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Proof of a Determinant Evaluation Conjectured
by Bombieri, Hunt and van der Poorten

C. Krattenthaler and D. Zeilberger

Abstract. A determinant evaluation is proven, a special case of which establishes
a conjecture of Bombieri, Hunt, and van der Poorten (Experimental Math. 4 (1995),
87–96) that arose in the study of Thue’s method of approximating algebraic numbers.
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1. Introduction

In their study [2] of Thue’s method of approximating an algebraic number,
Bombieri, Hunt, and van der Poorten conjectured two determinant evaluations,
one of which can be restated as follows.

Conjecture (Bombieri, Hunt, van der Poorten [2, next-to-last paragraph]).
Let b, c be nonnegative integers, c ≤ b, and let ∆(b, c) be the determinant of the
(b+ c)× (b+ c) matrix (given in block form)


............................................................

............................................................

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....
(
j

i

) (
j

i

) (
j

i

)
(
j

i

) (
j

i

)
2
(

j

i− b
) (

j

i− b
)0

0

0 ≤ i < c

c ≤ i < b

b ≤ i < b+ c



0 ≤ j < c c ≤ j < b b ≤ j < b+ c

. (1.1)

Received March 10, 1997.
Mathematics Subject Classification. Primary 11C20; Secondary 05A10, 05A19, 11J68, 15A15.
Key words and phrases. determinant, binomials, hypergeometric series.
The first author’s research was supported in part by the MSRI, Berkeley. The second author’s

research was supported in part by the NSF.

c©1997 State University of New York
ISSN 1076-9803/97

54

http://nyjm.albany.edu:8000/nyjm.html
http://nyjm.albany.edu:8000/j/v3/Vol3.html
http://nyjm.albany.edu:8000/j/v3/Krattenthaler-Zeilberger.html


Proof of a Determinant Evaluation 55

Then
(i) ∆(b, c) = 0 if b is even and c is odd;
(ii) if either of these conditions does not hold, and if b ≥ 2c, then

∆(b, c) = ± [b− c/2]2 [b− 2c] [(b+ c)/2]2 [(b− c)/2]6 [c/2]6

[b− c]3 [b/2]6 [b/2− c]2 [c]3
, (1.2)

where [s] :=
∏s−1
k=0 k! if s is an integer, and [s]2 =

(∏s−1/2
k=0 k!

)(∏s−3/2
k=0 k!

)
if s is a half-integer;

(iii) whereas if b < 2c then

∆(b, c) = ±22c−b∆(b, b− c). (1.3)

This determinant arose in the study of Thue’s method, and is a generalization of
the first unproved case of an infinite family of determinant evaluations that would
entail far-reaching consequences in diophantine approximation [2].

The purpose of this paper is to prove a determinant evaluation, containing the
parameter x, which for x = 0 reduces to the above Conjecture.

Theorem 1. Let b, c be nonnegative integers, c ≤ b, and let ∆(x; b, c) be the de-
terminant of the (b+ c)× (b+ c) matrix
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Then
(i) ∆(x; b, c) = 0 if b is even and c is odd;
(ii) if either of these conditions does not hold, then

∆(x; b, c) = (−1)c2c
b−c∏
i=1

(
i+ 1

2 −
⌈
b
2

⌉)
c

(i)c

c∏
i=1

(
x+

⌈
c+i
2

⌉)
b−c+di/2e−d(c+i)/2e(

1
2 −

⌈
b
2

⌉
+
⌈
c+i
2

⌉)
b−c+di/2e−d(c+i)/2e

×
c∏
i=1

(
x+

⌈
b−c+i

2

⌉)
d(b+i)/2e−d(b−c+i)/2e(

1
2 −

⌈
b
2

⌉
+
⌈
b−c+i

2

⌉)
d(b+i)/2e−d(b−c+i)/2e

, (1.5)

where the shifted factorial (a)k is defined by

(a)k :=


a(a+ 1) · · · (a+ k − 1) k ≥ 0

1
(a− 1)(a− 2) · · · (a+ k)

k < 0.
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(A uniform way to define the shifted factorial is by (a)k := Γ(a + k)/Γ(a), or
rather by (a)k := limδ→0 Γ(a + δ + k)/Γ(a + δ) to take also into account the case
that a or a+ k is a nonpositive integer, see [6, Sec. 5.5, p211f].)

The Conjecture does indeed immediately follow, since a routine calculation shows
in particular that the expression (1.5) satisfies the equation

∆(x; b, c) = (−1)b22c−b∆(x; b, b− c), (1.6)

which implies (1.3) on setting x = 0.
We are going to prove this Theorem in the next section. For the sake of clarity

of exposition, we defer the proof of some auxiliary facts to Section 3. The method
of proof that we use is also applied successfully in [12, 9, 10, 11] (see in particular
the tutorial description in [11, Sec. 2]). In order to apply this method, it is actually
important to have (at least) one free parameter. So, the main difficulty in proving
the Conjecture was to find the appropriate generalization of (1.1), such that the
determinant still factors nicely. The various hypergeometric calculations were done,
with some patience, using the first author’s Mathematica package HYP [8]. For
curiosity, we mention that, although at present it is quite hopeless to prove any
of the identities in this paper by the recent algorithmic tools [13, 15, 16, 17, 18],
these did, implicitly, have their place in this work. For example, the fact that the
three seemingly very different sums in (3.6) can be combined into one single sum
was discovered by applying the Gosper-Zeilberger algorithm [13, 16, 18] to each of
the three sums in (3.6). Being puzzled that one obtains always exactly the same
recurrence, we eventually realized that, maybe, these sums are in fact just parts of
one and the same series, which indeed turned out to be the case.

2. Proof of Theorem 1

We proceed by first reducing the determinant ∆(x; b, c), which by definition is
the determinant of the matrix (1.4), by elementary row operations to a constant
times a smaller determinant, ∆′(x; b, c), given in (2.3). This smaller determinant is
then evaluated in Theorem 2, using a method which is described and illustrated in
[11, Sec. 2].

Now we describe the row reductions. We subtract 1/2 times the (i + b)-th row
from the i-th row, i = 0, 1, . . . , c. The resulting matrix has block form, with all
the entries in the b × c upper-left block being equal 0. Therefore, up to sign, the
determinant decomposes into the product of the determinant of the c× c lower-left
block times the determinant of the b× b upper-right block:

∆(x; b, c) = (−1)bc det
0≤i,j<c

(
2
(
x+ j

i

))

× det
0≤i<b, c≤j≤b+c

........................................

.....

.....

.....

.....1
2

(
x+ j

i

) (
2x+ j

i

)
(
x+ j

i

) (
2x+ j

i

) 0 ≤ i < c

c ≤ i < b


c ≤ j < b b ≤ j < b+ c

. (2.1)

The first determinant is easily evaluated (see [4, Theorem 1 with aj = x+ j− 1,
bi = i− 1; there is just one family of nonintersecting lattice paths in that case!] for
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an unusual proof),

det
0≤i,j<c

(
2
(
x+ j

i

))
= 2c. (2.2)

So, what we have to do is to evaluate the second determinant, or equivalently,

det
0≤i<b, c≤j≤b+c
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.....
(
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i

)
2
(

2x+ j

i

)
(
x+ j

i

) (
2x+ j

i

) 0 ≤ i < c

c ≤ i < b


c ≤ j < b b ≤ j < b+ c

.

This determinant can be further reduced. We subtract column b−2 from column
b − 1, column b − 3 from column b − 2, . . . , column c from column c + 1, in that
order. Then we subtract column b−2 from column b−1, column b−3 from column
b− 2, . . . , column c+ 1 from column c+ 2 (but not column c from column c+ 1!),
etc. We do the same sort of operations with columns b, b+ 1, . . . , b+ c− 1. The
resulting determinant is

det
0≤i<b, c≤j≤b+c

........................................

.....

.....

.....

.....
(

x+ c

i− j + c

)
2
(

2x+ b

i− j + b

)
(

x+ c

i− j + c

) (
2x+ b

i− j + b

) 0 ≤ i < c

c ≤ i < b


c ≤ j < b b ≤ j < b+ c

. (2.3)

Let us denote this determinant by ∆′(x; b, c). Recall that by (2.1) and (2.2) we
have

∆(x; b, c) = (−1)bc∆′(x; b, c). (2.4)

The next theorem gives the evaluation of ∆′(x; b, c).

Theorem 2. Let b, c be nonnegative integers, c ≤ b, and let, as before, ∆′(x; b, c)
denote the determinant in (2.3). Then

(i) ∆′(x; b, c) = 0 if b is even and c is odd;
(ii) if either of these conditions does not hold, then

∆′(x; b, c) = (−1)c(b−c)2c
b−c∏
i=1

(
i+ 1

2 −
⌈
b
2

⌉)
c

(i)c

×
c∏
i=1

(
x+

⌈
c+i
2

⌉)
b−c+di/2e−d(c+i)/2e

(
x+

⌈
b−c+i

2

⌉)
d(b+i)/2e−d(b−c+i)/2e(

1
2 −

⌈
b
2

⌉
+
⌈
c+i
2

⌉)
b−c+di/2e−d(c+i)/2e

(
1
2 −

⌈
b
2

⌉
+
⌈
b−c+i

2

⌉)
d(b+i)/2e−d(b−c+i)/2e

.

(2.5)

Clearly, once we have proved Theorem 2, the relation (2.4) establishes Theorem 1
immediately.

We now proceed with the proof of Theorem 2. It relies on several Lemmas, which
are stated and proved separately as Lemmas 1–4 in Section 3.



58 C. Krattenthaler and D. Zeilberger

Proof of Theorem 2. We treat both (i) and (ii) at once. That is, for now we
just assume that b and c are nonnegative integers with c ≤ b.

The method that we use to prove the Theorem consists of three steps (see [11,
Sec. 2]): In the first step we show that the right-hand side of (2.5) divides ∆′(x; b, c)
as a polynomial in x, regardless what the parity of b or c is. The reader should
observe that, although (2.5) is going to hold only if b is odd or if both b and c are
even, the right-hand side of (2.5) is nevertheless well-defined in all cases, as long
as b ≥ c. Then, in the second step we show that the degree of ∆′(x; b, c), as a
polynomial in x, is at most c(b−c). On the other hand, as is easily seen, the degree
in x of the right-hand side of (2.5) is exactly c(b− c) if b is odd or if both b and c
are even, and is exactly c(b− c) + 1 if b is even and c is odd. Therefore, if b is odd
or if both b and c are even, the determinant ∆′(x; b, c) must equal the right-hand
side of (2.5) times some constant independent of x, and it must be 0 if b is even
and c is odd. The constant in the former case is finally determined to be 1 in the
third step. This would prove both (i) and (ii).

Step 1. The right-hand side of (2.5) divides ∆′(x; b, c). This is done in Lemmas 1
and 2 in Section 3.

Step 2. ∆′(x; b, c) is a polynomial in x of degree at most c(b − c). Each term
in the defining expansion of the determinant ∆′(x; b, c) (which by definition is the
determinant in (2.3)) has degree c(b − c). Therefore, ∆′(x; b, c), being the sum of
all these terms, has degree at most c(b− c). Therefore, since the degree in x of the
right-hand side of (2.5) is exactly c(b − c) if b is odd or if both b and c are even,
∆′(x; b, c) and the right-hand side of (2.5) differ only by a multiplicative constant,
whereas, since the degree in x of the right-hand side of (2.5) is exactly c(b− c) + 1
if b is even and c is odd, ∆′(x; b, c) can only be 0.

Step 3. Determining the multiplicative constant in the case that b is odd or that
both b and c are even. If we are able to show that ∆′(x; b, c) and the right-hand
side of (2.5) do not vanish and equal each other for some particular value of x,
then it is established that the multiplicative constant connecting ∆′(x; b, c) and the
right-hand side of (2.5) must be 1. Thus, equation (2.5) would be proved.

We distinguish between the cases b even or odd.
Let first b be odd. We compare the values of ∆′(x; b, c) and the right-hand side of

(2.5) at x = −b/2. We have to show that the two values agree. Now, the right-hand
side of (2.5) at x = −b/2 equals

(−1)c(b−c)2c
b−c∏
i=1

(
i− b

2

)
c

(i)c
. (2.6)

On the other hand, let us turn to the determinant ∆′(x; b, c), given by (2.3),
evaluated at x = −b/2. In that case, the upper-right block becomes 2 times the
c× c identity matrix, and the lower-right block becomes the (b− c)× c zero matrix.
Hence, ∆′(−b/2; b, c) equals

(−1)c(b−c)2c det
c≤i,j<b

((
c− b/2
i− j + c

))
.

The evaluation of this determinant is given by Lemma 3 with X = c − b/2. Thus
we obtain for ∆′(−b/2; b, c) exactly the expression in (2.6).
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Now let b be even, and, hence, due to our assumption, also c be even. In this
case, it is of no use to set x = −b/2 in (2.5), since both sides vanish for x = −b/2.
Instead, we compare ∆′(x; b, c) and the right-hand side of (2.5) at −b/2 + 1/2.
Clearly, the right-hand side at −b/2 + 1/2 equals

(−1)c(b−c)2c
b−c∏
i=1

(
i+ 1

2 − b
2

)
c

(i)c
. (2.7)

Next, we turn to the determinant ∆′(x; b, c) evaluated at x = −b/2 + 1/2. For
convenience, we first add

i−1∑
s=0

( −1
i− s

)
· (row s of ∆′(x; b, c)

)
to row i of ∆′(x; b, c), i = c − 1, c − 2, . . . , 0. Thus, making use of the Chu–
Vandermonde summation (see e.g. [6, Sec. 5.1, (5.27)]), the determinant is trans-
formed into

det
0≤i<b, c≤j≤b+c

.............................................

.....

.....

.....

.....
(
x+ c− 1
i− j + c

)
2
(

2x+ b− 1
i− j + b

)
(

x+ c

i− j + c

) (
2x+ b

i− j + b

) 0 ≤ i < c

c ≤ i < b


c ≤ j < b b ≤ j < b+ c

. (2.8)

In this determinant we set x = −b/2 + 1/2. The effect is that the upper-right
block becomes 2 times the c×c identity matrix, while the lower-right block consists
of all zeros, except that the (c, b+c−1)-entry equals 1. Accordingly, we expand the
determinant along column b, then along column b + 1, . . . , finally, along column
b+c−1. All these columns contain just one entry 2 and 0’s else, with the exception
of the last column, which contains two non-zero entries if b > c > 0, i.e., if there
is a non-empty lower-right block. By that way, we obtain for our determinant the
difference

(−1)c(b−c)2c det
c≤i,j<b

((
c− b/2 + 1/2
i− j + c

))

− χ(b > c > 0) · (−1)c(b−c)2c−1 det
c≤i,j<b


(
c− b/2− 1/2
i− j + c

)
i = c(

c− b/2 + 1/2
i− j + c

)
i > c

 . (2.9)

Here, χ(A) = 1 if A is true and χ(A) = 0 otherwise.
The first determinant in (2.9) can be evaluated by means of Lemma 3 with

X = c− b/2 + 1/2, the second determinant is shown to equal 0 in Lemma 4. Thus
we obtain for ∆′(−b/2 + 1/2; b, c) exactly the expression in (2.7).

This completes the proof of Theorem 2. �
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3. Auxiliary Lemmas

In this section we prove the auxiliary facts that are needed in the proof of The-
orem 2 in the previous section.

Lemma 1. Let b and c be nonnegative integers such that b ≥ 2c. Then the product

c∏
i=1

(
x+

⌈
c+ i

2

⌉)
b−c+di/2e−d(c+i)/2e

(
x+

⌈
b− c+ i

2

⌉)
d(b+i)/2e−d(b−c+i)/2e

(3.1)
divides ∆′(x; b, c), the determinant given by (2.3), as a polynomial in x.

Proof. Let us concentrate on some factor (x + e) which appears in (3.1), say
with multiplicity m(e). We have to prove that (x + e)m(e) divides ∆′(x; b, c). We
accomplish this by finding m(e) linear combinations of the rows of ∆′(x; b, c) (or
of an equivalent determinant) that vanish for x = −e, and which are linearly
independent. See the Lemma in Section 2 of [11] for a formal proof of the correctness
of this procedure.

We have to distinguish between four cases, depending on the magnitude of e.
The first case is c/2 ≤ e ≤ c, the second case is c ≤ e ≤ b/2, the third case is
b/2 ≤ e ≤ b− c, and the fourth case is b− c ≤ e ≤ b− c/2.

Case 1: c/2 ≤ e ≤ c. By inspection of the expression (3.1), we see that we have
to prove that (x+ e)m(e) divides ∆′(x; b, c), where

m(e) =
{

(2e− c) c/2 ≤ e ≤ (b− c)/2
(2e− c) + (2e+ c− b) (b− c)/2 < e ≤ c. (3.2)

Note that the second case in (3.2) could be empty, but not the first, because of
b ≥ 2c.

The term (2e − c) in (3.2) is easily explained: We take (x + e) out of rows
b+ c− 2e, b+ c− 2e+ 1, . . . , b− 1 of the determinant ∆′(x; b, c). It follows from the
definition (2.3) of ∆′(x; b, c) that the remaining determinant is

det
0≤i<b, c≤j≤b+c



................................................................................

................................................................................

.....

.....

.....

.....

.....

.....

