k′/∂ξi‖3,w ≤ Cλ,Λ, ‖∂2qk,k′/∂ξi∂ξj‖3/2, w ≤ Cλ,Λ .
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We can use Lemma 6.4 to estimate Ga(x, η). To do this suppose ϕ : R
d → R is

a C∞ function of compact support satisfying∫
Rd

ϕ(y)dy = 1.

For R > 0 we put ϕR(y) = Rdϕ(Ry). Evidently the Fourier transform of ϕR is a
rapidly decreasing function and ϕ̂R(ξ) = ϕ̂(ξ/R), where ϕ̂(0) = 1. We define now
the function Ga(x, η) by

Ga(x, η) = lim
R→∞

1
(2π)d

∫
Rd

dξ
ϕ̂R(ξ)e−ix·ξ

[η + ξq(ξ, η)ξ]
.(6.17)

Lemma 6.5. Let d = 3. The function Ga(x, η) defined by (6.17) is continuous
in (x, η), x ∈ R

d\{0}, η > 0. The limit Ga(x) = limη→0 Ga(x, η) exists for all
x ∈ R

d\{0} and Ga(x) is a continuous function of x, x 
= 0. Further, there is a
constant Cλ,Λ depending only on λ,Λ such that

0 ≤ Ga(x, η) ≤ Cλ,Λ/|x|, x ∈ R
d\{0}, η > 0.(6.18)

Proof. We argue as in Proposition 3.1. Thus for γ satisfying 1 ≤ γ ≤ 2, we write
Ga(x, η) = lim

R→∞

∫
|ξ|<γ/|x|

+ lim
R→∞

∫
|ξ|>γ/|x|

.(6.19)

It is clear that

lim
R→∞

∫
|ξ|<γ/|x|

=
1

(2π)d

∫
|ξ|<γ/|x|

dξ
e−ix·ξ

[η + ξq(ξ, η)ξ]
.

To evaluate the limit as R → ∞ in the second integral on the RHS of (6.19) we
integrate by parts. Thus for fixed R > 0, assuming x1 
= 0,∫

|ξ|>γ/|x|
=

1
ix1

1
(2π)d

∫
|ξ|>γ/|x|

dξe−ix·ξ ∂

∂ξ1

[
ϕ̂(ξ/R)

η + ξq(ξ, η)ξ

]
.(6.20)

+
1
ix1

1
(2π)d

∫
|ξ|=γ/|x|

dξ
e−ix·ξϕ̂(ξ/R)ξ1
[η + ξq(ξ, η)ξ]|ξ| .

Evidently for the surface integral in the last expression one has

lim
R→∞

∫
|ξ|=γ/|x|

=
1
ix1

1
(2π)d

∫
|ξ|=γ/|x|

dξ
e−ix·ξξ1

[η + ξq(ξ, η)ξ]|ξ| .

To evaluate the limit of the volume integral in (6.20) as R → ∞, we need to
integrate by parts again. Thus, for the integral over {|ξ| > γ/|x|} on the RHS of
(6.20) one has∫

|ξ|>γ/|x|
=

−1
x2

1

1
(2π)d

∫
|ξ|>γ/|x|

dξe−ix·ξ ∂2

∂ξ2
1

[
ϕ̂(ξ/R)

η + ξq(ξ, η)ξ

]
(6.21)

− 1
x2

1

1
(2π)d

∫
|ξ|=γ/|x|

dξe−ix·ξ ∂

∂ξ1

[
ϕ̂(ξ/R)

η + ξq(ξ, η)ξ

]
ξ1
|ξ| .

In view of Lemma 6.4 it follows that the limit of the volume integral on the RHS
of (6.21) is given by

lim
R→∞

∫
|ξ|>γ/|x|

=
−1
x2

1

1
(2π)d

∫
|ξ|>γ/|x|

dξe−ix·ξ ∂2

∂ξ2
1

[
1

η + ξq(ξ, η)ξ

]
.
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We can similarly see that the limit of the average of the surface integral on the
RHS of (6.21) is given by

lim
R→∞

Av
1≤γ≤2

∫
|ξ|=γ/|x|

=

Av
1≤γ≤2

{
−1
x2

1

1
(2π)d

∫
|ξ|=γ/|x|

dξe−ix·ξ ∂

∂ξ1

[
1

η + ξq(ξ, η)ξ

]
ξ1
|ξ|

}
.