.....
(

x+ c

i− j + c

)
2
(

2x+ b

i− j + b

)
(

x+ c

i− j + c

) (
2x+ b

i− j + b

)
(x+ e+ 1)c−e

(i− j + c)!
×(x− i+ j + 1)e+i−j−1

2
(2x+ 2e+ 1)b−2e

(i− j + b)!
×(2x− i+ j + 1)2e+i−j−1

0≤ i<c

c≤ i<b+ c− 2e

b+ c− 2e≤ i<b
,


c ≤ j < b b ≤ j < b+ c

(3.3)

which we denote by ∆1(x; b, c, e). Obviously, we have taken out (x + e)2e−c. The
determinant ∆1(x; b, c, e) has still entries which are polynomial in x. For, it is
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obvious that the entries in rows i = 0, 1, . . . , b+c−2e−1 are polynomials in x, and for
i ≥ b+c−2e we have: c−e ≥ 0 by assumption, e+i−j−1 ≥ b+c−e−j−1 ≥ c−e ≥ 0
if j < b, b−2e ≥ b−2c ≥ 0 by our assumptions, and 2e+ i−j−1 ≥ b+c−j−1 ≥ 0
if j < b+ c. This explains the term (2e− c) in (3.2).

Now let e > (b− c)/2. In order to explain the term (2e+ c− b) in (3.2), we claim
that for s = 0, 1, . . . , 2e+ c− b− 1 we have

b−2e+s∑
i=0

(−1)b+c+e+i+s+1 (b+ c− 2e− i− 1)! (b− e− i− 1)!
(2e− 2s− 2)! (b− i− s− 1)!

· (e− s− 1)! (2e− c− s− 1)!
(b− 2e− i+ s)!

· (row i of ∆1(−e; b, c, e))
+
b+c−2e−1∑
i=b−e

2 (−1)b+c+i
(b+ c− 2e− i− 1)! (e− s− 1)!

(−b+ e+ i)! (2e− 2s− 2)!

· (2e− c− s− 1)! (2e− b+ i− s− 1)!
(b− i− s− 1)!

· (row i of ∆1(−e; b, c, e))
+

b−s−1∑
i=b+c−2e

(1− b− c+ 2e+ i)b−i−s−1 (1− e+ s)b−i−s−1

(b− i− s− 1)! (2− 2e+ 2s)b−i−s−1

· (row i of ∆1(−e; b, c, e))
= 0. (3.4)

Note that these are indeed 2e + c − b linear combinations of the rows, which are
linearly independent. The latter fact comes from the observation that for fixed s the
last nonzero coefficient in the linear combination (3.4) is the one for row b− s− 1.

Because of the condition s ≤ 2e+c−b−1, we have b−2e+s ≤ c−1, and therefore
the rows which are involved in the first sum in (3.4) are from rows 0, 1, . . . , c − 1,
which form the top block in (3.3). The assumptions e ≤ c and 2c ≤ b imply
b− 2e+ s ≥ 0, and so the bounds for the sum are proper bounds. Again using the
assumptions b ≥ 2c and c ≥ e, we infer b− e ≥ c, and therefore the rows which are
involved in the second sum in (3.4) are from rows c, c+ 1, . . . , b+ c− 2e− 1, which
form the middle block in (3.3). The bounds for the sum are proper, since e ≤ c
(including the possibility that c = e, in which case the second sum in (3.4) is the
empty sum). Finally, because of the condition s ≥ 0, we have b − s − 1 ≤ b − 1,
and therefore the rows which are involved in the third sum in (3.4) are from rows
b+ c− 2e, b+ c− 2e+ 1, . . . , b− 1, which form the bottom block in (3.3). Clearly,
the bounds for the sum are proper because of s ≤ 2e+ c− b− 1 ≤ 2e− c− 1. It is
also useful to observe that we need the restriction (b− c)/2 < e in order that there
is at least one s with 0 ≤ s ≤ 2e+ c− b− 1.
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Hence, in order to verify (3.4), we have to check
b−2e+s∑
i=0

(−1)b+c+e+i+s+1 (b+ c− 2e− i− 1)! (b− e− i− 1)!
(2e− 2s− 2)! (b− i− s− 1)!

· (e− s− 1)! (2e− c− s− 1)!
(b− 2e− i+ s)!

(
c− e

i− j + c

)
+

b−s−1∑
i=b+c−2e

(−1)e+i+j+1 (1− b− c+ 2e+ i)b−i−s−1 (1− e+ s)b−i−s−1

(b− i− s− 1)! (2− 2e+ 2s)b−i−s−1

· (c− e)! (e+ i− j − 1)!
(i− j + c)!

= 0, (3.5)

which is (3.4) restricted to the j-th column, j = c, c+ 1, . . . , b− 1 (note that all the
entries in rows b− e, b− e+ 1, . . . , b+ c− 2e− 1 of ∆1(−e; b, c, e) vanish in such a
column), and

b−2e+s∑
i=0

(−1)b+c+e+i+s+1 (b+ c− 2e− i− 1)! (b− e− i− 1)!
(2e− 2s− 2)! (b− i− s− 1)!

· (e− s− 1)! (2e− c− s− 1)!
(b− 2e− i+ s)!

2
(
b− 2e
i− j + b

)
+
b+c−2e−1∑
i=b−e

2 (−1)b+c+i
(b+ c− 2e− i− 1)! (e− s− 1)!

(−b+ e+ i)! (2e− 2s− 2)!

· (2e− c− s− 1)! (2e− b+ i− s− 1)!
(b− i− s− 1)!

(
b− 2e
i− j + b

)
+

b−s−1∑
i=b+c−2e

2 (−1)i+j+1 (1− b− c+ 2e+ i)b−i−s−1 (1− e+ s)b−i−s−1

(b− i− s− 1)! (2− 2e+ 2s)b−i−s−1

· (b− 2e)! (2e+ i− j − 1)!
(i− j + b)!

= 0, (3.6)

which is (3.4) restricted to the j-th column, j = b, b+ 1, . . . , b+ c− 1.
We start by proving (3.5). We remind the reader that here j is restricted to

c ≤ j < b. The two sums in (3.5) can be combined into a single sum. To be precise,
the left-hand side in (3.5) can be written as

lim
δ→0

(
b−s−1∑
i=j−c

(−1)e+i+j+1 (c− e)! (1 + δ)e+i−j−1

(i− j + c)! (b− i− s− 1)!

· (1− b− c+ 2e+ δ + i)b−i−s−1 (1− e+ δ + s)b−i−s−1

(2− 2e+ δ + 2s)b−i−s−1

)
. (3.7)

In terms of the usual hypergeometric notation

rFs

[
a1, . . . , ar
b1, . . . , bs

; z
]

=
∞∑
k=0

(a1)k · · · (ar)k
k! (b1)k · · · (bs)k z

k ,
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where the shifted factorial (a)k is given by (a)k := a(a + 1) · · · (a + k − 1), k ≥ 1,
(a)0 := 1, as before, this sum can be rewritten in the form

lim
δ→0

(
(−1)c+e+1(1)c−e (1− b− 2c+ 2e+ δ + j)b+c−j−s−1 (1− e+ δ + s)b+c−j−s−1

(1)b+c−j−s−1 (−c+ e+ δ)c−e+1 (2− 2e+ δ + 2s)b+c−j−s−1

× 3F2

[−c+ e+ δ,−b− c+ 2e− δ + j − s, 1− b− c+ j + s
1− b− 2c+ 2e+ δ + j, 1− b− c+ e− δ + j

; 1
])

.

The 3F2-series can be evaluated by means of the Pfaff–Saalschütz summation (cf.
[14, (2.3.1.3); Appendix (III.2)]),

3F2

[
A,B,−n

C, 1 +A+B − C − n ; 1
]

=
(C −A)n(C −B)n
(C)n(C −A−B)n

, (3.8)

where n is a nonnegative integer. We have to apply the case where n = b+c−j−s−1.
Note that this is indeed a nonnegative integer since j ≤ b − 1 and s ≤ c − 1. The
latter inequality comes from the assumption e ≤ c and the inequality chain

s ≤ 2e+ c− b− 1 ≤ 2e− c− 1 ≤ e− 1. (3.9)

Thus we obtain, after some simplification, the expression

lim
δ→0

(
(−1)c+e+1 (1)c−e (1− b− c+ e+ j)b+c−j−s−1 (1− c+ 2δ + s)b+c−j−s−1

(1)b+c−j−s−1 (−c+ e+ δ)c−e+1 (2− 2e+ δ + 2s)b+c−j−s−1

)
for the left-hand side in (3.5). This expression vanishes because of the occurence of
the term

(1− b− c+ e+ j)b+c−j−s−1 = (1− b− c+ e+ j)(2− b− c+ e+ j) · · · (e− s− 1)

in the numerator. For, we have 1− b− c+ e+ j ≤ 0, since e ≤ c and j ≤ b− 1, and
we have e− s− 1 ≥ 0, thanks to (3.9). This establishes (3.5).

Now we turn to (3.6). We remind the reader that here j is restricted to b ≤
j < b+ c. To begin with, we make the similar observation as before that the three
sums on the left-hand side of (3.6) can be combined into a single sum. Here, the
left-hand side in (3.6) can be written as

lim
δ→0

(
b−s−1∑
i=j−b

2 (−1)i+j+1 (b− 2e)! (1 + δ)2e+i−j−1

(b− i− s− 1)! (i− j + b)!

· (1− b− c+ 2e+ δ + i)b−i−s−1 (1− e+ δ + s)b−i−s−1

(2− 2e+ δ + 2s)b−i−s−1

)
. (3.10)

In hypergeometric notation, the sum can be rewritten as

lim
δ→0

(
2(−1)b+1 (1)b−2e (1− 2b− c+ 2e+ δ + j)2b−j−s−1 (1− e+ δ + s)2b−j−s−1

(1)2b−j−s−1 (−b+ 2e+ δ)b−2e+1 (2− 2e+ δ + 2s)2b−j−s−1

× 3F2

[−b+ 2e+ δ,−2b+ 2e− δ + j − s, 1− 2b+ j + s
1− 2b+ e− δ + j, 1− 2b− c+ 2e+ δ + j

; 1
])

.
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To this 3F2-series we apply one of Thomae’s 3F2-transformation formula (cf. [1,
Ex. 7, p. 98])

3F2

[
A,B,C
D,E

; 1
]

=
Γ(E) Γ(−A−B − C +D + E)

Γ(−A+ E) Γ(−B − C +D + E)3F2

[
A,−B +D,−C +D
D,−B − C +D + E

; 1
]
. (3.11)

Thus we obtain

lim
δ→0

(
2(−1)b+1 (1)b−2e (1− 2b− c+ 2e+ δ + j)2b−j−s−1 (1− e+ δ + s)2b−j−s−1

(1)2b−j−s−1 (−b+ 2e+ δ)b−2e+1 (2− 2e+ δ + 2s)2b−j−s−1

× Γ(1− 2b− c+ 2e+ δ + j) Γ(1 + b− c− e)
Γ(1− b− c+ j) Γ(1− c+ e+ δ)

× 3F2

[−b+ 2e+ δ, 1− e+ s, e− δ − s
1− 2b+ e− δ + j, 1− c+ e+ δ

; 1
])

for the left-hand side in (3.6). The 3F2-series in this expression terminates because
of the upper parameter 1 − e + s, which is a nonpositive integer thanks to (3.9).
Hence it is well-defined. The complete expression vanishes because of the occurence
of the term Γ(1− b− c+ j) in the denominator. For, we have 1− b− c+ j ≤ 0 and
so the gamma function equals ∞. This establishes (3.6), and thus completes the
proof that (x+ e) divides ∆′(x; b, c) with multiplicity m(e) as given in (3.2).

Case 2: c ≤ e ≤ b/2. By inspection of the expression (3.1), we see that we have
to prove that (x+ e)m(e) divides ∆′(x; b, c), where

m(e) =
{
c c ≤ e ≤ (b− c)/2
c+ (2e+ c− b) (b− c)/2 < e ≤ b/2. (3.12)

Note that the first case in (3.12) could be empty, but not the second.

We proceed in a similar manner as before. However, there is a slight deviation at
the beginning. Before we are able to extract the appropriate number of factors (x+
e) out of the determinant ∆′(x; b, c), we have to perform a few row manipulations.
We add row b− 2 to row b− 1, row b− 3 to row b− 2, . . . , row c to row c+ 1, in
that order. Then we add row b − 2 to row b − 1, row b − 3 to row b − 2, . . . , row
c + 1 to row c + 2 (but not row c to row c + 1!), etc. Finally we stop by adding
b − 2 to row b − 1, row b − 3 to row b − 2, . . . , row e − 1 to row e. The resulting
determinant is
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det
0≤i<b, c≤j≤b+c


................................................................................

................................................................................

.....

.....

.....

.....

.....

.....
(

x+ c

i− j + c

)
2
(

2x+ b

i− j + b

)
(

x+ i

i− j + c

) (
2x+ b− c+ i

i− j + b

)
(

x+ e

i− j + c

) (
2x+ b− c+ e

i− j + b

)
0≤ i<c

c≤ i<e

e≤ i<b
.


c ≤ j < b b ≤ j < b+ c

(3.13)

Now we take (x + e) out of rows b − c, b − c + 1, . . . , b − 1, and obtain the
determinant

det
0≤i<b, c≤j≤b+c



................................................................................

................................................................................

................................................................................

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....
(

x+ c

i− j + c

)
2
(

2x+ b

i− j + b

)
(

x+ i

i− j + c

) (
2x+ b− c+ i

i− j + b

)
(

x+ e

i− j + c

) (
2x+ b− c+ e

i− j + b

)
(x+e−c−i+j+1)c+i−j−1

(i− j + c)!
2

(2x+ 2e+ 1)b−c−e
(i− j + b)!

×(2x+e−c−i+j+1)c+e+i−j−1

0≤ i<c

c≤ i<e

e≤ i<b− c

b− c≤ i<b
,


c ≤ j < b b ≤ j < b+ c

(3.14)

which we denote by ∆2(x; b, c, e). Obviously, we have taken out (x + e)c. The
remaining determinant has still entries which are polynomial in x. For, it is obvious
that the entries in rows i = 0, 1, . . . , b− c−1 are polynomials in x, and for i ≥ b− c
we have: c + i − j − 1 ≥ b − j − 1 ≥ 0 if j < b, b − c − e ≥ b − 2e ≥ 0 by our
assumptions, and c+ e+ i− j − 1 ≥ b+ e− j − 1 ≥ b+ c− j − 1 ≥ 0 if j < b+ c.
This explains the term c in (3.12).

Now let e > (b − c)/2. In order to explain the term (2e + c − b) in (3.12), we



66 C. Krattenthaler and D. Zeilberger

claim that for s = 0, 1, . . . , 2e+ c− b− 1 we have

b−2e+s∑
i=0

(−1)b+c+e+i+s+1 (b+ c− 2e− i− 1)! (b− e− i− 1)!
(2e− 2s− 2)! (b− i− s− 1)!

· (e− s− 1)! (2e− c− s− 1)!
(b− 2e− i+ s)!

· (row i of ∆2(−e; b, c, e))
+
e−1∑
i=c

(
i−c∑
k=0

(−1)b+e+s
(

2e− b+ i− s− 1
i− c− k

)
(e− c− k − 1)!

k!

· (c+ k − s− 1)! (e+ k − s− 1)!
(2e− 2s− 2)!

)
· (row i of ∆2(−e; b, c, e))

+
b−e−1∑
i=e

(
e−c−1∑
k=0

(−1)b+i+s+1 (2e− b+ i− s− 1)! (c+ k − s− 1)! (e+ k − s− 1)!
k! (2e− 2s− 2)! (c+ e− b+ i+ k − s)!

)
· (row i of ∆2(−e; b, c, e))

+
b−c−1∑
i=b−e

(
e−c−1∑
k=0

(−1)b+i+s+1 (2e− b+ i− s− 1)! (c+ k − s− 1)! (e+ k − s− 1)!
k! (2e− 2s− 2)! (c+ e− b+ i+ k − s)!

+ (−1)b+c+i
(b− c− i− 1)! (c− s− 1)! (2e− b+ i− s− 1)! (b− i− s)i−b+e

(i− b+ e)! (2e− 2s− 2)!

)
· (row i of ∆2(−e; b, c, e))

+
b−s−1∑
i=b−c

(1− b+ c+ i)b−i−s−1 (1− b+ e+ i)b−i−s−1

(b− i− s− 1)! (2e− b+ i− s)b−i−s−1
· (row i of ∆2(−e; b, c, e))

= 0. (3.15)

Again, note that these are indeed 2e+ c− b linear combinations of the rows, which
are linearly independent.

Because of the condition s ≤ 2e+c−b−1, we have b−2e+s ≤ c−1, and therefore
the rows which are involved in the first sum in (3.15) are from rows 0, 1, . . . , c− 1,
which form the top block in (3.14). The assumption e ≤ b/2 guarantees that the
bounds for the sum are proper bounds. Clearly, the rows which are involved in the
second sum in (3.15) are the rows c, c + 1, . . . , e − 1, which form the second block
from top in (3.14). The assumption c ≤ e guarantees that the bounds for the sum
are proper bounds, (including the possibility that c = e, in which case the sum is
the empty sum). Because of the same assumptions, the rows which are involved in
the third and fourth sum in (3.15) are from rows e, e+ 1, . . . , b− c− 1, which form
the third block from top in (3.14). The assumption e ≤ b/2 guarantees that the
third sum in (3.15) has proper bounds (including the possibility that e = b/2, in
which case the sum is the empty sum). Finally, because of the condition s ≥ 0, we
have b− s− 1 ≤ b− 1, and therefore the rows which are involved in the fifth sum
in (3.15) are from rows b − c, b − c + 1, . . . , b− 1, which form the bottom block in
(3.14). The bounds for this fifth sum are proper because s ≤ c− 1. This inequality
follows from the inequality chain

s ≤ 2e+ c− b− 1 ≤ b+ c− b− 1 = c− 1. (3.16)
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Again, it is also useful to observe that we need the restriction (b− c)/2 < e in order
that there is at least one s with 0 ≤ s ≤ 2e+ c− b− 1.

Hence, in order to verify (3.15), we have to check

b−2e+s∑
i=0

(−1)b+c+e+i+s+1 (b+ c− 2e− i− 1)! (b− e− i− 1)!
(2e− 2s− 2)! (b− i− s− 1)!

· (e− s− 1)! (2e− c− s− 1)!
(b− 2e− i+ s)!

(
c− e

i− j + c

)
(3.17a)

+
e−1∑
i=c

(
i−c∑
k=0

(−1)b+c+e+i+k+s

(
b− c− e
i− c− k

)(
e− s− 1

k

)

· (e− c− k − 1)! (c− s− 1)! (e+ k − s− 1)!
(2e− 2s− 2)!

)(
i− e

i− j + c

)
(3.17b)

+
b−c−1∑
i=e

(
e−c−1∑
k=0

(−1)b+i+s+1 (2e− b+ i− s− 1)! (c+ k − s− 1)! (e+ k − s− 1)!
k! (2e− 2s− 2)! (c+ e− b+ i+ k − s)!

)

·
(

0
i− j + c

)
(3.17c)

+
b−c−1∑
i=b−e

(−1)b+c+i
(b− c− i− 1)! (c− s− 1)! (2e− b+ i− s− 1)! (b− i− s)i−b+e

(i− b+ e)! (2e− 2s− 2)!

·
(

0
i− j + c

)
(3.17d)

+
b−s−1∑
i=b−c

(1− b+ c+ i)b−i−s−1 (1− b+ e+ i)b−i−s−1

(b− i− s− 1)! (2e− b+ i− s)b−i−s−1
(−1)c+i+j+1 1

(i− j + c)(3.17e)

= 0, (3.17f)

which is (3.15) restricted to the j-th column, j = c, c+ 1, . . . , b− 1, and

b−2e+s∑
i=0

(−1)b+c+e+i+s+1 (b+ c− 2e− i− 1)! (b− e− i− 1)!
(2e− 2s− 2)! (b− i− s− 1)!

· (e− s− 1)! (2e− c− s− 1)!
(b− 2e− i+ s)!

2
(
b− 2e
i− j + b

)
(3.18a)

+
e−1∑
i=c

(
i−c∑
k=0

(−1)b+c+e+i+k+s

(
b− c− e
i− c− k

)(
e− s− 1

k

)

· (e− c− k − 1)! (c− s− 1)! (e+ k − s− 1)!
(2e− 2s− 2)!

)(
i+ b− c− 2e
i− j + b

)
(3.18b)

+
b−c−1∑
i=e

(
e−c−1∑
k=0

(−1)b+i+s+1 (2e− b+ i− s− 1)! (c+ k − s− 1)! (e+ k − s− 1)!
k! (2e− 2s− 2)! (c+ e− b+ i+ k − s)!

)

·
(
b− c− e
i− j + b

)
(3.18c)
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+
b−c−1∑
i=b−e

(−1)b+c+i
(b− c− i− 1)! (c− s− 1)! (2e− b+ i− s− 1)! (b− i− s)i−b+e

(i− b+ e)! (2e− 2s− 2)!

·
(
b− c− e
i− j + b

)
(3.18d)

+
b−s−1∑
i=b−c

(1− b+ c+ i)b−i−s−1 (1− b+ e+ i)b−i−s−1

(b− i− s− 1)! (2e− b+ i− s)b−i−s−1

· 2(−1)e+c+i+j+1 (b− c− e)! (i− j + c+ e− 1)!
(i− j + b)!

(3.18e)

= 0, (3.18f)

which is (3.15) restricted to the j-th column, j = b, b+ 1, . . . , b+ c− 1.
We start by proving (3.17). We remind the reader that here j is restricted

to c ≤ j < b. Apparently, (3.17) is more complex than (3.5) or (3.6), so it is
not surprising that the arguments here are more complex than the arguments for
proving (3.5) and (3.6). It turns out that the five terms in (3.17) cannot be combined
into one term, as was the case for (3.5) and (3.6). Rather we will combine (3.17a),
(3.17d), and (3.17e) into one term, (3.19), then we will combine (3.17b) and (3.17c)
into another term, (3.24), and then show how to transform one of the two into the
negative of the other.

So, we claim that the sum of (3.17a), (3.17d), and (3.17e) equals

lim
δ→0

(
b−s−1∑
i=j−c

(1− b+ c− δ + i)b−i−s−1 (1− b+ e+ δ + i)b−i−s−1

δ (b− i− s− 1)! (2e− b+ δ + i− s)b−i−s−1

(
δ

i− j + c

))
.

(3.19)
It is straight-forward to check that (3.17e) agrees with the according part i =
b− c, b− c+ 1, . . . , b− s− 1 of (3.19), and that (3.17d) agrees with the according
part i = b− e, b− e+ 1, . . . , b− c− 1 of (3.19), and that the terms for i = b− 2e+
s+1, b−2e+s+2, . . . , b−e−1 in (3.19) vanish. It remains to be seen that (3.17a)
agrees with the according part i = j − c, j − c+ 1, . . . , b− 2e+ s of (3.19), which is
not directly evident.

In order to verify the last assertion, we replace
(
c−e
i−j+c

)
in (3.17a) by the expansion∑i

`=j−c
(

0
`−j+c

)(
c−e
i−`
)
. That the binomial equals the expansion is due to the Chu–

Vandermonde summation. Then we interchange sums over i and `, and write
the now inner sum over i in hypergeometric notation. This gives for (3.17a) the
expression

b−2e+s∑
`=j−c

(−1)b+c+e+`+s+1

(
0

`− j + c

)
(b+ c− 2e− `− 1)! (b− e− `− 1)!

(2e− 2s− 2)!

· (e− s− 1)! (c+ 2e− s− 1)!
(b− `− s− 1)! (b− 2e− `+ s)!3F2

[
1− b+ `+ s,−c+ e,−b+ 2e+ `− s

1− b− c+ 2e+ `, 1− b+ e+ `
; 1
]
.

The 3F2-series can be evaluated by means of the Pfaff–Saalschütz summation (3.8).
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Thus, the expression for (3.17a) simplifies to

b−2e+s∑
`=j−c

(−1)b+c+e+`+s+1

(
0

`− j + c

)

· (b− c− `− 1)! (b+ c− 2e− `− 1)! (b− e− `− 1)! (e− s− 1)!
(2e− 2s− 2)! (b− `− s− 1)! (b− 2e− `+ s)! (c− s)b−2e−`+s

.

Now it is straight-forward to check that this agrees with the part i = j − c, j − c+
1, . . . , b− 2e+ s of (3.19).

Next we consider (3.17b) and (3.17c). We begin by replacing
(
i−e
i−j+c

)
in (3.17b)

by the expansion
∑i
`=j−c

(
0

`−j+c
)(
i−e
i−`
)
, the equality of binomial and expansion be-

ing again due to Chu–Vandermonde summation. Then we interchange the summa-
tions over i, k, ` so that the sum over ` becomes the outer sum and the sum over i
becomes the inner sum, and write the sum over i in hypergeometric notation. This
gives

e−1∑
`=j−c

(−1)b+c+e+k+`+s

(
0

`− j + c

)e−c−1∑
k=0

(e− c− k − 1)! (c− s− 1)! (e+ k − s− 1)!
k! (`− c− k)!

· (1 + b− e+ k − `)`−c−k (e− k − s)k
(2e− 2s− 2)! 2F1

[−b+ e− k + `, 1− e+ `
1− c− k + `

; 1
]

as an equivalent expression for (3.17b). The 2F1-series can be evaluated by the hy-
pergeometric form of the Chu–Vandermonde summation (see [14, (1.7.7); Appendix
(III.4)]),

2F1

[
A,−n
C

; 1
]

=
(C −A)n

(C)n
, (3.20)

where n is a nonnegative integer. In the resulting inner sum over k we reverse the
order of summation, i.e., we replace k by e − c − 1 − k, and then write the (new)
sum over k in hypergeometric notation. We obtain the expression

e−1∑
`=j−c

(−1)b+`+s+1

(
0

`− j + c

)
(c− s− 1)! (2e− c− s− 2)! (1 + c− s)e−c−1

(e− c− 1)! (2e− 2s− 2)!

· 3F2

[
1− b+ c+ `, 1, 1 + c− e
2 + c− 2e+ s, 1 + c− s ; 1

]
.

To the 3F2-series we apply another of Thomae’s transformation formulas (see [3,
(3.1.1)]),

3F2

[
A,B,−n
D,E

; 1
]

=
(−B + E)n

(E)n
3F2

[ −n,B,−A+D
D, 1 +B − E − n ; 1

]
, (3.21)

where n is a nonnegative integer. We have to apply the case where n = e− c− 1.
Because of our assumption c ≤ e this is indeed a nonnegative integer, except if
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e = c. So, let us for the moment exclude the case e = c. After little manipulation,
application of (3.21) yields the following expression for (3.17b):

e−1∑
`=j−c

(−1)b+`+s+1

(
0

`− j + c

)

·
e−c−1∑
k=0

(e− k − s− 2)! (2e− c− k − s− 2)! (2e− b+ `− k − s)k
(e− c− k − 1)! (2e− 2s− 2)!

. (3.22)

This expression is equal to (3.17b) for e = c as well since in that case both expres-
sions are zero due to empty summations over k. So, in all possible cases (3.22) is
equal to (3.17b).

The inner sum over k in (3.22) is exactly the same as the inner sum over k
in (3.17c) when the order of summation is reversed, i.e., when k is replaced by
e− c− 1− k. This shows that (3.17b) and (3.17c) can be combined into the single
expression

b−c−1∑
i=j−c

(
e−c−1∑
k=0

(−1)b+i+s+1 (c+ k − s− 1)! (e+ k − s− 1)!
k!

· (c+ e− b+ i+ k − s+ 1)e−c−k−1

(2e− 2s− 2)!

)(
0

i− j + c

)
, (3.23)

which of course equals

e−c−1∑
k=0

(−1)b+j+c+s+1 (c+ k − s− 1)! (e+ k − s− 1)!
k!

· (e− b+ j + k − s+ 1)e−c−k−1

(2e− 2s− 2)!
, (3.24)

since the binomial in (3.23) is 1 only for i = j − c and 0 otherwise. In this regard,
it is important that the range of summation over i in (3.23) is in fact not empty
(so that the term for i = j − c does indeed occur in the sum (3.23); otherwise, the
previous conclusion would have been wrong) because for (3.17) we are considering
a j with j ≤ b− 1.

Our computations so far allow the conclusion that, in order to establish (3.17),
we have to show that (3.19) and (3.24) add up to zero.

In order to see this, we start with the expression (3.19). In the sum over i, we
reverse the order of summation, i.e., we replace i by b − s − 1 − i, and then write
the new sum in hypergeometric notation, to obtain

lim
δ→0

(
(−1)b+c+j+s

(1− δ)b+c−j−s−2

(b+ c− j − s− 1)!

× 3F2

[
1− b− c+ j + s, 1− c+ δ + s, 1− e− δ + s

2− b− c+ δ + j + s, 2− 2e− δ + 2s ; 1
])

.
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To the 3F2-series we apply yet another of Thomae’s transformation formulas (see
[14, (2.3.3.7)]),

3F2

[
A,B,C
D,E

; 1
]

=
Γ(D) Γ(E) Γ(−A−B − C +D + E)

Γ(B) Γ(−A−B +D + E) Γ(−B − C +D + E)

× 3F2

[−B +D,−B + E,−A−B − C +D + E
−A−B +D + E,−B − C +D + E

; 1
]
. (3.25)

Thus we obtain

lim
δ→0

(
(−1)b+c+j+s

(e− c)b+c−j−s−1 (1− δ)b+c−j−s−2

(1)b+c−j−s−1 (c− δ − s)b−j−1 (−1− c+ 2e+ δ − s)c−s

× 3F2

[
1 + c− 2e− 2δ + s, 1 + c− e, 1− b+ j

2 + c− 2e− δ + s, 2− b− e+ j + s
; 1
])

(3.26)

as an equivalent expression for (3.19), after some simplification. The 3F2-series in
this expression is terminating because of the upper parameter 1− b+ j, which is a
nonpositive integer due to j ≤ b−1, so the 3F2-series is well-defined. The complete
expression vanishes for e = c because of the occurence of the term (e− c)b+c−j−s−1

in the numerator, for, we have b+ c− j − s− 1 > 0 since j ≤ b− 1 and s < c (cf.
(3.16)). As we did already once, let us for the moment exclude the case e = c.

Next, to the 3F2-series in (3.26), we apply the transformation (3.21) (with n =
b− j − 1, which is indeed a nonnegative integer as we noted just before), obtaining

lim
δ→0

(
(−1)b+c+j+s

(e− c)b+c−j−s−1 (1− δ)b+c−j−s−2

(1)b+c−j−s−1 (c− δ − s)b−j−1 (2e− c+ δ − s− 1)c−s

× (1− b− c+ j + s)b−j−1

(2− b− e+ j + s)b−j−1
3F2

[
1− b+ j, 1 + δ, 1 + c− e

2 + c− 2e− δ + s, 1 + c− s ; 1
])

,

and apply (3.21) once more (here we need that e − c − 1 is nonnegative, which is
only the case if e > c), obtaining

lim
δ→0

(
(−1)b+c+j+s

(e− c)b+c−j−s−1 (1− δ)b+c−j−s−2

(1)b+c−j−s−1 (1 + c− s)e−c−1

× (c− δ − s)e−c−1 (1− b− c+ j + s)b−j−1

(c− δ − s)b−j−1 (2e− c+ δ − s− 1)c−s (2− b− e+ j + s)b−j−1

× 3F2

[
1 + c− e, 1 + δ, 1 + b+ c− 2e− δ − j + s

2 + c− 2e− δ + s, 2− e+ δ + s
; 1
])

.

Now we write the 3F2-series explicitly as a sum over k and perform the termwise
limit δ → 0. This gives, after some simplification,

e−c−1∑
k=0

(−1)b+j+c+s
(e− k − s− 2)! (2e− c− k − s− 2)! (2e− b− c+ j − k − s)k

(e− c− k − 1)! (2e− 2s− 2)!
,
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which is exactly the negative of the sum (3.24) in reverse order, i.e., with k replaced
by e − c − 1 − k. Hence, the expressions (3.19) and (3.24) add up to zero. This
is also true for e = c, since, via (3.26), we saw that in that case (3.19) vanishes;
and so does (3.24) because of the empty summation over k. This establishes the
equation (3.17).

Now we turn to (3.18). We remind the reader that here j is restricted to b ≤ j <
b+ c. We pursue a similar strategy. We combine (3.18a), (3.18d), and (3.18e) into
one term, and we combine (3.18b) and (3.18c) into another term. Here, it turns
out that each combination itself is already zero.

In the same way as before, it is seen that the sum of (3.18a), (3.18d), and (3.18e)
equals

lim
δ→0

(
b−s−1∑
i=j−b

2
(1− b+ c− δ + i)b−i−s−1

δ (b− i− s− 1)!

· (1− b+ e+ δ + i)b−i−s−1

(2e− b+ δ + i− s)b−i−s−1

(
δ + b− c− e
i− j + b

))
. (3.27)

This follows by using the same arguments as those that showed that the sum of
(3.17a), (3.17d), and (3.17e) equals (3.19), the only deviation is that

(
0

i−j+c
)

has
to be replaced by

(
b−c−e
i−j+b

)
everywhere. Actually, the term (3.18d) need not be

considered since it vanishes because b− c−e < i− j+ b, and therefore the binomial
in (3.18d) vanishes. The inequality is a consequence of i ≥ b− e in the sum (3.18d)
and j < b+ c.

Now we write the sum in (3.27) in hypergeometric notation,

lim
δ→0

(
2

(1− 2b+ c− δ + j)2b−j−s−1 (1− 2b+ e+ δ + j)2b−j−s−1

δ (1)2b−j−s−1 (−2b+ 2e+ δ + j − s)2b−j−s−1

× 3F2

[−2b+ 2e+ δ + j − s, 1− 2b+ j + s,−b+ c+ e− δ
1− 2b+ c− δ + j, 1− 2b+ e+ δ + j

; 1
])

.

and then apply the transformation formula (3.11), to get

lim
δ→0

(
2

(1− 2b+ c− δ + j)2b−j−s−1 (1− 2b+ e+ δ + j)2b−j−s−1

δ (1)2b−j−s−1 (−2b+ 2e+ δ + j − s)2b−j−s−1

× Γ(1 + b− 2e) Γ(1− 2b+ e+ δ + j)
Γ(1− b+ δ + j − s) Γ(1− e+ s)

× 3F2

[−2b+ 2e+ δ + j − s, c− δ − s, 1− b− e+ j
1− 2b+ c− δ + j, 1− b+ δ + j − s ; 1

])
,

The 3F2-series in this expression terminates because of the upper parameter 1−b−
e+ j, which is a nonpositive integer since j < b+ c ≤ b+e. Hence it is well-defined.
The complete expression vanishes, because of the occurence of the term Γ(1−e+s)
in the denominator. For, we have 1−e+s ≤ 0, thanks to (3.16) and the assumption
c ≤ e, and so the gamma function equals ∞.