We have therefore established a formula for the function Ga(x, η). It easily follows
from this that Ga(x, η) is continuous in (x, η), x ∈ R

3\{0}, η > 0. To show that
the function Ga(x) = lim

η→0
Ga(x, η) exists we observe that q(ξ, η) converges as η → 0

to a function q(ξ, 0). This follows from the fact that the operators Tk,k′,η,ξ of (6.1)
converge strongly as η → 0 to bounded operators Tk,k′,0,ξ on L2(Ω). One can prove
this last fact by using Bochner’s Theorem. Suppose p satisfies 1 < p < 3. Then
∂qk,k′(ξ, η)/∂ξi can be written as a sum,

∂qk,k′(ξ, η)/∂ξi = fk,k′,i(ξ, η) + gk,k′,i(ξ, η).

The function fk,k′,i(ξ, η) ∈ L3
w(R

d) and converges in L3
w(R

d) as η → 0 to the
distributional derivative ∂qk,k′(ξ, 0)/∂ξi of the function ∂qk,k′(ξ, 0). The function
gk,k′,i(ξ, η) ∈ Lp(Rd) and converges as η → 0 in Lp(Rd) to 0. This follows by
writing

η[|ξ|2 + η]−1 = f(ξ, η) + g(ξ, η),

where f ∈ L∞(Rd) ‖f(·, η)‖∞ ≤ η1/2 and g ∈ L∞(Rd) ‖g(·, η)‖∞ ≤ 1, g(ξ, η) = 0
if |ξ| > η1/4. One can also make a similar statement about convergence of the
derivative ∂2qk,k′(ξ, η)/∂ξi∂ξj as η → 0. We conclude that one can take the limit
as η → 0 in the integral formula we have established for Ga(x, η). In view of
Lemmas 6.2 and 6.4 the limiting function Ga(x) is also continuous for x 
= 0.
Finally the inequality (6.18) follows by exactly the same argument as we used in
Proposition 3.1. �

We can complete the proof of Theorem 1.2 by applying the argument for the
proof of Theorem 1.5 at the end of Section 3.

Lemma 6.6. Let d = 3 and Ga(x) be the function defined in Lemma 6.5. Then
Ga(x) is a C1 function for x 
= 0 and there is a constant Cλ,Λ, depending only on
λ,Λ such that

∣∣∣∣∂Ga(x)
∂xi

∣∣∣∣ ≤ Cλ,Λ

|x|2 , x 
= 0, i = 1, 2, 3.(6.22)
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Proof. Let r > 0 and suppose x ∈ R
3 satisfies 10r < |x| < 20r. From Lemma 6.5

we have that

Ga(x) =
1

(2π)3

∫ 2

1

dγ

∫
|ξ|<γ/r

dξ
e−ix·ξ

ξq(ξ, 0)ξ
(6.23)

+
1
ix1

1
(2π)3

∫ 2

1

dγ

∫
|ξ|=γ/r

dξ
e−ix·ξ

ξq(ξ, 0)ξ
ξ1
|ξ|

− 1
x2

1

1
(2π)3

∫ 2

1

dγ

∫
|ξ|=γ/r

dξe−ix·ξ ∂

∂ξ1

[
1

ξq(ξ, 0)ξ

]
ξ1
|ξ|

− 1
x2

1

1
(2π)3

∫ 2

1

dγ

∫
|ξ|>γ/r

dξe−ix·ξ ∂2

∂ξ2
1

[
1

ξq(ξ, 0)ξ

]
,

where q(ξ, 0) is defined in Lemma 6.5. Let Ha(x) be the final integral on the RHS of
(6.23). Then it follows from Lemmas 6.2 and 6.4 that if x1 ∼ |x| then Ga(x)−Ha(x)
is a C1 function and∣∣∣∣ ∂

∂xj
[Ga(x)−Ha(x)]

∣∣∣∣ ≤ Cλ,Λ

|x|2 , x 
= 0, j = 1, 2, 3.