Proof of a Determinant Evaluation 73

Hence, the sum of (3.18a), (3.18d), and (3.18e) vanishes.
Second, in the same way as before, it is seen that the sum of (3.18b) and (3.18c)

equals

b−c−1∑
i=j−b

(
e−c−1∑
k=0

(−1)b+i+s+1 (c+ k − s− 1)! (e+ k − s− 1)!
k!

· (c+ e− b+ i+ k − s+ 1)e−c−k−1

(2e− 2s− 2)!

)(
b− c− e
i− j + b

)
. (3.28)

Similarly to before, the only change to be made in the arguments that showed that
the sum of (3.17b) and (3.17c) equals (3.23) is to start by replacing the binomial(
i+b−c−2e
i−j+b

)
in (3.18b) by the expansion

∑i
`=j−b

(
b−c−e
`−j+b

)(
i−e
i−`
)

(which is the substi-
tute of replacing the binomial

(
i−e
i−j+c

)
in (3.17b) by some expansion), and in the

subsequent calculation replace the binomial
(

0
`−j+c

)
by
(
b−c−e
`−j+b

)
everywhere.

Now, of course, we cannot argue that the sum over i in (3.28) consists of just a
single term, as opposed to (3.23), where we were could derive the expression (3.24)
accordingly. However, we may rewrite (3.28) in the slightly fancier fashion

lim
δ→0

(
b−c−1∑
i=j−b

(
e−c−1∑
k=0

(−1)b+i+s+1 (c+ k − s− 1)! (e+ k − s− 1)!
k!

· (δ + c+ e− b+ i+ k − s+ 1)e−c−k−1

(2e− 2s− 2)!

)(
b− c− e
i− j + b

))
,

interchange the sums over i and k, write the now inner sum over i in hypergeometric
notation,

lim
δ→0

(
e−c−1∑
k=0

(−1)j+s+1 (c+ k − s− 1)! (e+ k − s− 1)!
k!

· (δ + c+ e− 2b+ j + k − s+ 1)e−c−k−1

(2e− 2s− 2)!

· 2F1

[
δ − 2b+ 2e+ j − s,−b+ c+ e
δ − 2b+ c+ e+ j + k − s+ 1 ; 1

])
,

and sum the 2F1-series, using the Chu–Vandermonde summation (3.20) again, to
get

lim
δ→0

(
e−c−1∑
k=0

(−1)j+s+1 (c+ k − s− 1)! (e+ k − s− 1)!
k! (2e− 2s− 2)!

· (1 + c− e+ k)b−c−e (δ + c+ e− 2b+ j + k − s+ 1)e−c−k−1

(δ + c+ e− 2b+ j + k − s+ 1)b−c−e

)
. (3.29)

Each summand in the sum over k vanishes due to the occurence of the term

(1 + c− e+ k)b−c−e = (1 + c− e+ k)(2 + c− e+ k) · · · (b− 2e+ k)
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in the numerator. For, excluding for the moment the case e = c, we have 1 + c −
e + k ≤ 0, because the summation index k is restricted above by e − c − 1, and
b − 2e + k ≥ 0, because in the current case we are assuming e ≤ b/2. The above
argument does not apply when e = c, but in that case the sum in (3.29) is empty,
and so is zero anyway.

Hence, the sum of (3.18b) and (3.18c) vanishes, which, together with our previ-
ous finding that the sum of (3.18a), (3.18d), and (3.18e) vanishes, establishes the
equation (3.18).

Thus, the proof that (x + e) divides ∆′(x; b, c) with multiplicity m(e) as given
in (3.12) is complete.

Case 3: b/2 ≤ e ≤ b − c. By inspection of the expression (3.1), we see that we
have to prove that (x+ e)m(e) divides ∆′(x; b, c), where

m(e) =
{
c+ (b+ c− 2e) b/2 ≤ e < (b+ c)/2
c (b+ c)/2 ≤ e ≤ b− c. (3.30)

Note that the second case in (3.30) could be empty, but not the first.

To extract the appropriate number of factors (x + e) out of the determinant
∆′(x; b, c), we start again with the modified determinant (3.13). Again, we take
(x+ e) out of rows b− c, b− c+ 1, . . . , b− 1, and obtain the determinant in (3.14),
which we denoted by ∆2(x; b, c, e). Obviously, we have taken out (x + e)c. Again,
the remaining determinant has still entries which are polynomial in x. This has
to be argued here slightly differently than it was for Case 2. Sure enough, the
entries in rows i = 0, 1, . . . , b − c − 1 are polynomials in x. For i ≥ b − c we
have: c + i − j − 1 ≥ b − j − 1 ≥ 0 if j < b, b − c − e ≥ 0 by assumption, and
c + e + i − j − 1 ≥ b + e − j − 1 ≥ e − c ≥ b/2 − c ≥ 0 if j < b + c. This explains
the term c in (3.30).

Now let e < (b + c)/2. In order to explain the term (b + c − 2e) in (3.30), we
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claim that for s = 0, 1, . . . , b+ c− 2e− 1 we have

2e−b+s∑
i=0

(
2e−b−i+s∑

k=0

(−1)c+e+i+k+s+1

(
c− i− 1

b+ c− 2e+ k − s− 1

)
(2b− c− 2e− s− 1)!

k!

· (b− e− s− 1)! (c+ k − s− 1)! (b− e+ k − s− 1)!
(2b− 2e− 2s− 2)! (2b− 2e+ k − 2s− 1)!

)
· (row i of ∆2(−e; b, c, e))

+
e−1∑

i=2e+c−b
(−1)b+e+s

(e− i− 1)! (b− e− s− 1)!
(b− c− 2e+ i)!

· (b− 2e+ i− s− 1)! (b− i− s)b−c−2e+i

(2b− 2e− 2s− 2)!
· (row i of ∆2(−e; b, c, e))

+
b−c−1∑
i=e

(
(−1)b+c+i

(b− c− i− 1)! (c− s− 1)! (b− 2e+ i− s− 1)! (b− i− s)i−e
(i− e)! (2b− 2e− 2s− 2)!

+
b−c−e−1∑
k=0

(−1)b+i+s+1 (b− 2e+ i− s− 1)! (c+ k − s− 1)! (b− e+ k − s− 1)!
k! (2b− 2e− 2s− 2)! (c− e+ i+ k − s)!

)
· (row i of ∆2(−e; b, c, e))

+
b−s−1∑
i=b−c

(1− b+ c+ i)b−i−s−1 (1− e+ i)b−i−s−1

(b− i− s− 1)! (b− 2e+ i− s)b−i−s−1
· (row i of ∆2(−e; b, c, e))

= 0. (3.31)

Once more, note that these are indeed b + c − 2e linear combinations of the rows,
which are linearly independent.

Because of s ≤ b + c − 2e − 1, the rows which are involved in the first sum
in (3.31) are from rows 0, 1, . . . , c − 1, which form the top block in (3.14). The
assumption e ≥ b/2 guarantees that the bounds for the sum are proper bounds.
Because of the same assumption, the rows which are involved in the second sum
in (3.31) are from rows c, c + 1, . . . , e − 1, which form the second block from top
in (3.14). The assumption e ≤ b − c guarantees that the bounds for the sum are
proper bounds, (including the possibility that e = b − c, in which case the sum is
the empty sum). The rows which are involved in the third sum in (3.31) are clearly
the rows e, e+ 1, . . . , b− c− 1, which form the third block from top in (3.14). The
bounds for the third sum are proper because of the assumption e ≤ b− c (including
the possibility that e = b − c, in which case the sum is the empty sum). Finally,
because of the condition s ≥ 0, we have b − s − 1 ≤ b − 1, and therefore the rows
which are involved in the fourth sum in (3.31) are from rows b−c, b−c+1, . . . , b−1,
which form the bottom block in (3.14). The bounds for this fourth sum are proper
because s ≤ c− 1. This inequality follows from the inequality chain

s ≤ b+ c− 2e− 1 ≤ b+ c− b− 1 = c− 1. (3.32)

Again, it is also useful to observe that we need the restriction e < (b+ c)/2 in order
that there is at least one s with 0 ≤ s ≤ b+ c− 2e− 1.
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Hence, in order to verify (3.31), we have to check
2e−b+s∑
i=0

(
2e−b−i+s∑

k=0

(−1)c+e+i+k+s+1

(
c− i− 1

b+ c− 2e+ k − s− 1

)
(2b− c− 2e− s− 1)!

k!

· (b− e− s− 1)! (c+ k − s− 1)! (b− e+ k − s− 1)!
(2b− 2e− 2s− 2)! (2b− 2e+ k − 2s− 1)!

)(
c− e

i− j + c

)
(3.33a)

+
e−1∑

i=2e+c−b
(−1)b+e+s

(e− i− 1)! (b− e− s− 1)!
(b− c− 2e+ i)!

· (b− 2e+ i− s− 1)! (b− i− s)b−c−2e+i

(2b− 2e− 2s− 2)!

(
i− e

i− j + c

)
(3.33b)

+
b−c−1∑
i=e

(
b−c−e−1∑
k=0

(−1)b+i+s+1 (b− 2e+ i− s− 1)! (c+ k − s− 1)!
k! (2b− 2e− 2s− 2)!

· (b− e+ k − s− 1)!
(c− e+ i+ k − s)!

)(
0

i− j + c

)
(3.33c)

+
b−c−1∑
i=e

(−1)b+c+i
(b− c− i− 1)! (c− s− 1)! (b− 2e+ i− s− 1)! (b− i− s)i−e

(i− e)! (2b− 2e− 2s− 2)!

·
(

0
i− j + c

)
(3.33d)

+
b−s−1∑
i=b−c

(1− b+ c+ i)b−i−s−1 (1− e+ i)b−i−s−1

(b− i− s− 1)! (b− 2e+ i− s)b−i−s−1
(−1)c+i+j+1 1

(i− j + c) (3.33e)

= 0, (3.33f)

which is (3.31) restricted to the j-th column, j = c, c+ 1, . . . , b− 1, and
2e−b+s∑
i=0

(
2e−b−i+s∑

k=0

(−1)c+e+i+k+s+1

(
c− i− 1

b+ c− 2e+ k − s− 1

)
(2b− c− 2e− s− 1)!

k!

· (b− e− s− 1)! (c+ k − s− 1)! (b− e+ k − s− 1)!
(2b− 2e− 2s− 2)! (2b− 2e+ k − 2s− 1)!

)
2
(
b− 2e
i− j + b

)
(3.34a)

+
b−s−1∑
i=b−c

(1− b+ c+ i)b−i−s−1 (1− e+ i)b−i−s−1

(b− i− s− 1)! (b− 2e+ i− s)b−i−s−1

· 2(−1)e+c+i+j+1 (b− c− e)! (i− j + c+ e− 1)!
(i− j + b)!

(3.34b)

= 0, (3.34c)

which is (3.31) restricted to the j-th column, j = b, b + 1, . . . , b + c − 1. Equation
(3.34) is indeed the restriction of (3.31) to the j-th column, j = b, b+1, . . . , b+c−1,
because all the entries in rows 2e+c− b, 2e+c− b+1, . . . , b−c−1 of ∆2(−e; b, c, e)
vanish in such a column. For, due to the assumption b/2 ≤ e, we have

i+ b− c− 2e ≤ i− c < i− j + b,
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therefore the entries
(
i+b−c−2e
i−j+b

)
in rows 2e + c − b, 2e + c − b + 1, . . . , e− 1 vanish

in such a column, and for i ≥ e we have

b− c− e ≤ e− c ≤ i− c < i− j + b,

therefore the entries
(
b−c−e
i−j+b

)
in rows e, e+ 1, . . . , b− c− 1 vanish in such a column.

We start by proving (3.33). We remind the reader that here j is restricted to
c ≤ j < b. Our strategy consists of exhibiting that (3.33) is equivalent to (3.17) with
e replaced by b − e. Once this is done, the validity of (3.33) follows immediately.
(It should be observed that the ranges of parameters in (3.33) and in (3.17) with e
replaced by b−e correspond to each other perfectly: While in (3.33) the parameter
e is restricted to b/2 ≤ e < (b+c)/2, in (3.17) it is restricted to (b−c)/2 < e ≤ b/2,
which matches nicely under the replacement e→ b− e. A similar match occurs for
the range of s.)

It is obvious that (3.33e) equals (3.17e) with e replaced by b−e, and that (3.33d)
equals (3.17d) with e replaced by b − e. On other hand, it is not immediate that
the sum of (3.33b) and (3.33c) matches with the sum of (3.17b) and (3.17c), and
that (3.33a) matches (3.17a), under the same replacement.

First, we show how to convert (3.33a) into (3.17a) with e replaced by b− e. We
replace

(
c−e
i−j+c

)
in (3.33a) by the expansion

∑i
`=j−c

(
c−b+e
`−j+c

)(
b−2e
i−`
)
, the equality of

binomial and expansion being again due to Chu–Vandermonde summation. Then
we interchange summations over i, k, ` so that the sum over ` becomes the outer
sum and the sum over i becomes the inner sum, and write the sum over i in
hypergeometric notation. This gives for (3.33a) the expression

2e−b+s∑
`=j−c

(
c− b+ e

`− j + c

) 2e−b−`+s∑
k=0

(−1)b+e+`
(2b− c− 2e− s− 1)! (b− e− s− 1)!

k! (2b− 2e− 2s− 2)!

· (c+ k − s− 1)! (b− e+ k − s− 1)! (1− c+ `)b+c−2e+k−s−1

(2b− 2e+ k − 2s− 1)! (b+ c− 2e+ k − s− 1)!

· 2F1

[
2e− b, b− 2e+ k + `− s

1− c+ `
; 1
]
.

The 2F1-series can be evaluated by the hypergeometric form (3.20) of the Chu–
Vandermonde summation. In the resulting expression we write the sum over k in
hypergeometric notation, and obtain

2e−b+s∑
`=j−c

(
c− b+ e

`− j + c

)
(−1)c+e+`+s+1 (2e+ c− b− `− 1)! (2b− c− 2e− s− 1)!

(2b− 2e− 2s− 2)! (2b− 2e− 2s− 1)!

· (b− e− s− 1)!2

(2e− b− `+ s)! 2F1

[
b− e− s, b− 2e+ `− s

2b− 2e− 2s ; 1
]
.

Again, Chu–Vandermonde summation (3.20) can be applied. After some simplifi-
cation, this gives the expression

2e−b+s∑
`=j−c

(
c− b+ e

`− j + c

)
(−1)c+e+`+s+1 (2e+ c− b− `− 1)! (2b− c− 2e− s− 1)!

(b− `− s− 1)! (2b− 2e− 2s− 2)!

· (b− e− s− 1)! (e− `− 1)!
(2e− b− `+ s)!

,
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which is exactly (3.17a) with e replaced by b− e.
Now we turn to the relation of (3.33b)+(3.33c) and (3.17b)+(3.17c). In order to

simplify matters, we make use of the fact that the sum of (3.17b) and (3.17c) equals
(3.23), as was shown in the proof of (3.17). It is apparent that (3.33c) matches with
the part i = e, e+1, . . . , b−c−1 of (3.23) with e replaced by b−e. So, it remains to
be seen that (3.33b) matches with the remaining part i = j − c, j − c+ 1, . . . , e− 1
of (3.23), under the same replacement.

In order to verify the last assertion, we replace
(
i−e
i−j+c

)
in (3.33b) by the expan-

sion
∑i
`=j−c

(
0

`−j+c
)(
i−e
i−`
)
. That the binomial equals the expansion is once again

due to the Chu–Vandermonde summation. Subsequently, we interchange sums over
i and `. In the now inner sum over i, we reverse the order of summation, i.e., we
replace i by e − 1 − i, and then we write the new sum over i in hypergeometric
notation. This gives for (3.33b) the expression

e−1∑
`=j−c

(
0

`− j + c

)
(−1)b+`+s+1 (b− e− s− 2)! (b− e− s− 1)!

(b− c− e− 1)!

· (1 + b− e− s)b−c−e−1

(2b− 2e− 2s− 2)! 3F2

[
1− e+ `, 1, 1− b+ c+ e

2− b+ e+ s, 1 + b− e− s ; 1
]
. (3.35)

To the 3F2-series we apply, once again, the transformation formula (3.21). We need
to apply the case where n = b− c− e− 1. Due to our assumption e ≤ b− c, this is
indeed a nonnegative integer, except if e = b− c. So, let us for the moment exclude
the case e = b − c. After little manipulation, application of (3.21) to (3.35) yields
the following expression for (3.33b):

e−1∑
i=j−c

(
b−e−c−1∑
k=0

(−1)b+i+s+1 (c+ k − s− 1)! (b− e+ k − s− 1)!
k!

· (c− e+ i+ k − s+ 1)b−c−e−k−1

(2b− 2e− 2s− 2)!

)(
0

i− j + c

)
.

This is exactly the part i = j−c, j−c+1, . . . , e−1 of (3.23) with e replaced by b−e.
In the excluded case e = b− c, (3.33b) and the part i = j − c, j − c+ 1, . . . , e− 1 of
(3.23) with e replaced by b− e are also in agreement, since both expressions vanish
in that case, due to an empty summation over i in (3.33b) and an empty summation
over k in (3.23) with e replaced by b − e. Hence, in all cases, we have established
the equality of (3.33b) and the part i = j − c, j − c + 1, . . . , e − 1 of (3.23) with e
replaced by b − e. Therefore, in all cases, the sum of (3.33b) and (3.33c) is equal
to the sum of (3.17b) and (3.17c) with e replaced by b− e.

This completes the argument that (3.33) is equivalent to (3.17) with e replaced
by b− e, and so establishes the equation (3.33).

Now we turn to (3.34). We claim that the two sums in (3.34) can be combined
into one term,

lim
δ→0

(
b−s−1∑
i=j−b

2 (−1)c+e+i+j+1 (b− c− e)! (1 + δ)c+e+i−j−1

(b+ i− j)! (b− i− s− 1)!

· (1− b+ c+ δ + i)b−i−s−1 (1− e+ δ + i)b−i−s−1

(b− 2e+ δ + i− s)b−i−s−1

)
. (3.36)
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It is obvious that (3.34b) agrees with the according part i = b−c, b−c+1, . . . , b−s−1
of (3.36). It is also straight-forward to check that the terms for i = 2e − b + s +
1, 2e − b + s + 2, . . . , b− c − 1 in (3.36) vanish. It remains to be seen that (3.34a)
agrees with the according part i = j − b, j − b+ 1, . . . , 2e− b+ s of (3.36).

In order to verify the last assertion, we replace
(
b−2e
i−j+b

)
in (3.34a) by the expan-

sion
∑i
`=j−b

(
b−c−e
`−j+c

)(
c−e
i−`
)
, again making use of the Chu–Vandermonde summation.

Then we interchange summations over i, k, ` so that the sum over ` becomes the
outer sum and the sum over i becomes the inner sum, and write the sum over i in
hypergeometric notation. This gives for (3.34a) the expression

2e−b+s∑
`=j−b

(
b− c− e
`− j + b

) 2e−b−`+s∑
k=0

2 (−1)b+e+`
(2b− c− 2e− s− 1)! (b− e− s− 1)!

k! (2b− 2e− 2s− 2)!

· (c+ k − s− 1)! (b− e+ k − s− 1)! (1− c+ `)b+c−2e+k−s−1

(2b− 2e+ k − 2s− 1)! (b+ c− 2e+ k − s− 1)!

· 2F1

[
e− c, b− 2e+ k + `− s

1− c+ `
; 1
]
.

We sum the 2F1-series by means of the hypergeometric form (3.20) of the Chu–
Vandermonde summation, and in the resulting expression write the inner sum over
k in hypergeometric notation, to obtain the expression

2e−b+s∑
`=j−b

(
b− c− e
`− j + b

)
2 (−1)c+e+`+s+1 (e− `− 1)! (c− s− 1)!

(2b− 2e− 2s− 2)!

· (2b− c− 2e− s− 1)! (b− e− s− 1)!
(2b− 2e− 2s− 1)! (2e− b− `+ s)! 2F1

[
c− s, b− 2e+ `− s

2b− 2e− 2s ; 1
]
.

Another application of the Chu–Vandermonde summation (3.20) yields the expres-
sion

2e−b+s∑
`=j−b

(
b− c− e
`− j + b

)
2 (−1)c+e+`+s+1 (b− c− `− 1)! (e− `− 1)!

(2b− 2e− 2s− 2)!

· (c− s− 1)! (b− e− s− 1)!
(b− `− s− 1)! (2e− b− `+ s)!

for (3.34a). It is now straight-forward to check that this sum is equal the according
part i = j − b, j − b+ 1, . . . , 2e− b+ s of (3.36).

So, in order to prove (3.34), we need to show that (3.36) vanishes. To accomplish
this, we write the sum in (3.36) in hypergeometric notation,

lim
δ→0

(
2 (−1)b+c+e+1 (1)b−c−e (1 + δ)b+c+e−1

(1)2b−j−s−1

× (1− 2b+ c+ δ + j)2b−j−s−1 (1− b− e+ δ + j)2b−j−s−1

(−2e+ δ + j − s)2b−j−s−1

× 3F2

[−b+ c+ e+ δ,−2e+ δ + j − s, 1− 2b+ j + s
1− 2b+ c+ δ + j, 1− b− e+ δ + j

; 1
])

,
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and to the 3F2-series apply the Saalschütz summation (3.8). We have to apply the
case where n = 2b− j− s− 1, which is indeed a nonnegative integer because of the
inequality chain

2b− j − s− 1 ≥ b− c− s ≥ c− s ≥ 1,

the last inequality being due to (3.32). Thus, we obtain for (3.36) the expression

lim
δ→0

(
2 (−1)b+c+e+1 (1)b−c−e (1 + δ)c+e−b−1 (1− b− e+ j)2b−j−s−1

(1)2b−j−s−1 (−2e+ δ + j − s)2b−j−s−1

· (1− b− e+ δ + j)2b−j−s−1 (1− 2b+ c+ 2e+ s)2b−j−s−1

(1− b+ e− δ + s)2b−j−s−1

)
.

This expression is indeed zero, because of the occurence of the term

(1− b− e+ j)2b−j−s−1 = (1− b− e+ j)(2− b− e+ j) · · · (b− e− s− 1)

in the numerator. For, we have 1−b−e+j ≤ −e+c ≤ 0, and we have b−e−s−1 ≥
−c+ e ≥ 0. This establishes equation (3.34).

Thus, the proof that (x + e) divides ∆′(x; b, c) with multiplicity m(e) as given
in (3.30) is complete.

Case 4: b − c ≤ e ≤ b − c/2. By inspection of the expression (3.1), we see that
we have to prove that (x+ e)m(e) divides ∆′(x; b, c), where

m(e) =
{

(2b− 2e− c) + (b+ c− 2e) b− c ≤ e < (b+ c)/2
(2b− 2e− c) (b+ c)/2 ≤ e ≤ b− c/2. (3.37)

Note that the first case in (3.37) could be empty, but not the second, because of
b ≥ 2c.

In order to explain the term 2b− 2e− c in (3.37), we start with the determinant
(3.13) with e = b. (This determinant equals ∆′(x; b, c) as we showed by a few
row manipulations at the beginning of Case 2.) The choice of e = b has the
effect that the bottom block in (3.13) is empty. Now we take (x + e) out of rows
2e+ c− b, 2e+ c− b+ 1, . . . , b− 1, and obtain the determinant

det
0≤i<b, c≤j≤b+c



................................................................................

................................................................................

.....

.....

.....

.....

.....

.....

.....
(

x+ c

i− j + c

)
2
(

2x+ b

i− j + b

)
(

x+ i

i− j + c

) (
2x+ b− c+ i

i− j + b

)
(x+ e+ 1)i−e

(i− j + c)!
×(x− c+ j + 1)e+c−j−1

2
(2x+ 2e+ 1)i+b−c−2e

(i− j + b)!
×(2x− c+ j + 1)2e+c−j−1

0≤ i<c

c≤ i<2e+ c− b

2e+ c− b≤ i<b
,


c ≤ j < b b ≤ j < b+ c

(3.38)
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which we denote by ∆3(x; b, c, e). Obviously, we have taken out (x+e)2b−2e−c. The
remaining determinant has still entries which are polynomial in x. For, it is obvious
that the entries in rows i = 0, 1, . . . , 2e + c − b − 1 are polynomials in x, and for
i ≥ 2e+c−b we have: i−e ≥ e+c−b ≥ 0 by assumption, e+c−j−1 ≥ e+c−b ≥ 0
if j < b, i + b − c − 2e ≥ 0, and 2e + c − j − 1 ≥ 2e − b ≥ b − 2c ≥ 0 if j < b + c.
This explains the term (2b− 2e− c) in (3.37).

Now let e < (b + c)/2. In order to explain the term (b + c − 2e) in (3.37), we
claim that for s = 0, 1, . . . , b+ c− 2e− 1 we have

2e−b+s∑
i=0

(
2e−b−i+s∑

k=0

(−1)c+e+i+k+s+1

(
c− i− 1

b+ c− 2e+ k − s− 1

)
(2b− c− 2e− s− 1)!

k!

· (b− e− s− 1)! (c+ k − s− 1)! (b− e+ k − s− 1)!
(2b− 2e− 2s− 2)! (2b− 2e+ k − 2s− 1)!

)
· (row i of ∆3(−e; b, c, e))

+
2e+c−b−1∑

i=e

2(−1)c+s
(2e+ c− b− i− 1)! (2b− c− 2e− s− 1)! (1− e+ i)b−i−s−1

(b− i− s− 1)! (b− 2e+ i− s)b−i−s−1

· (row i of ∆3(−e; b, c, e))
+

b−s−1∑
i=2e+c−b

(−1)b−i−s−1 (1 + b− c− 2e+ i)b−i−s−1 (1− e+ i)b−i−s−1

(b− i− s− 1)! (b− 2e+ i− s)b−i−s−1

· (row i of ∆3(−e; b, c, e))
= 0. (3.39)

Once again, note that these are indeed b+ c− 2e linear combinations of the rows,
which are linearly independent.

Because of s ≤ b+c−2e−1, the rows which are involved in the first sum in (3.39)
are from rows 0, 1, . . . , c − 1, which form the top block in (3.38). The inequality
chain 2e− b+ s ≥ b−2c+ s ≥ 0 guarantees that the bounds for the sum are proper
bounds. Because of e ≥ b − c ≥ c, the rows which are involved in the second sum
in (3.39) are from rows c, c + 1, . . . , 2e + c − b − 1, which form the middle block
in (3.38). The assumption b − c ≤ e guarantees that the bounds for the sum are
proper bounds (including the possibility that e = b − c, in which case the sum is
the empty sum). Finally, because of the condition s ≥ 0, we have b− s− 1 ≤ b− 1,
and therefore the rows which are involved in the third sum in (3.39) are from rows
2e + c − b, 2e + c − b + 1, . . . , b − 1, which form the bottom block in (3.38). The
bounds for this third sum are proper because of 2e + c − b ≤ 2e − c ≤ b − s − 1.
Again, it is also useful to observe that we need the restriction e < (b+ c)/2 in order
that there is at least one s with 0 ≤ s ≤ b+ c− 2e− 1.
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Hence, in order to verify (3.39), we have to check

2e−b+s∑
i=0

(
2e−b−i+s∑

k=0

(−1)c+e+i+k+s+1

(
c− i− 1

b+ c− 2e+ k − s− 1

)
(2b− c− 2e− s− 1)!

k!

· (b− e− s− 1)! (c+ k − s− 1)! (b− e+ k − s− 1)!
(2b− 2e− 2s− 2)! (2b− 2e+ k − 2s− 1)!

)(
c− e

i− j + c

)
(3.40a)

+
b−s−1∑

i=2e+c−b
(−1)b+c+e+i+j+s

(1 + b− c− 2e+ i)b−i−s−1 (1− e+ i)b−i−s−1

(b− i− s− 1)! (b− 2e+ i− s)b−i−s−1

· (i− e)! (e+ c− j − 1)!
(i− j + c)!

(3.40b)

= 0, (3.40c)

which is (3.39) restricted to the j-th column, j = c, c + 1, . . . , b − 1, (note that
this is indeed the restriction of (3.39) to the j-th column, c ≤ j < b, since, due to
0 ≤ i− e ≤ i− b+ c < i− j+ c, the entries

(
i−e
i−j+c

)
in rows e, e+ 1, . . . , 2e+ c− b−1

of ∆3(−e; b, c, e) vanish in such a column), and

2e−b+s∑
i=0

(
2e−b−i+s∑

k=0

(−1)c+e+i+k+s+1

(
c− i− 1

b+ c− 2e+ k − s− 1

)
(2b− c− 2e− s− 1)!

k!

· (b− e− s− 1)! (c+ k − s− 1)! (b− e+ k − s− 1)!
(2b− 2e− 2s− 2)! (2b− 2e+ k − 2s− 1)!

)
2
(
b− 2e
i− j + b

)
(3.41a)

+
2e+c−b−1∑

i=e

2(−1)c+s
(2e+ c− b− i− 1)! (2b− c− 2e− s− 1)! (1− e+ i)b−i−s−1

(b− i− s− 1)! (b− 2e+ i− s)b−i−s−1

·
(
i+ b− c− 2e
i− j + b

)
(3.41b)

+
b−s−1∑

i=2e+c−b
(−1)b+c+i+j+s

(1 + b− c− 2e+ i)b−i−s−1 (1− e+ i)b−i−s−1

(b− i− s− 1)! (b− 2e+ i− s)b−i−s−1

· 2 (i+ b− c− 2e)! (2e+ c− j − 1)!
(i− j + b)!

(3.41c)

= 0, (3.41d)

which is (3.39) restricted to the j-th column, j = b, b+ 1, . . . , b+ c− 1.
We start by proving (3.40). We remind the reader that here j is restricted to

c ≤ j < b. We claim that the left-hand side of (3.40) can be written as

lim
δ→0

(
b−s−1∑
i=j−c

(−1)b+c+e+i+j+s
(b− e− s− 1)! (1 + δ)c+e−j−1

(i− j + c)! (b− i− s− 1)!

· (1 + b− c− 2e+ δ + i)b−i−s−1

(b− 2e+ δ + i− s)b−i−s−1

)
. (3.42)
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It is apparent that (3.40b) equals the according part i = 2e + c − b, 2e + c −
b + 1, . . . , b − s − 1 of (3.42). It is also easy to check that the terms for i =
2e− b + s + 1, 2e− b + s + 2, . . . , 2e + c− b− 1 in (3.42) vanish. It remains to be
seen that (3.40a) equals the remaining part i = j − c, j − c + 1, . . . , 2e − b + s of
(3.42), which is not directly evident.

In order to verify this last assertion, we replace
(
c−e
i−j+c

)
in (3.40a) by the expan-

sion
∑i
`=j−c

(
`−e
`−j+c

)(
c−`−1
i−`

)
, making again use of the Chu–Vandermonde summa-

tion. Then we interchange summations over i, k, ` so that the sum over ` becomes
the outer sum and the sum over i becomes the inner sum, and write the sum over
i in hypergeometric notation. This gives for (3.40a) the expression

2e−b+s∑
`=j−c

(
`− e

`− j + c

) 2e−b−`+s∑
k=0

(−1)c+e+k+`+s+1 (2b− c− 2e− s− 1)! (b− e− s− 1)!
k!

· (c+ k − s− 1)!(b− e+ k − s− 1)! (1− b+ 2e− k − `+ s)b+c−2e+k−s−1

(2b− 2e− 2s− 2)!(2b− 2e+ k − 2s− 1)! (b+ c− 2e+ k − s− 1)!

· 1F0

[
b− 2e+ k + `− s

− ; 1
]
. (3.43)

Clearly, because of the hypergeometric form of the binomial theorem (see [14, Ap-
pendix (III.1)]),

1F0

[
a
− ; z

]
= (1− z)−a,

the 1F0-series in (3.43) is nonzero only if k = 2e − b − ` + s, in which case it is 1.
Hence, we obtain for (3.40a) the expression

2e−b+s∑
`=j−c

(−1)b+c+e+1

(
`− e

`− j + c

)

× (e− `− 1)! (2e+ c− b− `− 1)! (2b− c− 2e− s− 1)! (b− e− s− 1)!
(2b− 2e− 2s− 2)! (b− `− s− 1)! (2e− b− `+ s)!

.

It is now readily checked that this agrees with the part i = j−c, j−c+1, . . . , 2e−b+s
of (3.42).

Hence, in order to prove (3.40), we have to show that (3.42) vanishes. We do
this by writing the sum (3.42) in hypergeometric notation,

lim
δ→0

(
(−1)b+e+s

(b− e− s− 1)! (1 + δ)c+e−j−1 (1 + b− 2c− 2e+ δ + j)b+c−j−s−1

(b+ c− j − s− 1)! (b− c− 2e+ δ + j − s)b+c−j−s−1

× 2F1

[
b− c− 2e+ δ + j − s, 1− b− c+ j + s

1 + b− 2c− 2e+ δ + j
; 1
])

,

and summing the 2F1-series, once again, by means of the hypergeometric form
(3.20) of Chu–Vandermonde summation. We have to apply the case where n =
b + c − j − s − 1. This is indeed a nonnegative integer, because of j ≤ b − 1 and
because of the inequality chain

s ≤ b+ c− 2e− 1 ≤ b+ c− 2(b− c)− 1 = 3c− b− 1 ≤ c− 1. (3.44)
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Thus, we obtain for (3.42) the expression

lim
δ→0

(
(−1)b+e+s

(b− e− s− 1)! (1 + δ)c+e−j−1 (1− c+ s)b+c−j−s−1

(b+ c− j − s− 1)! (b− c− 2e+ δ + j − s)b+c−j−s−1

)
,

which does indeed vanish due to the occurence of the term

(1− c+ s)b+c−j−s−1 = (1− c+ s)(2− c+ s) · · · (b− j − 1)

in the numerator. For, by (3.44) we have 1− c+ s ≤ 0 and we have b− j − 1 ≥ 0.
This establishes the equation (3.40).

Finally, we turn to (3.41). We remind the reader that here j is restricted to
b ≤ j < b+ c. We claim that the left-hand side of (3.41) can be combined into the
single term

lim
δ→0

(
b−s−1∑
i=j−b

2(−1)b+c+i+j+s
(c+ 2e− j − 1)! (1 + δ)b−c−2e+i

(i− j + b)! (b− i− s− 1)!