To show the differentiability of Ha(x) we expand

∂2

∂ξ2
1

[
1

ξq(ξ, 0)ξ

]
=

−2q1,1(ξ, 0)
[ξq(ξ, 0)ξ]2

+
8

[ξq(ξ, 0)ξ]3

[
Re

3∑
j=1

q1,j(ξ, 0)ξj

]2

,(6.24)

plus terms involving derivatives of q(ξ, 0). The contribution of the first term on the
RHS of (6.24) to Ha(x) is given by

2
x2

1

1
(2π)3

∫ 2

1

dγ

∫
|ξ|>γ/r

dξe−ix·ξ q1,1(ξ, 0)
[ξq(ξ, 0)ξ]2

(6.25)

=
2
ix3

1

1
(2π)3

∫ 2

1

dγ

∫
|ξ|=γ/r

dξe−ix·ξ q1,1(ξ, 0)
[ξq(ξ, 0)ξ]2

ξ1
|ξ|

+
2
ix3

1

1
(2π)3

∫ 2

1

dγ

∫
|ξ|>γ/r

dξe−ix·ξ ∂

∂ξ1

[
q1,1(ξ, 0)
(ξq(ξ, 0)ξ)2

]
.

Using the fact that ∂q1,1/∂ξ1 ∈ L3
w(R

3), it is easy to see that the RHS of (6.25) is
a C1 function of x, x 
= 0, and its derivative is bounded by the RHS of (6.22). The
same argument can be used to estimate the contribution to Ha(x) from all terms
on the RHS of (6.24) except the term involving the second derivative of q(ξ, 0). The
contribution to Ha(x) from this term is given by Ka(x)/x2

1, where

Ka(x) =
1

(2π)3

∫ 2

1

dγ

∫
|ξ|>γ/r

dξe−ix·ξ 1
[ξq(ξ, 0)ξ]2

ξ∂2q(ξ, 0)ξ
∂ξ2

1

.

We can see now just as in Lemma 3.10 that for any ρ ∈ R
3, the function

[∂2q(ξ + ρ, 0)/∂ξ2
1 − ∂2q(ξ, 0)/∂ξ2

1 ]/|ρ|1−ε is in L
3/(3−ε)
w (R3) and

‖[∂2q(ξ + ρ, 0)/∂ξ2
1 − ∂2q(ξ, 0)/∂ξ2]/|ρ|1−ε‖3/(3−ε),w ≤ Cλ,Λ,ε,(6.26)
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where ε is any number satisfying 0 < ε < 1. For h ∈ R
3 we write

Ka(x+ h)−Ka(x) =
1

(2π)3

∫ 2

1

dγ

∫
|ξ|>γ/r

dξe−ix·ξ[gh(ξ)− gh(ξ + ρ)](6.27)

+
∫

1/4r<|ξ|<4/r

dξe−ix·ξ[e−ih·ξ − 1]f(ξ)|ξ|2 ,

where

g(ξ) =
1

2[ξq(ξ, 0)ξ]2
ξ∂2q(ξ, 0)ξ

∂ξ2
1

, gh(ξ) = [e−ih·ξ − 1]g(ξ) ,

f ∈ L
3/2
w (R3) and ρ ∈ R

3 has the property that x · ρ = π. In view of (6.26) and the
fact that f ∈ L

3/2
w (R3) it follows from the Dominated Convergence Theorem that

one can take the limit in (6.27) as h → 0 to obtain that Ka(x) is differentiable in
x and

∂Ka(x)
∂xj

=
−i

(2π)3

∫ 2

1

dγ

∫
|ξ|>γ/r

dξe−ix·ξ{ξj [g(ξ)− g(ξ + ρ)]− ρjg(ξ + ρ)}

− i

∫
1/4r<|ξ|<4/r

dξe−ix·ξξj
f(ξ)
|ξ|2 .

We can see from this last expression that ∂Ka(x)/∂xj is continuous in x and also
|∂Ka(x)/∂xj | ≤ Cλ,Λ. �
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