· (1 + b− c− 2e+ δ + i)b−i−s−1 (1− e+ δ + i)b−i−s−1

(b− 2e+ δ + i− s)b−i−s−1

)
. (3.45)

In fact, it is straight-forward to check that (3.41c) agrees with the according part
i = 2e+ c− b, 2e+ c− b+ 1, . . . , b− s−1 of (3.45), and that (3.41b) agrees with the
according part i = e, e+ 1, . . . , 2e+ c− b−1 of (3.45). It is also easy to see that the
terms for i = 2e−b+s+1, 2e−b+s+2, . . . , e−1 in (3.45) vanish. That (3.41a) agrees
with the part i = j−b, j−b+1, . . . , 2e−b+s of (3.45) is proved in the same way as it
was proved before that (3.40a) agrees with the part i = j−c, j−c+1, . . . , 2e−b+s

of (3.42). The only change to be made is to start by replacing the binomial
(
b−2e
i−j+b

)
in (3.41a) by the expansion

∑i
`=j−b

(
`+b−c−2e
`−j+b

)(
c−`−1
i−`

)
(which is the substitute of

replacing the binomial
(
c−e
i−j+c

)
in (3.40a) by an expansion), and in the subsequent

calculation replace the binomial
(
`−e
`−j+c

)
by
(
`+b−c−2e
`−j+b

)
everywhere.

So, in order to prove equation (3.41), we need to show that (3.45) vanishes. In
hypergeometric notation, the expression (3.45) reads

lim
δ→0

(
2(−1)c+s

(c+ 2e− j − 1)! (1 + δ)−c−2e+j (1− c− 2e+ δ + j)2b−j−s−1

(2b− j − s− 1)!

× (1− b− e+ δ + j)2b−j−s−1

(−2e+ δ + j − s)2b−j−s−1
2F1

[−2e+ δ + j − s, 1− 2b+ j + s
1− b− e+ δ + j

; 1
])

.

Clearly, we want to apply the hypergeometric form (3.20) of Chu–Vandermonde
summation again, with n = 2b − j − s − 1. This is indeed a nonnegative integer
because of the inequality chain

2b− j − s− 1 ≥ b− c− s ≥ 2e− 2c+ 1 ≥ 2b− 4c+ 1 ≥ 1.
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Thus, we obtain for (3.45) the expression

lim
δ→0

(
2(−1)c+s

(c+ 2e− j − 1)! (1 + δ)−c−2e+j

(2b− j − s− 1)!

× (1− c− 2e+ δ + j)2b−j−s−1 (1− b+ e+ s)2b−j−s−1

(−2e+ δ + j − s)2b−j−s−1

)
.

This expression does indeed vanish, because of the occurence of the term

(1− b+ e+ s)2b−j−s−1 = (1− b+ e+ s)(2− b+ e+ s) · · · (b+ e− j − 1)

in the numerator. For, we have 1− b+ e+ s ≤ c− e ≤ 2c− b ≤ 0 and b+ e− j−1 ≥
e− c ≥ 0. This establishes equation (3.41).

Thus, the proof that (x + e) divides ∆′(x; b, c) with multiplicity m(e) as given
in (3.37) is complete.

This finishes the proof of Lemma 1. �

Lemma 2. Let b and c be nonnegative integers such that c ≤ b ≤ 2c. Then the
product

c∏
i=1

(
x+

⌈
c+ i

2

⌉)
b−c+di/2e−d(c+i)/2e

(
x+

⌈
b− c+ i

2

⌉)
d(b+i)/2e−d(b−c+i)/2e

(3.46)
divides ∆′(x; b, c), the determinant given by (2.3), as a polynomial in x.

Proof. As in the proof of Lemma 1, let us concentrate on some factor (x + e)
which appears in (3.46), say with multiplicity m(e). We have to prove that (x +
e)m(e) divides ∆′(x; b, c). As before, we accomplish this by finding m(e) linear
combinations of the rows of ∆′(x; b, c) (or of an equivalent determinant) that vanish
for x = −e, and which are linearly independent.

Also here, we have to distinguish between four cases, depending on the magnitude
of e. The first case is (b− c)/2 ≤ e ≤ b− c, the second case is b− c ≤ e ≤ b/2, the
third case is b/2 ≤ e ≤ c, and the fourth case is c ≤ e ≤ (b+ c)/2.

Case 1: (b − c)/2 ≤ e ≤ b − c. By inspection of the expression (3.46), we see
that we have to prove that (x+ e)m(e) divides ∆′(x; b, c), where

m(e) =
{

(2e+ c− b) (b− c)/2 ≤ e ≤ c/2
(2e+ c− b) + (2e− c) c/2 < e ≤ b− c. (3.47)

Note that the second case in (3.47) could be empty, but not the first, because of
b ≤ 2c.

The term (2e−c) in the (c/2 < e)-case of (3.47) is easily explained: As in Case 1
of the proof of Lemma 1, we take (x+e) out of rows b+c−2e, b+c−2e+1, . . . , b−1
of the determinant ∆′(x; b, c) (clearly, such rows exist only if c/2 < e), and thus
obtain the determinant (3.3), which we denoted by ∆1(x; b, c, e). Also here, this
determinant has still entries which are polynomial in x. For, it is obvious that the
entries in rows i = 0, 1, . . . , b+c−2e−1 are polynomials in x, and for i ≥ b+c−2e we
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have: c−e ≥ 2c−b ≥ 0 by our assumptions, e+i−j−1 ≥ b+c−e−j−1 ≥ c−e ≥ 0
if j < b, b−2e ≥ 2c−b ≥ 0 by our assumptions, and 2e+ i−j−1 ≥ b+c−j−1 ≥ 0
if j < b+ c. This explains the term (2e− c) in (3.47).

In order to explain the term (2e + c − b) in (3.47), we claim that for s =
0, 1, . . . , 2e+ c− b− 1 we have

b−2e+s∑
i=0

(−1)b+c+e+i+s+1 (b+ c− 2e− i− 1)! (b− e− i− 1)!
(2e− 2s− 2)! (b− i− s− 1)!

· (e− s− 1)! (2e+ c− b− s− 1)!
(b− 2e− i+ s)!

· (row i of ∆1(−e; b, c, e))
+

min{b+c−2e−1,b−s−1}∑
i=b−e

2 (−1)b+c+i
(b+ c− 2e− i− 1)! (e− s− 1)!

(i+ e− b)! (2e− 2s− 2)!

· (2e+ c− b− s− 1)! (2e− b+ i− s− 1)!
(b− i− s− 1)!

· (row i of ∆1(−e; b, c, e))
+ χ(s ≥ 2e− c)

b−s−1∑
i=b+c−2e

(1− b− c+ 2e+ i)2c−i−s−1 (1− e+ s)b−i−s−1

(b− i− s− 1)! (2− 2e+ 2s)b−i−s−1

· (row i of ∆1(−e; b, c, e))
= 0. (3.48)

The notation in this assertion needs some explanation. Whereas the meaning
of ∆1(x; b, c, e) is clear if c/2 < e, in the alternative case e ≤ c/2 the symbol
∆1(x; b, c, e) stands for the original determinant ∆′(x; b, c), in abuse of notation.
(An alternative way to see this is to say that ∆1(x; b, c, e), in that case, is also
given by (3.3), but because of e ≤ c/2 the bottom block is empty, and therefore the
middle block ranges over i = c, c + 1, . . . , b− 1.) As earlier, the truth symbol χ(.)
is defined by χ(A) = 1 if A is true and χ(A) = 0 otherwise. So, the third sum in
(3.48) only appears if s ≥ 2e− c.

Note that these are indeed 2e + c − b linear combinations of the rows, which
are linearly independent. The latter fact comes from the observation that for fixed
s the last nonzero coefficient in the linear combination (3.48) is the one for row
b− s− 1, regardless whether s ≥ 2e− c or not.

Because of the condition s ≤ 2e+c−b−1, we have b−2e+s ≤ c−1, and therefore
the rows which are involved in the first sum in (3.48) are from rows 0, 1, . . . , c− 1,
which form the top block in (3.3). The assumptions e ≤ b − c and b ≤ 2c imply
b − 2e + s ≥ 0, and so the bounds for the sum are proper bounds. Because of
b − e ≥ c, the rows which are involved in the second sum in (3.48) are from rows
c, c + 1, . . . , b + c − 2e − 1, which form the middle block in (3.3). The bounds for
the sum are proper, since by our assumptions we have

s ≤ 2e+ c− b− 1 ≤ e− 1 ≤ b− c− 1 ≤ c− 1, (3.49)

and therefore b−e ≤ b−s−1 and b−e ≤ b+c−2e (including the possibility that c = e,
in which case the second sum in (3.48) is the empty sum). Finally, because of the
condition s ≥ 0, we have b−s−1 ≤ b−1, and therefore the rows which are involved
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in the third sum in (3.48) (if existent) are from rows b+c−2e, b+c−2e+1, . . . , b−1,
which form the bottom block in (3.3).

Hence, in order to verify (3.48), we have to check

b−2e+s∑
i=0

(−1)b+c+e+i+s+1 (b+ c− 2e− i− 1)! (b− e− i− 1)!
(2e− 2s− 2)! (b− i− s− 1)!

· (e− s− 1)! (2e+ c− b− s− 1)!
(b− 2e− i+ s)!

(
c− e

i− j + c

)
+ χ(s ≥ 2e− c)

b−s−1∑
i=b+c−2e

(−1)e+i+j+1 (1− b− c+ 2e+ i)2c−i−s−1 (1− e+ s)b−i−s−1

(b− i− s− 1)! (2− 2e+ 2s)b−i−s−1

· (c− e)! (e+ i− j − 1)!
(i− j + c)!

= 0, (3.50)

which is (3.48) restricted to the j-th column, j = c, c + 1, . . . , b − 1 (note that all
the entries in rows b− e, b− e+ 1, . . . , b+ c− 2e− 1 of ∆1(−e; b, c, e) vanish in such
a column), and

b−2e+s∑
i=0

(−1)b+c+e+i+s+1 (b+ c− 2e− i− 1)! (b− e− i− 1)!
(2e− 2s− 2)! (b− i− s− 1)!

· (e− s− 1)! (2e+ c− b− s− 1)!
(b− 2e− i+ s)!

2
(
b− 2e
i− j + b

)

+
min{b+c−2e−1,b−s−1}∑

i=b−e
2 (−1)b+c+i

(b+ c− 2e− i− 1)! (e− s− 1)!
(i+ e− b)! (2e− 2s− 2)!

· (2e+ c− b− s− 1)! (2e− b+ i− s− 1)!
(b− i− s− 1)!

(
b− 2e
i− j + b

)
+ χ(s ≥ 2e− c)

b−s−1∑
i=b+c−2e

2 (−1)i+j+1 (1− b− c+ 2e+ i)2c−i−s−1 (1− e+ s)b−i−s−1

(b− i− s− 1)! (2− 2e+ 2s)b−i−s−1

· (b− 2e)! (2e+ i− j − 1)!
(i− j + b)!

= 0, (3.51)

which is (3.48) restricted to the j-th column, j = b, b+ 1, . . . , b+ c− 1.
We start by proving (3.50). We remind the reader that here j is restricted to

c ≤ j < b. The two sums in (3.50) can be combined into a single sum. To be
precise, the left-hand side in (3.50) can be written as

lim
δ→0

(
b−s−1∑
i=j−c

(−1)e+i+j+1 (c− e)! (1 + δ)e+i−j−1

(i− j + c)! (b− i− s− 1)!

· (1− b− c+ 2e+ δ + i)2c−i−s−1 (1− e+ δ + s)b−i−s−1

(2− 2e+ δ + 2s)b−i−s−1

)
. (3.52)
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This expression is in fact just a multiple of the expression (3.7). So, in the same
way as it was done for (3.7), it is shown that (3.52) vanishes. All the previous
arguments apply because the crucial inequalities e ≤ c, s ≤ c− 1, s ≤ e− 1 are also
valid here, thanks to (3.49). This establishes (3.50).

Similarly, for the proof of (3.51) (we remind the reader that here j is restricted
to b ≤ j < b + c), we observe that the three sums in (3.51) can be combined into
the single expression

lim
δ→0

(
b−s−1∑
i=j−b

2 (−1)i+j+1 (b− 2e)! (1 + δ)2e+i−j−1

(b− i− s− 1)! (i− j + b)!

· (1− b− c+ 2e+ δ + i)2c−i−s−1 (1− e+ δ + s)b−i−s−1

(2− 2e+ δ + 2s)b−i−s−1

)
,

and note that this expression is a multiple of the expression (3.10). That it vanishes
is then seen in the same way as it was for (3.10). Again, the inequalities (3.49)
guarantee that all the previous arguments go through. This establishes (3.51), and
thus completes the proof that (x + e) divides ∆′(x; b, c) with multiplicity m(e) as
given in (3.47).

Case 2: b− c ≤ e ≤ b/2. By inspection of the expression (3.46), we see that we
have to prove that (x+ e)m(e) divides ∆′(x; b, c), where

m(e) =
{

(b− c) b− c ≤ e ≤ c/2
(b− c) + (2e− c) c/2 < e ≤ b/2. (3.53)

Note that the first case in (3.53) could be empty, but not the second (except if
b = c).

The term (2e − c) in the (c/2 < e)-case of (3.53) is basically explained in the
same way as in Case 1: We take (x+e) out of rows b+c−2e, b+c−2e+1, . . . , b−1
of the determinant ∆′(x; b, c) (clearly, such rows exist only if c/2 < e), and thus
obtain the determinant (3.3), which we denoted by ∆1(x; b, c, e). As before, to see
that this determinant has still entries which are polynomial in x, it suffices to check
that the entries in rows i = b+ c− 2e, b+ c− 2e+ 1, . . . , b− 1 are polynomials in
x. This follows in almost the same way as in Case 1: We have c− e ≥ c− b/2 ≥ 0
by our assumptions, e+ i− j − 1 ≥ b+ c− e− j − 1 ≥ c− e ≥ 0 if j < b, b− 2e ≥ 0
by assumption, and 2e + i − j − 1 ≥ b + c − j − 1 ≥ 0 if j < b + c. This explains
the term (2e− c) in (3.53).

In order to explain the term (b−c) in (3.53), we claim that for s = 0, 1, . . . , b−c−1
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we have

2c−b+s∑
i=0

(−1)c+i
(b− c− s− 1)! (1 + c− 2e+ s)b−i−s−1

2 (2b− 2c− 2s− 2)!

· (1− b+ 2c− i+ s)b−c−s−1

(b− i− s− 1)!
· (row i of ∆1(−e; b, c, e))

+
b−s−1∑
i=c

(−1)c+i
(b− c− s− 1)! (1 + c− 2e+ s)b−i−s−1

(2b− 2c− 2s− 2)!

· (1− b+ 2c− i+ s)b−c−s−1

(b− i− s− 1)!
· (row i of ∆1(−e; b, c, e))

= 0 (3.54)

if s ≥ 2e− c, and

2c−b+s∑
i=0

(−1)i+s+1 (b− c− s− 1)! (b+ c− 2e− i− 1)!
(2b− 2c− 2s− 2)!

· (2e− c− s− 1)! (1− b+ 2c− i+ s)b−c−s−1

(b− i− s− 1)!
· (row i of ∆1(−e; b, c, e))

+
b+c−2e−1∑

i=c

2 (−1)i+s+1 (b− c− s− 1)! (b+ c− 2e− i− 1)!
(2b− 2c− 2s− 2)!

· (2e− c− s− 1)! (1− b+ 2c− i+ s)b−c−s−1

(b− i− s− 1)!
· (row i of ∆1(−e; b, c, e))

+
b−s−1∑

i=b+c−2e

(−1)c+i
(b− c− s− 1)! (1 + c− 2e+ s)b−i−s−1

(2b− 2c− 2s− 2)!

· (1− b+ 2c− i+ s)b−c−s−1

(b− i− s− 1)!
· (row i of ∆1(−e; b, c, e))

= 0 (3.55)

if s ≤ 2e − c. In (3.54) and (3.55) we make the same convention as in Case 1 of
how to understand ∆1(x; b, c, e) in the case that e ≤ c/2.

It should be noted that in both cases these are indeed b− c linear combinations
of the rows, which are linearly independent.

Let us first consider (3.54), i.e., in the following paragraphs we assume s ≥ 2e−c.
Because of the condition s ≤ b − c − 1, we have 2c − b + s ≤ c − 1, and therefore
the rows which are involved in the first sum in (3.54) are from rows 0, 1, . . . , c− 1,
which form the top block in (3.3). Because of 2c − b + s ≥ 0 the bounds for the
sum are proper bounds. Since s ≥ 0, we have b− s− 1 ≤ b− 1, and therefore the
rows which are involved in the second sum in (3.54) are from rows c, c+1, . . . , b−1,
which form the “middle” block in (3.3) if s ≥ 2e − c (recall: the bottom block is
empty in this case). Finally, the assumption s ≤ b − c − 1 implies c ≤ b − s − 1,
and so the bounds for the sum are proper.
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Hence, in order to verify (3.54), we have to check

2c−b+s∑
i=0

(−1)c+i
(b− c− s− 1)! (1 + c− 2e+ s)b−i−s−1

2 (2b− 2c− 2s− 2)!

· (1− b+ 2c− i+ s)b−c−s−1

(b− i− s− 1)!

(
c− e

i− j + c

)
= 0, (3.56)

which is (3.54) restricted to the j-th column, j = c, c + 1, . . . , b − 1 (note that
this is indeed the restriction of (3.54) to the j-th column, c ≤ j < b, since, due to
0 ≤ c−e ≤ 2c−b < 2c−j ≤ i−j+c, the entries

(
c−e
i−j+c

)
in rows c, c+1, . . . , b−s−1

of ∆1(−e; b, c, e) vanish in such a column), and

2c−b+s∑
i=0

(−1)c+i
(b− c− s− 1)! (1 + c− 2e+ s)b−i−s−1

2 (2b− 2c− 2s− 2)!

· (1− b+ 2c− i+ s)b−c−s−1

(b− i− s− 1)!
2
(
b− 2e
i− j + b

)
+
b−s−1∑
i=c

(−1)c+j+1 (b− c− s− 1)! (1 + c− 2e+ s)b−i−s−1

(2b− 2c− 2s− 2)!

· (1− b+ 2c− i+ s)b−c−s−1

(b− i− s− 1)!

(
b− 2e
i− j + b

)

= 0, (3.57)

which is (3.54) restricted to the j-th column, j = b, b+ 1, . . . , b+ c− 1.
In order to verify (3.56) (we remind the reader that here j is restricted to c ≤

j < b), we rewrite the left-hand side in a fancier way as

lim
δ→0

(
2c−b+s∑
i=j−c

(−1)c+i
(b− c− s− 1)! (1 + c− 2e+ δ + s)b−i−s−1

2 (2b− 2c− 2s− 2)!

· (1− b+ 2c+ δ − i+ s)b−c−s−1 (c− e)!
(b− i− s− 1)! (i− j + c)! (1 + δ)j−i−e

)
, (3.58)

and convert the series into hypergeometric notation,

lim
δ→0

(
(−1)j

(c− e)! (1 + c− 2e+ δ + s)b+c−j−s−1 (1− b+ 3c+ δ − j + s)b−c−s−1

2 (2b− 2c− 2s− 2)! (b+ c− j − s− 1)!

× (b− c− s− 1)!
(1 + δ)c−e

3F2

[−c+ e− δ, b− 3c− δ + j − s, 1− b− c+ j + s
1− 2c− δ + j, 1− b− 2c+ 2e− δ + j

; 1
])

.

To the 3F2-series we apply, once again, the transformation formula (3.11). Thus
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we obtain the expression

lim
δ→0

(
(−1)j

(c− e)! (1 + c− 2e+ δ + s)b+c−j−s−1 (1− b+ 3c+ δ − j + s)b−c−s−1

2 (2b− 2c− 2s− 2)! (b+ c− j − s− 1)!

× (b− c− s− 1)!
(1 + δ)c−e

Γ(1− b− 2c+ 2e− δ + j) Γ(1− b+ c+ e)
Γ(1− b− c+ e+ j) Γ(1− b+ 2e− δ)

× 3F2

[−c+ e− δ, 1− b+ c+ s, b− c− δ − s
1− 2c− δ + j, 1− b+ 2e− δ ; 1

])

for the left-hand side in (3.56). The 3F2-series in this expression terminates because
of the upper parameter 1− b+ c+ s, which is a nonpositive integer because of an
assumption. Hence it is well-defined. The complete expression vanishes because of
the occurence of the term Γ(1 − b − c + e + j) in the denominator. For, by our
assumptions, we have 1 − b − c + e + j ≤ e − c ≤ 0, and so the gamma function
equals ∞. This establishes (3.56).

For proving (3.57) (we remind the reader that here j is restricted to b ≤ j < b+c),
we observe that the two sums in (3.57) can be combined into the single expression

lim
δ→0

(
2c−b+s∑
i=j−b

(−1)c+i
(b− c− s− 1)! (1 + c− 2e+ δ + s)b−i−s−1

(2b− 2c− 2s− 2)!

· (1− b+ 2c+ δ − i+ s)b−c−s−1 (1− 2e+ δ − i+ j)i−j+b
(b− i− s− 1)! (i− j + b)!

)
. (3.59)

Using hypergeometric notation, this expression can be rewritten as

lim
δ→0

(
(−1)b+c+j

(1 + c− 2e+ δ + s)2b−j−s−1 (1 + 2c+ δ − j + s)b−c−s−1

(2b− 2c− 2s− 2)!

× (b− c− s− 1)!
(2b− j − s− 1)! 3F2

[−b+ 2e− δ,−2c− δ + j − s, 1− 2b+ j + s
1− 2b− c+ 2e− δ + j, 1− b− c− δ + j

; 1
])

.

The 3F2-series can be summed by means of the Pfaff-Saalschütz summation (3.8).
We have to apply the case where n = 2b− j − s− 1, which is indeed a nonnegative
integer because of 2b− j − s− 1 ≥ b− c− s ≥ 1. This gives

lim
δ→0

(
(−1)b+c+j

(1− b− c+ j)2b−j−s−1 (1− 2b+ c+ 2e+ s)2b−j−s−1

(2b− 2c− 2s− 2)!

× (b− c− s− 1)! (1 + c− 2e+ δ + s)2b−j−s−1 (1 + 2c+ δ − j + s)b−c−s−1

(2b− j − s− 1)! (1− 2b− c+ 2e− δ + j)2b−j−s−1 (1− b+ c+ δ + s)2b−j−s−1

)

as an equivalent expression for (3.57). It vanishes because of the occurence of the
term

(1− b− c+ j)2b−j−s−1 = (1− b− c+ j)(2− b− c+ j) · · · (b− c− s− 1)



92 C. Krattenthaler and D. Zeilberger

in the numerator. For, by our assumptions, we have 1− b− c+ j ≤ 0, and we have
b− c− s− 1 ≥ 0. This establishes (3.57).

Now let us consider (3.55), i.e., in the following paragraphs we assume s ≤ 2e−c.
In the same way as for (3.54), it is checked that the the rows which are involved
in the first sum in (3.55) are from rows 0, 1, . . . , c− 1, and that the bounds for the
sum are proper bounds. Clearly, the rows which are involved in the second sum
in (3.55) are from rows c, c+ 1, . . . , b+ c− 2e− 1, which form the middle block in
(3.3). The assumption e ≤ b/2 guarantees that the bounds for the sum are proper
(including the possibility that e = b/2, in which case the sum is the empty sum).
Finally, since s ≥ 0, the rows which are involved in the third sum in (3.55) are from
rows b+ c−2e, b+ c−2e+ 1, . . . , b−1, which form the bottom block in (3.3). That
the bounds for the sum are proper follows from the condition s ≤ 2e− c (including
the possibility that s = 2e− c, in which case the sum is the empty sum).

Hence, in order to verify (3.55), we have to check

2c−b+s∑
i=0

(−1)i+s+1 (b− c− s− 1)! (b+ c− 2e− i− 1)!
(2b− 2c− 2s− 2)!

· (2e− c− s− 1)! (1− b+ 2c− i+ s)b−c−s−1

(b− i− s− 1)!

(
c− e

i− j + c

)
+

b−s−1∑
i=b+c−2e

(−1)c+e+j+1 (b− c− s− 1)! (1 + c− 2e+ s)b−i−s−1

(2b− 2c− 2s− 2)!

· (1− b+ 2c− i+ s)b−c−s−1

(b− i− s− 1)!
(c− e)! (e+ i− j − 1)!

(i− j + c)!
= 0, (3.60)

which is (3.55) restricted to the j-th column, j = c, c+ 1, . . . , b− 1 (again note that
all the entries in rows c, c+ 1, . . . , b+ c− 2e− 1 of ∆1(−e; b, c, e) vanish in such a
column), and

2c−b+s∑
i=0

(−1)i+s+1 (b− c− s− 1)! (b+ c− 2e− i− 1)!
(2b− 2c− 2s− 2)!

· (2e− c− s− 1)! (1− b+ 2c− i+ s)b−c−s−1

(b− i− s− 1)!
2
(
b− 2e
i− j + b

)
+
b+c−2e−1∑

i=c

2 (−1)i+s+1 (b− c− s− 1)! (b+ c− 2e− i− 1)!
(2b− 2c− 2s− 2)!

· (2e− c− s− 1)! (1− b+ 2c− i+ s)b−c−s−1

(b− i− s− 1)!

(
b− 2e
i− j + b

)
+

b−s−1∑
i=b+c−2e

2 (−1)c+j+1 (b− c− s− 1)! (1 + c− 2e+ s)b−i−s−1

(2b− 2c− 2s− 2)!

· (1− b+ 2c− i+ s)b−c−s−1

(b− i− s− 1)!
(b− 2e)! (2e+ i− j − 1)!

(i− j + b)!
= 0, (3.61)
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which is (3.55) restricted to the j-th column, j = b, b+ 1, . . . , b+ c− 1.

Both identities are now easily verified. In fact, the left-hand side of (3.60) can be
written as limδ→0(2E1/δ), where E1 is the expression in big parentheses in (3.58).
Likewise, the left-hand side of (3.61) can be written as limδ→0(2E2/δ), where E2 is
the expression in big parentheses in (3.59). The same arguments as in the proofs
of (3.56) and (3.57) then show that (3.60) and (3.61) vanish.

This completes the proof that (x + e) divides ∆′(x; b, c) with multiplicity m(e)
as given in (3.53).

Case 3: b/2 ≤ e ≤ c. By inspection of the expression (3.46), we see that we have
to prove that (x+ e)m(e) divides ∆′(x; b, c), where

m(e) =
{

(b− c) + (2b− 2e− c) b/2 ≤ e < b− c/2
(b− c) b− c/2 ≤ e ≤ c. (3.62)

Note that the second case in (3.62) could be empty, but not the first (except if
b = c).

As in Case 4 of the proof of Lemma 1, in order to extract the appropriate
number of factors (x + e) out of the determinant ∆′(x; b, c), we start with the
modified determinant (3.13) with e = b. Recall, that the choice of e = b has the
effect that the bottom block in (3.13) is empty. If e < b − c/2, we take (x + e)
out of rows 2e + c − b, 2e + c − b + 1, . . . , b − 1 (such rows only exist under the
assumption e < b − c/2), and obtain the determinant in (3.38), which we denoted
by ∆3(x; b, c, e). Obviously, we have taken out (x + e)2b−2e−c. The remaining
determinant has still entries which are polynomial in x. For, it is obvious that the
entries in rows i = 0, 1, . . . , 2e+ c− b−1 are polynomials in x, and for i ≥ 2e+ c− b
we have: i−e ≥ e+c−b ≥ c−b/2 ≥ 0 by our assumptions, e+c−j−1 ≥ e+c−b ≥ 0
if j < b, i+ b− c−2e ≥ 0, and 2e+ c− j−1 ≥ 2e− b ≥ 0 if j < b+ c. This explains
the term (2b− 2e− c) in the (e < b− c/2)-case of (3.62).

In order to explain the term (b−c) in (3.62), we claim that for s = 0, 1, . . . , b−c−1
we have

2c−b+s∑
i=0

(−1)c+i
(b− c− s− 1)! (1 + c− 2e+ s)b−i−s−1 (1− b+ 2c− i+ s)b−c−s−1

2 (2b− 2c− 2s− 2)! (b− i− s− 1)!

· (row i of ∆3(−e; b, c, e))
+
b−s−1∑
i=c

(b− c− s− 1)! (1− c+ i)b−c−s−1 (1− 2b+ c+ 2e+ s)b−i−s−1

(2b− 2c− 2s− 2)! (b− i− s− 1)!

· (row i of ∆3(−e; b, c, e))
= 0 (3.63)
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if s ≥ 2b− 2e− c, and

2c−b+s∑
i=0

(−1)i+s+1 (b− c− s− 1)! (b+ c− 2e− i− 1)! (2e− c− s− 1)!
(2b− 2c− 2s− 2)!

· (1− b+ 2c− i+ s)b−c−s−1

(b− i− s− 1)!
· (row i of ∆3(−e; b, c, e))

+
2e+c−b−1∑

i=c

2 (−1)c+s
(b− c− s− 1)! (2e+ c− b− i− 1)! (2b− c− 2e− s− 1)!

(2b− 2c− 2s− 2)!

· (1− c+ i)b−c−s−1

(b− i− s− 1)!
· (row i of ∆3(−e; b, c, e))

+
b−s−1∑

i=2e+c−b

(b− c− s− 1)! (1− c+ i)b−c−s−1 (1− 2b+ c+ 2e+ s)b−i−s−1

(2b− 2c− 2s− 2)! (b− i− s− 1)!

· (row i of ∆3(−e; b, c, e))
= 0 (3.64)

if s ≤ 2b− 2e− c. In (3.63) and (3.64) we make a similar convention as in Case 1
of how to understand ∆3(x; b, c, e) in the case that e ≥ b− c/2.

It should be noted that in both cases these are indeed b− c linear combinations
of the rows, which are linearly independent.

Let us first consider (3.63), i.e., in the following paragraphs we assume s ≥
2b−2e−c. In the same way as for (3.54) it is seen that the rows which are involved
in the first sum in (3.63) are from rows 0, 1, . . . , c− 1, which form the top block in
(3.38), and that the bounds for the sum are proper bounds. Also in the same way,
it is seen that the rows which are involved in the second sum in (3.63) are from
rows c, c+ 1, . . . , b− 1, which form the “middle” block in (3.38) if s ≥ 2b− 2e− c
(recall: the bottom block is empty in this case), and that the bounds for the sum
are proper.

Hence, in order to verify (3.63), we have to check

2c−b+s∑
i=0

(−1)c+i
(b− c− s− 1)! (1 + c− 2e+ s)b−i−s−1

2 (2b− 2c− 2s− 2)!

· (1− b+ 2c− i+ s)b−c−s−1

(b− i− s− 1)!

(
c− e

i− j + c

)
= 0, (3.65)

which is (3.63) restricted to the j-th column, j = c, c + 1, . . . , b − 1 (note that
this is indeed the restriction of (3.63) to the j-th column, c ≤ j < b, since, due to
0 ≤ i−e ≤ i−b/2 ≤ i−b+c < i−j+c, the entries

(
i−e
i−j+c

)
in rows c, c+1, . . . , b−s−1
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of ∆3(−e; b, c, e) vanish in such a column), and

2c−b+s∑
i=0

(−1)c+i
(b− c− s− 1)! (1 + c− 2e+ s)b−i−s−1 (1− b+ 2c− i+ s)b−c−s−1

2 (2b− 2c− 2s− 2)! (b− i− s− 1)!

· 2
(
b− 2e
i− j + b

)
+
b−s−1∑
i=c

(b− c− s− 1)! (1− c+ i)b−c−s−1 (1− 2b+ c+ 2e+ s)b−i−s−1

(2b− 2c− 2s− 2)! (b− i− s− 1)!

·
(
i+ b− c− 2e
i− j + b

)
= 0, (3.66)

which is (3.63) restricted to the j-th column, j = b, b+ 1, . . . , b+ c− 1.
Identity (3.65) is now easily verified. In fact, the left-hand side of (3.65) can

be rewritten as the expression (3.58). It vanishes since the crucial inequalities
1− b+ c+ s ≤ 0 and e− c ≤ 0 are also valid here.

For verifying (3.66) we have to do little more work. We remind the reader that
here j is restricted to b ≤ j < b + c. We consider first the second term in (3.66).
We replace the binomial

(
i+b−c−2e
i−j+b

)
by the expansion

∑i
`=c

(
b−2e
`−j+b

)(
i−c
i−`
)
, the equal-

ity of binomial and expansion being again due to Chu–Vandermonde summation.
Then we interchange the summations over i and `, and write the sum over i in
hypergeometric notation. This gives

b−s−1∑
`=c

(b− c− s− 1)! (1− 2e+ j − `)`−j+b (1− c+ `)b−c−s−1

(b− j + `)! (2b− 2c− 2s− 2)!

· (1− 2b+ c+ 2e+ s)b−`−s−1

(b− `− s− 1)! 2F1

[
b− 2c+ `− s, 1− b+ `+ s

1 + b− c− 2e+ `
; 1
]

as an equivalent expression for the second term in (3.66). The 2F1-series can be
evaluated by the hypergeometric form (3.20) of the Chu–Vandermonde summation.
Thus we obtain the expression

b−s−1∑
`=c

(−1)c+`
(b− c− s− 1)! (1 + c− 2e+ s)b−`−s−1

(2b− 2c− 2s− 2)!

· (1− b+ 2c− `+ s)b−c−s−1

(b− `− s− 1)!

(
b− 2e
`− j + b

)
. (3.67)

Now it is straight-forward to see that the first term in (3.66) and the above ex-
pression for the second term in (3.66) can be combined into the single expression
(3.59). Then the same arguments as before apply to show that this expression
vanishes as well in the current case. For, the crucial inequalities 2b− j − s− 1 ≥ 0,
1− b− c+ j ≤ 0, and b− c− s− 1 ≥ 0 are also valid here. This establishes (3.66).

Now let us consider (3.64), i.e., in the following paragraphs we assume s ≤
2b − 2e − c. In the same way as for (3.54), it is checked that the the rows which
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are involved in the first sum in (3.64) are from rows 0, 1, . . . , c − 1, and that the
bounds for the sum are proper bounds. Clearly, the rows which are involved in
the second sum in (3.64) are from rows c, c+ 1, . . . , 2e+ c− b− 1, which form the
middle block in (3.38). The assumption e ≥ b/2 guarantees that the bounds for
the sum are proper (including the possibility that e = b/2, in which case the sum
is the empty sum). Finally, since s ≥ 0, the rows which are involved in the third
sum in (3.64) are from rows 2e + c − b, 2e + c − b + 1, . . . , b − 1, which form the
bottom block in (3.38). That the bounds for the sum are proper follows from the
condition s ≤ 2b − 2e − c (including the possibility that s = 2b − 2e − c, in which
case the sum is the empty sum).

Hence, in order to verify (3.64), we have to check

2c−b+s∑
i=0

(−1)i+s+1 (b− c− s− 1)! (b+ c− 2e− i− 1)! (2e− c− s− 1)!
(2b− 2c− 2s− 2)!

· (1− b+ 2c− i+ s)b−c−s−1

(b− i− s− 1)!

(
c− e

i− j + c

)
+

b−s−1∑
i=2e+c−b

(−1)c+e+j+1(b− c− s− 1)! (1− c+ i)b−c−s−1

(2b− 2c− 2s− 2)!

· (1− 2b+ c+ 2e+ s)b−i−s−1

(b− i− s− 1)!
(i− e)! (e+ c− j − 1)!

(i− j + c)!
= 0, (3.68)

which is (3.64) restricted to the j-th column, j = c, c + 1, . . . , b − 1, (recall that
all the entries in rows c, c+ 1, . . . , 2e+ c− b− 1 of ∆3(−e; b, c, e) vanish in such a
column), and

2c−b+s∑
i=0

(−1)i+s+1 (b− c− s− 1)! (b+ c− 2e− i− 1)! (2e− c− s− 1)!
(2b− 2c− 2s− 2)!

· (1− b+ 2c− i+ s)b−c−s−1

(b− i− s− 1)!
2
(
b− 2e
i− j + b

)
+

2e+c−b−1∑
i=c

2 (−1)c+s
(b− c− s− 1)! (2e+ c− b− i− 1)! (2b− c− 2e− s− 1)!

(2b− 2c− 2s− 2)!

· (1− c+ i)b−c−s−1

(b− i− s− 1)!

(
i+ b− c− 2e
i− j + b

)
+

b−s−1∑
i=2e+c−b

2 (−1)c+j+1 (b− c− s− 1)! (1− c+ i)b−c−s−1

(2b− 2c− 2s− 2)!

· (1− 2b+ c+ 2e+ s)b−i−s−1

(b− i− s− 1)!
(i+ b− c− 2e)! (2e+ c− j − 1)!

(i− j + b)!
= 0, (3.69)

which is (3.64) restricted to the j-th column, j = b, b+ 1, . . . , b+ c− 1.
We start with the proof of (3.68). We remind the reader that here j is restricted

to c ≤ j < b. The strategy is analogous to the one used in the proof of (3.66) just



Proof of a Determinant Evaluation 97

before. We recast the second term in (3.68) by replacing the subterm (i− e)! (e+
c− j − 1)!/(i− j + c)! by the expression

lim
δ→0

(
1
δ

i∑
`=c

(c− e)!
(`− j + c)! (1 + δ)j−`−e

(
i− c
i− `

))
,

the equality of second term and this expression following again from Chu–Vander-
monde summation. Then we interchange sums over i and `, and evaluate the now
inner sum by Chu–Vandermonde summation (3.20). The computation is essentially
the same as before in the proof of (3.66). Eventually, we obtain the expression
(3.67), with the binomial

(
b−2e
`−j+b

)
replaced by (c− e)!/(δ (`− j + c)! (1 + δ)j−`−e

)
.

Therefore, this expression and the first term in (3.68) can be combined into the
single expression limδ→0 2E1/δ, where E1 is the expression in big parentheses in
(3.58). Then we may follow the arguments which proved that (3.58) vanishes, since
the crucial inequalities 1 − b + c + s ≤ 0 and e − c ≤ 0 are also valid here. This
establishes (3.68).

Now we turn to (3.69). We remind the reader that here j is restricted to b ≤
j < b+ c. We proceed again in the same way as in the proof of (3.66). Once more
using Vandermonde summation, we replace the binomial

(
i+b−c−2e
i−j+b

)
in the second

term in (3.69) by the expansion
∑i
`=c

(
b−2e
`−j+b

)(
i−c
i−`
)
, and we replace the subterm

(i + b − c − 2e)! (2e + c − j − 1)!/(i − j + b)! in the third term in (3.69) by the
expression

lim
δ→0

(
1
δ

i∑
`=c

(1 + j − `− 2e+ δ)`−j+b
(`− j + b)!

(
i− c
i− `

))
.

Then we interchange sums over i and `, and evaluate the now inner sums over i
by the same instance of the Chu–Vandermonde summation (3.20). Eventually, it
is seen that the three terms on the left-hand side of (3.69) can be combined into
the single expression limδ→0(2E2/δ), where E2 is the expression in big parentheses
in (3.59). The same arguments as in the proof of (3.57) can now be used since the
crucial inequalities 2b− j − s− 1 ≥ 0, 1− b− c+ j ≤ 0, and b− c− s− 1 ≥ 0 are
also valid here. This establishes (3.69) and completes the proof that (x+ e) divides
∆′(x; b, c) with multiplicity m(e) as given in (3.62).

Case 4: c ≤ e ≤ (b + c)/2. By inspection of the expression (3.46), we see that
we have to prove that (x+ e)m(e) divides ∆′(x; b, c), where

m(e) =
{

(b+ c− 2e) + (2b− 2e− c) c ≤ e < b− c/2
(b+ c− 2e) b− c/2 ≤ e ≤ (b+ c)/2.

(3.70)

Note that the first case in (3.70) could be empty, but not the second, because of
b ≤ 2c.

As in Case 3, in order to explain the term 2b− 2e− c in the (e < b− c/2)-case
of (3.70), we start with the determinant (3.13) with e = b. We take again (x + e)
out of rows 2e + c − b, 2e + c − b + 1, . . . , b − 1 (such rows only exist under the
assumption e < b − c/2), and obtain the determinant in (3.38), which we denoted
by ∆3(x; b, c, e). Obviously, we have taken out (x+e)2b−2e−c. As before, to see that
this determinant has still entries which are polynomial in x, it suffices to check that
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the entries in rows i = 2e+ c− b, 2e+ c− b+ 1, . . . , b− 1 are polynomials in x. This
follows in almost the same way as in Case 3: We have i− e ≥ e+ c− b ≥ 2c− b ≥ 0
by our assumptions, e+ c− j − 1 ≥ e+ c− b ≥ 0 if j < b, i+ b− c− 2e ≥ 0, and
2e+ c− j−1 ≥ 2e− b ≥ 2c− b ≥ 0 if j < b+ c. This explains the term (2b−2e− c)
in (3.70).

In order to explain the term (b+c−2e) in (3.70), we claim that for s = 0, 1, . . . , b+
c− 2e− 1 we have

2e−b+s∑
i=0

(
c−i−1∑
k=0

(−1)c+e+i+k+s+1

(
c− i− 1

b+ c− 2e+ k − s− 1

)
(b+ c− 2e− s− 1)!

k!

· (b− e− s− 1)! (c+ k − s− 1)! (b− e+ k − s− 1)!
(2b− 2e− 2s− 2)! (2b− 2e+ k − 2s− 1)!

)
· (row i of ∆3(−e; b, c, e))

+
min{2e+c−b−1,b−s−1}∑

i=e

2 (−1)c+s
(2e+ c− b− i− 1)! (b+ c− 2e− s− 1)!

(b− i− s− 1)!

· (1− e+ i)b−i−s−1

(b− 2e+ i− s)b−i−s−1
· (row i of ∆3(−e; b, c, e))

+ χ(s ≥ 2b− 2e− c)
b−s−1∑

i=2e+c−b
(−1)b+i+s+1 (1 + b− c− 2e+ i)2c−i−s−1

(b− i− s− 1)!

· (1− e+ i)b−i−s−1

(b− 2e+ i− s)b−i−s−1
· (row i of ∆3(−e; b, c, e))

= 0. (3.71)

We make a similar convention as in Case 1 of how to understand ∆3(x; b, c, e) in
the case that e ≥ b− c/2, as we already did in Case 3.

Note that these are indeed b + c − 2e linear combinations of the rows, which
are linearly independent. The latter fact comes from the observation that for fixed
s the last nonzero coefficient in the linear combination (3.71) is the one for row
b− s− 1, regardless whether s ≥ 2b− 2e− c or not.

Because of the condition s ≤ b+c−2e−1, we have 2e−b+s ≤ c−1, and therefore
the rows which are involved in the first sum in (3.71) are from rows 0, 1, . . . , c− 1,
which form the top block in (3.38). The assumptions e ≥ c and b ≤ 2c imply
2e − b + s ≥ 0, and so the bounds for the sum are proper bounds. Because of
e ≥ c, the rows which are involved in the second sum in (3.71) are from rows
c, c+ 1, . . . , 2e+ c− b− 1, which form the middle block in (3.38). The bounds for
the sum are proper, since by our assumptions we have

s ≤ b+ c− 2e− 1 ≤ b− e− 1 ≤ b− c− 1 ≤ c− 1 ≤ e− 1, (3.72)

and therefore e ≤ b − s − 1 and e ≤ 2e + c − b (including the possibility that
b/2 = c = e, in which case the second sum in (3.71) is the empty sum). Finally,
because of the condition s ≥ 0, we have b − s − 1 ≤ b − 1, and therefore the
rows which are involved in the third sum in (3.71) (if existent) are from rows
2e+ c− b, 2e+ c− b+ 1, . . . , b− 1, which form the bottom block in (3.38).
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Hence, in order to verify (3.71), we have to check

2e−b+s∑
i=0

(
c−i−1∑
k=0

(−1)c+e+i+k+s+1

(
c− i− 1

b+ c− 2e+ k − s− 1

)
(b+ c− 2e− s− 1)!

k!

· (b− e− s− 1)! (c+ k − s− 1)! (b− e+ k − s− 1)!
(2b− 2e− 2s− 2)! (2b− 2e+ k − 2s− 1)!

)(
c− e

i− j + c

)

+ χ(s ≥ 2b− 2e− c)
b−s−1∑

i=2e+c−b
(−1)b+c+e+i+j+s

(1 + b− c− 2e+ i)2c−i−s−1

(b− i− s− 1)!

· (1− e+ i)b−i−s−1

(b− 2e+ i− s)b−i−s−1
· (i− e)! (e+ c− j − 1)!

(i− j + c)!
= 0, (3.73)

which is (3.71) restricted to the j-th column, j = c, c + 1, . . . , b − 1, (note that
this is indeed the restriction of (3.71) to the j-th column, c ≤ j < b, since, due to
0 ≤ i−e ≤ i−c ≤ i−b+c < i−j+c, the entries

(
i−e
i−j+c

)
in rows e, e+1, . . . , 2e+c−b−1

of ∆3(−e; b, c, e) vanish in such a column), and

2e−b+s∑
i=0

(
c−i−1∑
k=0

(−1)c+e+i+k+s+1

(
c− i− 1

b+ c− 2e+ k − s− 1

)
(b+ c− 2e− s− 1)!

k!

· (b− e− s− 1)! (c+ k − s− 1)! (b− e+ k − s− 1)!
(2b− 2e− 2s− 2)! (2b− 2e+ k − 2s− 1)!

)
2
(
b− 2e
i− j + b

)

+
min{2e+c−b−1,b−s−1}∑

i=e

2 (−1)c+s
(2e+ c− b− i− 1)! (b+ c− 2e− s− 1)!

(b− i− s− 1)!

· (1− e+ i)b−i−s−1

(b− 2e+ i− s)b−i−s−1

(
i+ b− c− 2e
i− j + b

)
+ χ(s ≥ 2b− 2e− c)

b−s−1∑
i=2e+c−b

2 (−1)b+c+i+j+s
(1 + b− c− 2e+ i)2c−i−s−1

(b− i− s− 1)!

· (1− e+ i)b−i−s−1

(b− 2e+ i− s)b−i−s−1
· (i+ b− c− 2e)! (2e+ c− j − 1)!

(i− j + b)!
= 0, (3.74)

which is (3.71) restricted to the j-th column, j = b, b+ 1, . . . , b+ c− 1.
For the proof of (3.73) and (3.74) we follow the strategy of the proofs of (3.40)

and (3.41). That is, first the first terms in (3.73) and (3.74) are recast, by replacing
the binomials by the expansions that were described in the proofs of (3.40) and
(3.41), then interchanging sums, evaluating the inner sums, etc. Eventually, it
turns out that the two terms on the left-hand side of (3.73) can be combined into
a single expression, namely into (3.42) with (1 + b− c− 2e+ δ+ i)b−i−s−1 replaced
by (1 + b− c− 2e+ δ + i)2c−i−s−1. The same arguments as in Case 4 of the proof
of Lemma 1 then prove that this expression vanishes, since the crucial inequalities
b + c − j − s − 1 ≥ 0, 1 − c + s ≤ 0, b − j − 1 ≥ 0 are also valid here, thanks
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to (3.72). Similarly, it turns out, eventually, that the three terms on the left-hand
side of (3.74) can be combined into one expression, namely into (3.45), again with
(1 + b − c − 2e + δ + i)b−i−s−1 replaced by (1 + b − c − 2e + δ + i)2c−i−s−1. Now
the same arguments as in Case 4 of the proof of Lemma 1 apply to prove that this
expression vanishes, since the crucial inequalities 2b−j−s−1 ≥ 0, 1−b+e+s ≤ 0,
and b+ e− j − 1 ≥ 0 are also valid here, thanks to (3.72) again.

This proves (3.73) and (3.74), and thus completes the proof that (x+ e) divides
∆′(x; b, c) with multiplicity m(e) as given in (3.70).

This finishes the proof of Lemma 2. �

Lemma 3. For any integer c, any nonnegative integer n, and any number X, there
holds

det
1≤i,j≤n

((
X

i− j + c

))
=

n∏
i=1

(X + i− c)c
(i)c

. (3.75)

Proof. This is an ubiquitous determinant, and there are numerous proofs of its
evaluation, see e.g. [5, Lemma 3.1; 7, computation on p. 189 with λs = c and
a = X − α + b; 19] for some conceptual ones that also include generalizations.
�

Lemma 4. Let b and c be even integers, b > c. Then

det
c≤i,j<b


(
c− b/2− 1/2

2c− 1− j
)

i = c(
c− b/2 + 1/2
i− j + c

)
i > c

 = 0. (3.76)

Proof. Let us denote the determinant in (3.76) by D. We claim that the rows of
D are linearly dependent. To be precise, we claim that

b−1∑
j=c

(−1)j
(1− b+ c)j−c

(
1
2 − b

2

)
j−c

(j − c)! (1− b)j−c · (column j of D
)

= 0. (3.77)

To see this, we have to check

b−1∑
j=c

(−1)j
(1− b+ c)j−c

(
1
2 − b

2

)
j−c

(j − c)! (1− b)j−c

(
c− b/2− 1/2

2c− 1− j
)

= 0,

which is (3.77) restricted to row c, and

b−1∑
j=c

(−1)j
(1− b+ c)j−c

(
1
2 − b

2

)
j−c

(j − c)! (1− b)j−c

(
c− b/2 + 1/2
i− j + c

)
= 0,

which is (3.77) restricted to row i, c < i < b. Equivalently, in terms of hypergeo-
metric series, this means to check

( 3
2 − b

2 )c−1

(c− 1)! 3F2

[
1− c, 1− b+ c, 1

2 − b
2

3
2 − b

2 , 1− b
; 1
]

= 0 (3.78)
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and
( 3

2 − b
2 + c− i)i
i! 3F2

[
1
2 − b

2 , 1− b+ c,−i
1− b, 3

2 − b
2 + c− i ; 1

]
= 0. (3.79)

Equation (3.78) follows from Watson’s 3F2-summation (cf. [14, (2.3.3.13); Ap-
pendix (III.23)]),

3F2

[
A,B,C

1+A+B
2 , 2C ; 1

]
=

Γ
(

1
2

)
Γ
(

1
2 + C

)
Γ
(

1
2 + A

2 + B
2

)
Γ
(

1
2 − A

2 − B
2 + C

)
Γ
(

1
2 + A

2

)
Γ
(

1
2 + B

2

)
Γ
(

1
2 − A

2 + C
)

Γ
(

1
2 − B

2 + C
) .
(3.80)

For, the term Γ(1/2 + A/2) in the denominator of the right-hand side of (3.80)
implies that the 3F2-series on the left-hand side will vanish whenever A is an odd
negative integer. This is exactly the case for the 3F2-series in (3.78), where A = 1−c
with c being even by assumption.

Equation (3.79) follows from the Pfaff–Saalschütz summation (3.8). For, a
straight-forward application of formula (3.8) gives for the 3F2-series in (3.79) the
expression

( 1
2 − b

2 )i (−c)i ( 3
2 − b

2 + c− i)i
i! (1− b)i (− 1

2 + b
2 − c)i

.

In the numerator of this expression there appears the term (−c)i, which vanishes
because i > c. This completes the proof of the Lemma. �

References
1. W. N. Bailey, Generalized Hypergeometric Series, Cambridge University Press, Cambridge,

1935.

2. E. Bombieri, D. C. Hunt and A. J. van der Poorten, Determinants in the study of Thue’s
method and curves with prescribed singularities, Experimental Math. 4 (1995), 87–96.

3. G. Gasper and M. Rahman, Basic Hypergeometric Series, Encyclopedia of Math. And Its
Applications 35, Cambridge University Press, Cambridge, 1990.

4. I. M. Gessel and X. Viennot, Binomial determinants, paths, and hook length formulae, Adv.
in Math. 58 (1985), 300—321.

5. I. P. Goulden and D. M. Jackson, Further determinants with the averaging property of
Andrews-Burge, J. Combin. Theory Ser. A 73 (1996), 368–375.

6. R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, Addison-Wesley, Read-
ing, Massachusetts, 1989.

7. C. Krattenthaler, Generating functions for plane partitions of a given shape, Manuscripta
Math. 69 (1990), 173–202.

8. C. Krattenthaler, HYP and HYPQ — Mathematica packages for the manipulation of binomial
sums and hypergeometric series respectively q-binomial sums and basic hypergeometric series,
J. Symbol. Comput. 20 (1995), 737–744.

9. C. Krattenthaler, Some q-analogues of determinant identities which arose in plane partition
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